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CHAPTER 5: PROBABILITY, COMBINATIONS & PERMUTATIONS 
 

 

Probability 

 

If an event can occur in  n  ways (i.e. there are  n  possible outcomes) and a particular result can occur 

in  m  ways, then the probability of the particular result occurring is  m/n . 

 

Example 

 Spinning a coin gives rise to 2 possible outcomes: H (Heads) or T (Tails) 

 H occurs in 1 way ; therefore the probability of a H result is  ½   

 

Note: 

1. the sum of the probabilities for all possible results is unity: in the above example, the probability 

of T occurring is also ½ and the probability of obtaining either an H or a T (i.e. encompassing all 

possible results) is therefore equal to (½ +½) = 1  

2. probabilities may be expressed as fractions, in decimal format or as percentages; so the following 

probabilities are all equivalent - ½  , 0.5 , 50%. 

 

Example 

 A standard dice has six faces (with faces numbered 1 …. 6) and rolling it gives rise to 6 possible 

outcomes.  A 3 occurs in 1 way ; therefore the probability of throwing a 3 is 
1
/6 

 

 

Permutations and Combinations 

 

If we have  n  different items, then the number of ways of arranging them in a row is given by the 

factorial  n! 

 

Proof by Example 

Consider how many arrangements are possible for the 26 letters of the alphabet.  The first letter 

could be chosen in 26 different ways - leaving 25.  Thus 25 choices are possible for the second 

letter.  The third choice is then made from the 24 remaining letters and so on.  The number of 

different arrangements possible for just the first two choices is thus 26 × 25 ;  and when the third 

is included, 26 × 25 × 24.  This process can be continued until all the letters of the alphabet are 

used up and the number of different possible arrangements is 26 × 25 × 24  ×  23 × ......... × 4 × 3 

× 2 × 1  - such a multiplication series is called a factorial and in this case the number of 

arrangements would be written as 26!  

 

Example 

With three different letters, ABC, then  n = 3  and  n! = 6  , corresponding to the six possible 

arrangements which are: ABC, ACB, BAC, BCA, CAB, CBA 
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Selections 

 

We are often concerned with considering selections of objects, rather than all the objects.  In this 

instance it is important to distinguish between two different possible situations; one in which the order 

of the objects is important and one in which the order is not. 

 

Example 

 

It is possible to select two letters from the letters ABC in 3 ways: AB, AC, BC 

Each selection is called a combination 

 

However, 

 

If the order of the selection matters then there are 6 ways: AB, BA, AC, CA, BC, CB 

Each arrangement is called a permutation 

 

In this case, therefore there are 3 combinations and 6 permutations of the selected two letters. 

 

In general, provided that all the objects are different (dissimilar), then 

 

• the number of combinations of  r  objects from  n  objects is:   n

rC
n

n r r
=

−

!

( )! !
 

 

• the number of permutations of  r  objects from  n  objects is:  
n

rP
n

n r
=

−

!

( )!
 

 

For the example given above, the number of combinations of two letters chosen from three is  

3

2

3

1 2
3C = =

!

! !
  , whilst the number of permutations of two from three is   3 2

3

1
6P = =

!

!
 

 

The difference between the two formulae is a factor of  r!  - this is the number of ways of arranging  r  

dissimilar objects.  For two different letters, r = 2 and r! = 2 , i.e. for a pair of letters, then each letter 

may come first or last, giving rise to two permutations for each combination. 

 

Example 

How many different arrangements can be made by taking 5 letters of the word numbers ? 

Number of permutations  =   7 5

7

2
2520P = =

!

!
 

 

Example 

How many different arrangements can be made by taking all the letters of the word numbers ? 

Number of permutations  =   7 7

7

0
5040P = =

!

!
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Mass Spectroscopy - Isotopic Patterns 

 

Example 1 :   Cl  and  Cl2 

 

Chlorine has two stable isotopes of RAM 35 and 37.  Their relative abundance is about 3 : 1.  This can 

be expressed as ″ the chance of encountering a Cl atom of mass 35 in a collection of free chlorine 

atoms is 75% ″  or the probability of any particular Cl atom having mass 35 is 0.75. 

 

This means that a mass spectrum of chlorine atoms shows two peaks at masses 35 and 37, the former 

three time as intense as the latter. 

 

What happens in the chlorine molecule (Cl2 )?  Clearly several combinations of isotopes are possible, 

(i) both atoms are of mass 35, giving 
35
Cl2 , (ii) one 35 and one 37, giving 

35
Cl

37
Cl, or (iii) both are of 

mass 37, giving 
37
Cl2  .  These possible combinations give rise to three peaks in the mass spectrum, 

corresponding to Cl2
+
 ions with relative masses of 70, 72, and 74. 

 

There are several ways of tackling the problem of identifying the exact probability of each molecular 

mass occurring.  We will start with the least sophisticated approach. 

 

Approach 1 

 

If we choose the first atom in the molecule to be 
35
Cl then this choice has a probability of 0.75; this 

atom may then be associated with either another 
35
Cl atom, again with a probability of 0.75, or with a 

37
Cl atom, with a probability of 0.25 . 

 

The pattern of all possible combinations, taking account of these relative probabilities is shown in 

Table 1.  For this table we have chosen to work with four chlorine atoms in the first instance, since the 

relative abundances then indicate that on average three will be 35 and one 37.  Each of these atoms 

can then be associated with four other atoms, and again three will be 35 and one 37, giving the sixteen 

possible C12 molecules shown in the table. 

 

Table 1 : Possible Ways of Combining Chlorine Isotopes 

 

First Cl 35 35 35 37 

Second Cl 35 35 35 37 35 35 35 37 35 35 35 37 35 35 35 37 

Total mass 70 70 70 72 70 70 70 72 70 70 70 72 72 72 72 74 

 

Total number of molecules  =  16 

 

No. of molecules of mass 70  = 9  ⇒  Relative probability  =  
9
/16  =  0.5625 

 

No. of molecules of mass 72  = 6  ⇒  Relative probability  =  
6
/16  =  0.3750 

 

No. of molecules of mass 74  = 1  ⇒  Relative probability  =  
1
/16  =  0.0625 

 

Cross-checking: 
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 Total number of molecules  =  9 + 6 + 1 = 16 

 Total probability of all outcomes  =  0.5625 + 0.3750 + 0.0625  =  1.0000 

 

Note that the total number of possible isotopic arrangements in the final molecule arises by 

multiplying the number of choices for the first atom by the number of choices for the second.  In this 

case four for the first times four for the second  i.e. sixteen.   

 

If the only way in which these molecules can be distinguished is by mass then the relative probabilities 

will be as shown on the right hand side of the lower part of the table – of the sixteen arrangements, 

nine correspond to a total molecular mass of 70, six correspond to a total mass of 72 and one 

corresponds to a total mass of 74.  The mass spectrum will therefore appear as shown below: 

 

 

 

 

 

 

 

 

 

Approach 2 

 

The same result could be achieved, with considerably less effort, if the isotopic probability were used 

directly.  The four possible isotopic arrangements are listed in the table below, and their probabilities 

evaluated.  It is very important to note that the probability of a particular combination or permutation 

is related to the product of the probabilities. 

 

 

Table 2 : Possible Permutations of two Chlorine Isotopes with their Probabilities 

 

 1st 2nd  Probability Product Probability of Permutation Total Mass 

 35 35   0.75 × 0.75      0.5625         70 

 35 37   0.75 × 0.75      0.1875         72 

 37 35   0.25 × 0.75      0.1875         72 

 37 37   0.25 × 0.25      0.0625         74 

        Sum    1.0000 

 

The resulting conclusion is the same as that derived from the more complicated Table 1  -  the 

probability of the molecule having a total mass of 70 is 0.5625, a total mass of 72 is 0.3750 

(0.1875+0.1875), and a total mass of 74 is 0.0625. 

 

Intensity 

70     72     74          Mass 

Intensity ratio = 9 : 6 : 1 
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Approach 3 

 

A final simplification results from taking direct account of how many permutations give rise to a 

particular molecular mass.  The final probability is now determined directly from multiplying the 

product of the individual probabilities by the number of permutations of the isotopes giving the 

required total mass. 

 

Table 3 : Possible Permutations of two Chlorine Isotopes with their Probabilities 

 

Total Mass Required Isotopes     Probability Product     No. of Permutations Overall Probability 

    70  Two 35     0.75 × 0.75 =  0.5625   1   0.5625 

    72  One 35; One 37    0.75 × 0.25 =  0.1875   2   0.3750 

    74  Two 37     0.25 × 0.25 =  0.0625   1   0.0625 

 

 

Example 2 :   CHCl3 

 

Let’s now consider a slightly more complicated example, that of chloroform CHCl3 .  We will assume 

for simplicity that C is only present as mass 12 and H is only present as mass 1 in the parent ion, 

CHCl3
+
- the molecular mass is therefore that due to the three chlorine atoms plus 13.  The pattern and 

masses of the peaks derived from this ion can be calculated as shown below. 

 

Total Mass Required Isotopes     Probability Product     No. of Permutations Overall Probability 

    118  Three 35       0.75 × 0.75 × 0.75   1   0.4219 

    120  Two 35; One 37      0.75 × 0.75 × 0.25   3   0.4219 

    122  One 35; Two 37      0.75 × 0.25 × 0.25   3   0.1406 

    124  Three 37       0.25 × 0.25 × 0.25   1   0.0156 

              Sum 1.0000 

 

Note: 

1. For the 120 amu ion, which must contain two 35 and one 37 isotopes, there are three ways in 

which the isotopes can be arranged in order (35-35-37, 35-37-35 and 37-35-35).  Similarly there 

are also three permutations for the 122 amu ion. 

2. The final probabilities have been added up and the sum is equal to unity.  This is quite general and 

is a very useful check which should always carried out at this stage in your calculations.   

 

If the sum of the probabilities isn’t equal to one then you have made an error. 

 

 

Example 3 :   BrCl 

 

More complicated situations arise if many atoms in a molecule have a range of possible isotopes, but 

no new concepts arise.  Thus the parent ion of bromine monochloride, Br Cl
+
 , will show four peaks in 

the its mass spectrum since both bromine and chlorine have two isotopes.  The isotopes and their 

relative probabilities are : 
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79
Br 0.50   

81
Br 0.50 

 
35
Cl 0.75   

37
Cl 0.25 

 

For more complex problems such as this one the simplest procedure is to consider the isotopic 

arrangements associated with each element individually and then to combine the probabilities 

calculated for groupings of like atoms. 

 

In the case of BrCl
+
 this is very simple: 

 

Br C1 Mass  Br Proby × Perms  Cl Proby × Perms  Probability products 

 

 35 114         0.5 × 1  =  0.5  0.75 × 1  =  0.75  0.5 × 0.75  =  0.375 

79 

 37 116         0.5 × 1  =  0.5  0.25 × 1  =  0.25  0.5 × 0.25  =  0.125 

 

 35 116    0.5 × 1  =  0.5  0.75 × 1  =  0.75  0.5 × 0.75  =  0.375 

81  

 37 118    0.5 × 1  =  0.5  0.25 × 1  =  0.25  0.5 × 0.25  =  0.125 

             Sum   1.000 

 

Note that mass 116 arises from both 
79
Br

37
Cl and 

81
Br

35
Cl and in a mass spectrometer that can only 

resolve unit atomic masses just one peak will result – this will have an intensity reflecting the sum of 

the probabilities (i.e. 0.500).   

 

This situation is however fundamentally different from that observed for different permutations (e.g. 
35
Cl

37
Cl ,

37
Cl

35
Cl ) since in the 116 peak of BrCl two different elements are involved.  The truth of 

this can be seen if a very high resolution spectrometer is used in which case the peaks would be 

resolved.  The exact masses of the different isotopes then need to be considered: 

 

For  
81
Br

35
Cl, 

    
81
Br 80.9163 

    
35
Cl  34.9802 

Total molecular mass =        115.8965 

 

For  
79 
Br

37
Cl,  

    
79
Br 78.9183 

    
37
Cl 36.9776 

Total molecular mass =        115.8859 

 

Such a small difference can be observed experimentally, whereas the mass of 
35
Cl

37
Cl will always be 

the same as that of 
37
Cl

35
Cl no matter how accurate the spectrometer. 

 

The spectrum would now look rather different on spectrometers of different resolution (although this 

is exaggerated in the diagram below): 
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  (i)  unit mass resolution   (ii)  very high resolution 

 

 

 

 

 

 

 

 

 

Example 4 :  B2Cl2 

 

A slightly more complicated example is that of the ion B2C12
+
.  Here the relevant atomic isotopic 

masses and probabilities are: 

 
10
B 0.2   

11
B 0.8 

 
35
Cl 0.75   

37
Cl 0.25 

 

(i)  First considering the two B atoms 

 

Total Mass Required Isotopes     Probability Product     No. of Permutations Overall Probability 

    20  Two 10B       0.2 × 0.2  =  0.04   1   0.04 

    21  One 10B; One 11B      0.2 × 0.8  =  0.16   2   0.32 

    22  Two 11B       0.8 × 0.8  =  0.64   1   0.64 

              Sum 1.00 

 

 

(ii)  Secondly considering the two Cl atoms 

 

Total Mass Required Isotopes     Probability Product     N
o
. of Permutations Overall Probability 

    70  Two 35     0.75 × 0.75 =  0.5625   1   0.5625 

    72  One 35; One 37    0.75 × 0.25 =  0.1875   2   0.3750 

    74  Two 37     0.25 × 0.25 =  0.0625   1   0.0625 

              Sum 1.0000 

 

(iii)  Combine results for the two sub-units. 

 

For the ion B2 Cl
+
 the probability for the B2 group and the Cl2 group must be multiplied together 

thus: 

 

Intensity 

114    116   118    Mass 114    116   118    Mass 
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B2 C12 Mass of B2Cl2 B2 Prob
y Cl2 Prob

y   Probability Product Probability 

 

 70  90  0.04  0.5625  0.04 × 0.5625  0.0225 

20 72  92  0.04  0.3750  0.04 × 0.3750  0.0150 

 74  94  0.04  0.0625  0.04 × 0.0625  0.0025 

 

 70  91  0.32  0.5625  0.32 × 0.5625  0.1800 

21 72  93  0.32  0.3750  0.32 × 0.3750  0.1200 

 74  95  0.32  0.0625  0.32 × 0.0625  0.0200 

 

 70  92  0.64  0.5625  0.64 × 0.5625  0.3600 

22 72  94  0.64  0.3750  0.64 × 0.3750  0.2400 

 74  96  0.64  0.0625  0.64 × 0.0625  0.0400 

             Sum 1.0000 

 

A simple mass spectrum (at unit mass resolution) would therefore contain seven peaks due to the 

molecular ion with the following relative intensities. 

 

Mass of B2Cl2  Probability 

 

 90   0.0225 

 91   0.1800 

 92   0.3750 

 93   0.1200 

 94   0.2425 

 95   0.0200 

 96   0.0400 

 

but the 92 and 94 peaks would show a further splitting if studied at much higher resolution. 

 

Example 5 :  MCl6 

 

In every example considered so far the number of permutations associated with a certain selection of 

isotopes has been easily obtained by inspection.  However, for more complex molecules we need to 

have a more systematic procedure. 

 

For example in hexachloro complexes (MCl6 ) the Cl6 unit can have seven different masses arising 

from the following combinations of isotopes: 

 

1. all 35 

2. five 35 +   one 37 

3. four 35 +   two 37 

4. three 35 +   three  37 

5. two 35 +   four  37 

6. one  35 +   five  37 

7. all 37 
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In each case the number of possible arrangements must be calculated; for (1)  and (7) it is obviously 

just one, but what about the rest  ? 

 

General Case :  would be  n  possible atoms divided into groups of r1 , r2 , ..... , ri  similar atoms , such 

that    r1 + r2 + r3 ....+ ri  =  n   (i.e.  nri =∑  ). 

 

If it is first assumed that the  n  atoms are all different isotopes then the total number of possible 

arrangements would (as discussed earlier) be   n!  .  If, however, some atoms are identical then a 

rearrangement of these does not generate a new permutation.  If  r  are identical then there are  r!  

hypothetical arrangements of these  r  identical isotopes.  The original total number of arrangements 

must be reduced by this number.  More generally the original number of arrangements must be 

reduced by the number of arrangements of identical atoms in each group, i.e. by  r1!  and by  r2 !  etc. 

i.e. in general the final number of distinct arrangements would be  

      
!  ! ! !

!

321 ir.....rrr

n

×××
 

 

For the particular case of Cl6 considered above  ( i.e. with  n = 6 ): 

 

       No. of 
35
Cl atoms        No. of 

37
Cl atoms    N

o
. of Permutations 

                ( r1 )                             ( r2 ) 

 6    0   
!0  !6

!6

×
 =   1 

 5    1   
!1 !5

!6

×
 =   6 

 4    2   
!2 !4

!6

×
 = 15 

 3    3   
!3 !3

!6

×
 = 20 

 2    4   
!4 !2

!6

×
 = 15 

 1    5   
!5 !1

!6

×
 =   6 

 0    6   
!0  !6

!6

×
 =   1 

 

These numbers must now be multiplied by the appropriate isotopic probabilities to give the overall 

probability of finding Cl6 unit of a particular mass. 

 

For example, the probability of a Cl6 unit having mass 214 (
 35
Cl4

 37
Cl2 ) is given by : 

 

P  =  15 × (0.75 × 0.75 × 0.75 × 0.75) × (0.25 × 0.25)  =  15 × (0.75)4 × (0.25)2  =  0.30 
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Nuclear Magnetic Resonance : Spin -spin coupling 

 

 Protons can be regarded as spinning positive charges:  they have a magnetic moment associated 

with this ′motion′.  The magnetic moment may either be aligned with or opposed to an applied 

magnetic field giving two possible energy states of the proton.  If the appropriate amount of energy is 

supplied, as radiation of a particular frequency, then a transition can be effected from the more stable 

to the less stable state and the photons of that frequency are absorbed.  This is the basic principle of 

nuclear magnetic resonance (NMR) spectroscopy.  The protons of hydrogen atoms in a molecule do 

not see an applied magnetic field in isolation, but rather the applied field modified by the local 

magnetic field of that part of the molecule in which they are sited.  Thus protons in different parts of a 

molecule will absorb radiation at slightly different frequencies, and so they can be identified.  An 

NMR spectrum will thus show many peaks corresponding to the different types of hydrogen present in 

a molecule e.g. those of a CH3 - group, CH2 - group, C(aromatic)–H etc.  

 

 A closer examination of such peaks will often reveal a fine structure which is due to ′spin-spin′ 

interaction, i.e. the effect of the magnetic state of one group of protons on another group.  For example 

with the ethyl group CH3-CH2- the methylene (CH2 ) peak is split into four sub-peaks and the methyl 

(CH3 ) peak into three.  The spins of the three methyl hydrogen atoms can each be ′up′ or ′down′ ; for 

simplicity the two possible states can be designated  α  or  β .  Overall the three methyl hydrogens may 

exhibit four different possible spin arrangements which are: 

 

  1. all  α     2. two α , one β 

  3. one α , two β   4. all  β 

 

 The local magnetic field seen by the protons of the methylene is modified, slightly, by the 

magnetic state of the adjacent methyl group.  Furthermore as four possible magnetic states are possible 

for the methyl group, the methylene resonance can take place at four slightly different frequencies 

hence the observed splitting of the methylene peak.  However the probabilities of finding the four spin 

configurations (1-4) are not equal.  Since the probabilities of the two possible spin states, α and β , are 

equal, the probability of any particular spin configuration depends simply upon the number of 

permutations giving rise to the configuration.  They will be. 

 

      Spin  α     Spin  β    No. of Permutations 

 3  0   
!0  !3

!3

×
 =   1 

 2  1   
!1 !2

!3

×
 =   3 

 1  2   
!2 !1

!3

×
 =   3 

 0  3   
!0  !3

!3

×
 =   1 

 

 Thus not only will the methylene peak be split into four sub-peaks but their relative intensities 

will be  1 : 3 : 3 : 1.  Similar arguments show that the methylene protons will cause the methyl peak to 

be split into three, with relative sub-peak intensities of 1 : 2 : 1. 
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Binomial Expansion 

 

In Section 1 (1.10) we looked at the indexing of bracketed expressions.  We can now obtain a general 

expression for (x + y) 
n
, where  n  is any positive integer, by considering how the above expressions 

are obtained during the expansion of the brackets. 

 

For n = 2, (i.e. (x + y)
2
 ) there is only one way of taking  x  from each of the two brackets to give an  xx  

or x
2
 term.  Similarly there is only one way of taking one  y  from each bracket, giving yy or y

2
.  But 

there are two ways of taking an  x  from one bracket and a  y  from the other bracket, giving  xy  and  

yx , i.e. giving 2xy  in total.  Hence  (x + y)
2
  =  1x

2
 + 2xy + 1y

2
. 

 

For n = 3, (i.e. (x + y)
3
 ) there is again one way of taking  x  from each of the three brackets, giving  

xxx  or  x
3
, and only on way of taking  y  from each of the three brackets, giving  yyy  or  y

3
.  But there 

are three ways of selecting two x’s and one y, giving xxy , xyx and yxx , i.e. 3x
2
y.  Similarly, for one x 

and two y’s, there are three ways giving xyy, yxy and yyx , i.e. 3xy
2
 .  Hence  (x + y)

3
  =  1x

3
 + 3x

2
y + 

3xy
2
 + 1y

3
. 

 

From the pattern of coefficients which is emerging it is possible to recognise that the general 

expression will be of the form : 

 

(x + y)
 n
  =  

n
Co x

 n
  +  

n
C1 x

 n–1
y  +  

n
C2 x

 n–2
y
2
  + ........... +  

n
Cr x

 n–r
y
 r
  + .... +  

n
Cn y

 n
,  

 

where the binomial coeffecients  
n
Co....

n
Cr.......

n
Cn represent the number of ways in which the 

corresponding terms  x
 n
 .......x

 n–r
y
 r
........y

 n  
can be formed in the expansion.  These coefficients may be 

evaluated using the expression given on page 5.2, i.e. 

 

      n

rC
n

n r r
=

−

!

( )! !
 

 

or they may be obtained from Pascal's triangle, as described on page 1.10  . 

 


