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Abstract

It has been recently noticed that time series of returns in stock markets are of mul-
tifractal (multiscaling) character. In that context, multifractality has been always
evidenced by its statistical signature (i.e., the scaling exponents associated to a
related variable). However, a direct geometrical framework, much more revealing
about the underlying dynamics, is possible. In this paper, we present the techniques
allowing the multifractal decomposition. We will show that there exists a particular
fractal component, the Most Singular Manifold (MSM), which contains the relevant
information about the dynamics of the series: it is possible to reconstruct the series
(at a given precision) from the MSM. We analyze the dynamics of the MSM, which
shows revealing features about the evolution of this type of series.
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1 Introduction

The analysis of financial time series has been the focus of intense research by
the physics community in the last years (1; 2). The aim is to characterize the
statistical properties of the series with the hope that a better understanding
of the underlying stochastic dynamics could provide useful information to
create new models able to reproduce experimental facts. In a further step such
knowledge might be crucial to tackle relevant problems in finance such as risk
management or the design of optimal portfolios, just to cite some examples.

Another important aspect concerns concepts as scaling and the scale invariance
of return fluctuations (3; 4). There is an important volume of data and studies
showing self-similarity at short time scales and an apparent breakdown for
longer times modeled in terms of distributions with truncated tails. Recent
studies have shown that the traditional approach based on a Brownian motion
picture (5; 6) or other more elaborated descriptions such as Levy and truncated
Levy distributions (2), all of them relying on the idea of additive process, are
not suitable to properly describe the statistical features of these fluctuations.
In this sense, there are more and more evidences that a multiplicative process
approach is the correct way to proceed and this line of thought leads in a
natural way to multifractality. In fact, this idea was already suggested some
years ago when intermittency phenomena in return fluctuations was observed
at different time scales which gave rise to some efforts to establish a link
with other areas of physics such as turbulence (7; 8). Nowadays, we know
that there are important differences between both systems, as for instance the
spectrum of frequencies, but the comparison triggered an intense analysis of
the existing data. The multifractal approach has been successful to describe
foreign exchange markets as well as stock markets (9).

Multifractal analysis of a set of data can be performed in two different ways,
analyzing either the statistics or the geometry. A statistical approach con-
sists of defining an appropriate intensive variable depending on a resolution
parameter, then its statistical moments are calculated by averaging over an
ensemble of realizations and at random base points. It is said that the vari-
able is multifractal if those moments exhibit a power-law dependence in the
resolution parameter (10). On the other hand, geometrical approaches try to
assess a local power-law dependency on the resolution parameter for the same
intensive variables at every particular point (which is a stronger statement
that just requiring some averages -the moments- to follow a power law).

While the geometrical approach is informative about the spatial localization
of self-similar (fractal) structures, it has been much less used because of the



greater technical difficulty to retrieve the correct scaling exponents. However,
in the latest years an important effort to improve geometrical techniques has
been carried out, giving sensible improvement and good performance (11; 12).
We will apply the geometrical approach in this paper as a valuable tool for
the understanding of the geometry and dynamics of stock market time series.

The paper is organized as follows: in Section 2 the data are presented; then,
Section 3 is devoted to the introduction of geometrical techniques; results of its
application to our data are also shown. Section 4 provides an interpretation of
the particular multifractals observed in the price series; we will see that those
multifractals can be reconstructed from the information conveyed by a single
fractal component. We apply the theory to our context and extract valuable
conclusions about dynamics. A simple model for that dynamics is presented in
Section 5, while the stability of the model with the observed data is discussed
in Section 6. The conclusions of our work are then issued in Section 7.

2 Settings

We have processed two different kind of data belonging to the Spanish stock
market (IBEX) which correspond to well different time scales. The first group
is formed by daily series of 17 different assets (those with the largest liquidity)
during approximately ten years (from January 1st, 1990 to May 24th , 2001)
containing 48458 points. The second group consists of 12 month series (during
1999) for the 4 most important assets of the market, also included in Euro
Stoxx 50, each series being sampled at a time interval of one minute contain-
ing 275477 points. For this group, there are clear, systematic disruptions at
precise moments such as the opening of the local market or the opening of
NY market (3:30 pm local hour), for instance. In spite of the fact that those
events elicit statistical deviations from the multifractal model, they do not
affect significantly to our calculations due to the high sampling rate. For that
reason we do not try to correct the systematic deviations by any mean, per-
forming the same analysis for the two groups. In the same spirit, we always
identify the ending of a session as the instant just preceding the opening of
the following, no matter the actual time interval between them (sometimes
several non-working days) for both types of series. Examples of series of the
two types are shown in Figures 1 and 2.

We are interested in relative variations of the price, i.e., the ratio of the ab-
solute value to the absolute variation. For that reason, we will work on series
formed by logarithms of prices. In such a way, the absolute variation between
two consecutive instants (approximately, the derivative with respect to time)



for this series approximates the relative variation for the original stock series.
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Fig. 1. Ten-year daily series of the log of prices for Telefénica (TEF)
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Fig. 2. November 1999 minute series of the log of prices for Telefénica (TEF)

3 Multifractal analysis

3.1  Singularity analysis

Self-similar (or multifractal) signals are usually characterized by a very irregu-
lar behaviour: at some point they show very abrupt transitions while in points
nearby the function behaves rather smoothly. Such systems are also scale in-
variant, what means that no statistical variable can depend on an inner scale:
the process should seem the same when a change in scale is performed. Com-
bining both principles (irregular distribution of transitions, scale invariance)
it should be expected that the series s(t) can be expanded around a given



instant t; as:

|s(t) = s(to)| ~ |t — to[™ (1)

The exponent «g is the so called singularity exponent or Holder exponent
(13) associated to ty. Eq. (1) is of course scale invariant, and the smooth or
irregular character of the transition at ¢y, depends on value of ay. The greater
the exponent, the most regular the signal will be at that point.

It is expected that the value of the singularity exponents associated to the
different instants vary greatly, in order to give account of the irregular nature
of the series. To describe the series, it would be then convenient to calculate
the singularity exponents at every time ¢, that is, to perform a singularity
analysis of the series. The naif way to proceed is to test eq. (1) at every time
to and to calculate the function «(ty) of singularity exponents. Singularity
analysis thus generalizes the concept of Taylor expansion for irregular, chaotic
signals.

Such a simple singularity analysis is rather standard in the study of turbulent
flows, and it has been used in different studies of stock market series as well
as in (10). However that definition of singularity exponent (eq. 1) is not well
adapted for signals with constant contributions to the two-point correlation.
This is the case for intermittent, locally non-stationary signals, in which fluc-
tuations are long lived (14). In that case, the lack of stationarity masks the
presence of positive singularity exponents, making them impossible to detect.
There are two possibilities to overcome this difficulty: to build a stationary
measure (as in (15)) or to project the signal over a wavelet basis (as in (16)).
We will apply both techniques: the first, to create a stationary signal; the sec-
ond, to provide a smooth way to interpolate data over discretized sampling.

It is well known in stock market series that price fluctuations are correlated
only over very small time windows, while their absolute values correlate over
very large time intervals with power law distribution (17; 18). Having this
in mind, a stationary, power-law correlated measure can be defined from the
absolute value of the variations of the series. The measure p of an interval
[t,1'] is given by:

u(itt) = [arls)n) 2)

where §'(t) is the derivative of s(¢) with respect to ¢. This measure accumu-
lates the absolute variations of the series over the given interval, so giving an
idea of its irregularity. As absolute fluctuations are power-law correlated, it
is reasonable to expect that the measure depends as a power law in the size



of the time window (10; 11). Singularity analysis can be performed now by
computing the singularity exponents associated to this measure at any time ¢.

Systematic singularity analysis leads to the classification of points according
to the value of the singularity exponents. Such a classification splits series in
different invariant sets of fractal nature, and for that reason we speak about
multifractality. We define here multifractal measures and we will discuss later
the classification scheme. We will say that p is multifractal if at any time ¢
there exists a singularity exponent hq such that:

p([to — At tg + At]) ~ Athot! (3)

for sizes At small enough. The parameter At plays the role of a resolution pa-
rameter: only relevant details at that temporal extent are detected. According
to eq. (3), a multifractal measure has an associated singularity exponent at
every point. As before, we expect the singularity exponent to change from one
instant to another.

It is important to remark the structure of the measure given previously. The
exponent is a sum of two terms: the dimension of the space, that for the
time series discussed in this paper equals 1 (time), and the singularity expo-
nent which is independent of dimensional considerations. By operating in this
manner we can separate both contributions in a systematic way which is very
convenient to deal with physical systems in different dimensions. Since the
measure is a quantity with physical meaning, we expect to find h(z) > —1 to
ensure continuity and avoid any divergence.

Over experimentally sampled data, eq. (3) is very crude and poorly operative
to check multifractality. Singularity analysis is then usually done by means
of an appropriate interpolation technique: that of wavelet projections. Given
a wavelet W (that is, a function verifying some appropriate conditions), the
wavelet projection of p at ¢y and scale At (denoted Ty pu(to, At)) is defined as:

tQ—T

Tuulto, Al) = [ dr |5+ At V() (4)

The measure p is multifractal (in the sense of eq. (3) ) if and only if the wavelet
projections over a properly chosen wavelet U at a given time t, verify:

(Tunlte, At)] ~ At (5)

with exactly the same exponent (13; 12) hg as in eq. (3)% . Wavelets are nec-
essary to provide a smooth interpolation over discretized data and to improve

2 As a matter of fact, the exponent hg is not independent of the exponent «p in



the assess of the local behaviour in real, experimental situations?® .

3.2 Multifractal decomposition

Once singularity exponents at every time ¢ are known (which we will represent
by the function h(t), that is, Tyu(t, At) ~ At"®) it is possible to classify
points according to common values of the exponents. We define the fractal
component Fj, associated to the singularity exponent h as the set of points
verifying:

Fy = {h(t)=h} (6)

Fractal components arrange together those points sharing the same scale in-
variance properties (the same scaling exponent). This multifractal decomposi-
tion provides a natural hierarchy for the series which is reflected on its statisti-
cal properties. Due to the irregular, chaotic character of the series, the sets Fj,
are truly fractal in nature (that is, they have non-trivial fractal dimensions).
The geometry of those sets is rather informative about the underlying dy-
namics driving the series, as their arrangement is quite structured and highly
non-trivial (we will return to that question in Section 4). An important quan-
tity in multifractals is the function defined by the dimension of each fractal
component. The singularity spectrum D(h) of the multifractal is defined as

the function given by the Haussdorf (or fractal) dimension of the component
Fh7

D(h) = dim Fj, (7)

The singularity spectrum plays a crucial role in relating geometry (multifractal
decomposition) and statistics (self-similar properties as those studied in (10)):
the statistical self-similar exponents are obtained by a Legendre transform of
the singularity spectrum (21). In that way, the geometry of such chaotic series

eq. (1) in the cases in which the later makes sense: it can be proven that ag = hg+1
(12).

3 Wavelet projections also allow removing constant correlations: if a certain order
of moments of the wavelet ¥ vanish, it could be used to directly analyze the series
s instead of the measure p (19; 12; 20). The drawback of such wavelets lies in that
fact that they possess a complicated structure of zero-crossings, so the minimum
resolution at which they can be used over a discretized sample is of the size of
several sampling points. For that reason we have preferred working on the measure
1 and using less structured, finer resolving wavelets.



is reflected in a power-law behaviour of the distribution of certain variables.
The two concepts (geometry and statistics) are so intimately related that it
is usual to talk about multifractality when just the statistical analysis has
been performed. We will show that the geometrical approach provides a more
precise picture of the dynamics of the series. For a discussion of the connection
between the statistical and geometrical approaches, the reader is referred to
(10) in the context of stock market time series, and to (11) for a more general
analysis.

3.3 Fxperimental results

All the series were analyzed using several wavelets from the Laplacian fam-
ily, ¥, (t) = (1 +¢*)77, with v = 1,1.5,2. Such functions are not admissible
wavelets, that is, they cannot be used to represent any particular series (13);
they can be used however to perform singularity analysis on positive multifrac-
tal measures (12). Those particular wavelets provide a fine spatial localization
at the cost of restricting the range of singularities which is possible to detect.
Those functions are able to resolve all the effective range of singularities in
log-Poisson multifractals, which is the case of the analyzed series (we will dis-
cuss log-Poisson multifractals in Section 4). The exponent h(t) at every time ¢
was computed as the slope of a log-log linear regression of the absolute value
of the wavelet projection vs. the resolution At (see eq. (5)), for resolutions
continuously sampled in the interval [1, 3] (here the units are tics, i.e., number
of points). In all the stock market series, for a vast majority of the points
(> 99%) the linear regression exhibited good regression coefficient (absolute
value above 0.9), validating the multifractal framework. For details on wavelet
singularity analysis the reader is referred to (12) and references therein.

The results obtained with the different wavelets are comparable. In Figure 3
we show a typical exponent function h(t); as it is clearly seen, it is extremely
irregular, chaotic in behaviour. It is thus not so surprising that the different
fractal components are truly fractal in character. We had not tried to provide
a representation of each fractal component, as they have a very complicated
structure, difficult to decipher from a simple plot.

The experimental distribution of singularities showed that the possible values
for the singularity exponents were in all the cases contained in a range included
in [—1, 2] (see Figure 4). There always existed a non-trivial, minimum value o,
verifying —1 < hy < 0, as we expected. The existence of a finite lower bound
in h is not surprising: the range of possible singularities is always bounded
from below for finite variation series (that is, the series can be discontinuous,
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Fig. 3. Function h(t) for Telefénica daily series (Figure 1). It is strongly irregular.
Theory predicts that it is everywhere discontinuous (12), what is connected with the
fact that its level sets (the fractal components) are of non-trivial fractal dimensions.
The total discontinuity of h(t) makes the fractal components to be strongly spatially
correlated (randomly placed singularities would lead to some continuity points). For
that reason, contrary to intuition multifractal series are quite structured

but not too sharply; see (12) for a discussion). The range of singularities is
not a priori bounded from above however, but in the experimental results it
turned out to be so.
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Fig. 4. Experimental distribution of h for Telefénica daily series

3.4 Log-normal vs log-Poisson statistics

The observed distribution of singularity exponents fits the log-Poisson model;
on the contrary, it is incompatible with the log-normal model. Why? Because
in the log-normal model the singularity exponents A are not bounded, neither
from above nor from below. In Figure 5 we show a typical log-normal series.
It was generated using the model presented in (22), and the parameters were



chosen to have a regular power spectrum and a reasonable dispersion. As
it can be observed in Figure 5, log-normal series have sudden bursts which
are extremely singular, but at the same time they are rather scarce (they
correspond to events in the negative tail of the distribution of singularities).
It is clear however from simple visual inspection that such a series does not
resemble a real one due precisely to this unbounded bursts. The frequency of
them is controlled by the dispersion of the gaussian, but they will eventually
happen for a large enough data set.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Fig. 5. A typical log-normal series. It was generated using the model in (22). The
coeffients fit a log-normal of log-mean 0. and log-dispersion 0.5. The series contains
16384 points, and the basis wavelet is the second derivative of the gaussian.

This discrepancy with the behaviour of real series is also evidenced when the
serie is analyzed using the geometrical approach. In Figure 6 we present the
distribution of singularity exponents associated to the log-normal series in
Figure 5. It assigns a non-null probability to extremely negative singularity
exponents (which correspond to the bursts), which is physically unreasonable
but characteristic of an unbounded distribution of singularities as the log-
normal one. In contrast, singularities in real data are bounded, in agreement
with the log-Poisson model. This boundness does not mean that the series is
bounded (it could grow forever, for instance), but that there is no jump to
infinity at any point.

However, multifractal stock series are quite often described in the scientific
literature using log-normal statistics (for instance, in (23)). In such works the
authors estimate the statistical self-similarity exponents from the data and
make a quadratic fit (which corresponds to log-normal statistics) for some
low-order moments . Finer analysis, as the one shown in (10), show a con-
siderable deviation from the log-normal model for larger moments (which are
precisely the ones dominated by the most singular exponents). What actually
happens is that log-Poisson is indeed approximated in law by a log-normal as a
consequence of Central Limit Theorem when the scale change is large enough.
But as this approximation is granted in law, just the most probable events are

10
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Fig. 6. Experimental distribution of h for the log normal series represented in Fig-
ure 5.

approximately equally distributed as in a log-normal model, while rare events
(and specially the most singular events) are poorly described. Depending on
the application, a log-normal model could be a good approximation or a very
poor one. We will see in the following that in a geometrical picture it is pre-
cisely those rare events which allow to describe the whole series, and for that
reason log-normal models are of no use in our context.

4 MSM and reconstruction

4.1 Theoretical background

Log-Poisson models are characterized by a very simple statistical feature: when
an infinitesimally small change of scale takes place, just two events can happen:
either the random variable changes smoothly or it undergoes a sudden change.
The last possibility is interpreted as the crossing of one particular fractal
component which concentrates the energy dissipation (in the case of turbulent
flows) of the multifractal. A complete discussion about the statistics of log-
Poisson multifractals and its interpretations would be quite extensive and
somewhat pointless to be carried out here; the reader is referred to the wide
bibliography on the subject. Let us cite here the basic works introducing the
model and discussing its properties for turbulent flows (24; 25; 26; 27). For a
discussion of the interplay between statistics and geometry and the relevance of
log-Poisson statistics for multifractal descomposition, we refer to (12), in which
the main questions are reviewed in a quite different context of application (the
statistics of natural images).

11



According to (12), in log-Poisson multifractals there is a particular fractal com-
ponent of maximum information content, the so called Most Singular Man-
ifold (MSM). Log-Poisson statistics of changes in scale are characterized by
the event of crossing or not that particular set. The MSM is defined as the
fractal component associated to the least possible exponent h., (that as we
have seen verifies —1 < ho, < 0 for finite variation signals). We will denote
shortly the MSM by F,, = F}_ . Due to the statistical interpretation of the
MSM, in (28) it was proposed that a multifractal signal could be reconstructed
from the values of the gradient over the MSM; as an hypothesis, it was stated
that reconstruction is performed by means of a linear kernel. The kernel was
uniquely determined under several reasonable requirements (isotropy, transla-
tional invariance and correspondence with the experimental power spectrum).
We do not present here the whole derivation but the final expression; the
reader is referred to the original paper. We will make use of the final formula
to generalize it to the context of 1D series.

Let us start by defining the essential data needed to reconstruct. We will
consider now a multifractal signal s defined over a multidimensional space,
the points being identified by their vector coordinates . Hence, the signal will
be given by the function s(Z). The multifractal measure p is defined as the
integral of |Vs|(Z), the modulus of the gradient, over the measured sets. The
test of multifractality and singularity detection are carried out analogously to
what was done for 1D signals. Let us define the essential gradient field,

(%) = Vs(Z) dp, (T) (8)

where dp_ (Z) is a delta-like function constant over the MSM F,, and vanishing
outside that set. So, ¢ contains all the information (geometry of the MSM
and value of the measure over it) which we need to reconstruct, according to
what is discussed in (28). As it is shown in that reference, the signal can be
reconstructed using the following formula (expressed in the Fourier space):

(9)

where hat (") denotes Fourier transform, f is the frequency variable in the
Fourier domain, ¢ is the imaginary unit and the symbol “ - 7 means scalar
product of vectors. Let us notice that this formula has an interesting sta-
bility property: if we choose as Fi, the total space, then ¢ = Vs, that is,
o( f) = —i ﬁ%( ﬂ; substituting in eq. (9) we see that the equality is trivially
satisfied. This means that there always exists a set (in the worst case, the
whole space) from which reconstruction is perfect. A signal is reconstructible
if there exists a smaller, rather sparse set F,, from which reconstruction is

possible; or conversely, points not in I, are predictable from those in F.

12



The 1/f? factor in eq. (9) creates a diffusion effect for signals in dimensions
greater than 1, as this is the Fourier representation of a Green function asso-
ciated to the Laplacian operator. A strong simplification appears when eq. (9)
is applied to one-dimensional signals; then it reduces to:

. O(f

st = 40 (10)
f

But i/f is a representation of the indefinite integral® | that is, an inverse

of the derivative (as s'(f) = —if$(f)). So the reconstruction formula in 1D

becomes:

s(t) = s(0) + /dT?)(T) (11)

Let us make a few remarks on this formula. First, it has obviously the afore-
mentioned stability property: if F, is taken as the whole interval the formula
is a trivial identity, as v(t) becomes s'(t) in such a case. Also, recalling that
v(t) = §'(t) 0p, (t) we see that the weight of this function is concentrated in
point-like contributions, in the points belonging to the MSM. For that reason,
the series s(t) obtained according to eq. (11) is piecewise constant, undergoing
a change on its value when a point of the MSM is crossed.

Secondly, let us notice that eq. (11) does not imply that s'(t) = 0 for ¢t ¢ F..
For continuous, ideal series, F, is a dense set; therefore at any time ¢ and
any size € there are points belonging to the MSM in (¢ — €,¢ + €), and so
“*<dr v(7) is non-vanishing in general. It follows that the derivative of the

series s(t) given in eq. (11) can be different from zero even at t ¢ F.

On the contrary, over real, discretized data there is necessarily a loss in res-
olution: the integral in eq. (11) becomes a sum and the derivative is turned
into the substraction of consecutive values; hence, the only points which can
be removed in the sequence are those for which s'(¢) = 0 strictly. However, at
a given level of detail some points may be discarded without causing a great
deviation between the reconstructed series and the real one. These points are
obviously those for which the derivative is very small, but also other points
in which the variations (derivatives) are significant but immediately compen-
sated by changes of the opposite sign and similar absolute value. The key

4 In the original derivation, the signal s had zero-mean to avoid divergence at zero
frequency in eq. (9); for that reason the ambiguity in the choice of the constant
is removed. In principle we assume that the integral of s over the considered time
window is zero, what eliminates the ambiguity in the choice of the indefinite integral.
We can change the convention to determine this constant, keeping consistency; in
fact we have done it in eq. (11) by adding the term s(0).

13



point is not the absolute value of the variations, but the resolution at which
the series is described: significant variations are those which are large enough
in comparison with those of the points nearby. At a given resolution, there will
be an optimal set consisting of the points with the most significant changes.
In fact, it is logical that the MSM could be identified with that set: it contains
the points with the most negative exponents, that is, the points over which the
transition (variation) is the sharpest. For those points the derivative is signif-
icantly greater than over the surrounding points (we will see in the following
that the reconstruction out the MSM is rather good).

Determining the MSM is a rather standard procedure, much better than trying
to assess by other means which points could be discarded when reconstruct-
ing. Calculating singularity exponents allows classifying the points according
to the strength of the transition the series undergoes at them, giving a rea-
sonable criterion to include or discard points in the MSM at a given precision,
depending on the uncertainty or dispersion on the value h.,. We will then use
the MSM as minimum reconstructing set.

4.2 FExperimental results and discussion

In Figure 7 we represent the reconstructed series for one daily and one minute
sampling series; other series threw very similar results. In each case the MSM
was determined via wavelet analysis as explained in Section 3; the MSMs were
chosen as ho, = —0.4040.3 (daily series) and ho, = —0.45+0.3 (minute series).
The central value of h., was determined as the average of the points associated
to the 1% and the 5% left tails of the probability distribution of singularities
h, as in (12). The uncertainty range (+0.3) was conventionally fixed in such
a way that the quality of the reconstruction was reasonable enough. As it is
seen in Figure 7 the quality of the reconstruction is very good. According to
eq. (11), the first point in the series has zero error and starting from it the
error accumulates as time passes; for that reason the last point in the series is
necessarily the worst predicted (in average). It is reasonable to proceed in such
a way, as we deal with time series and one of the goals of this study is to make
predictions and fluctuation estimation. Notice that the shape of the series is
well captured by the reconstructed estimates, and errors mainly accumulate
during very sharp transitions (specially for the periodic disruptions in minute
series) which probably constitute a deviation from the multifractal description
and should be treated separately. In spite of the presence of disruptive points
in minute series, the reconstructed series provides good approximation. This is
due to the fact that during a short period after a disruptive event (for instance,
opening of NY market) the variations are larger than typical, but they keep

14



however the same multifractal arrangement, the MSM being still predictive.
Just the very first instants fail to be described in the multifractal picture, and
they are quite few. For that reason the present description is still valid in a
good extent.
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Fig. 7. Original (4) and reconstructed (x) (out the MSM) series for the daily series of
Telef6nica (left; PSNR for the reconstructed series: 27.86 dB) and for the one-minute
series (right; PSNR: 24.64 dB)

For the chosen quantization in he, (£0.3), the density p,, of the MSM was
always rather high (p,, = 0.30 for the daily series, p,, = 0.29 for the minute
series). It could seem that the high quality of the reconstruction is just a conse-
quence of the high value of the density for the MSM; however, if we replace the
MSM in the reconstruction formula by uniform or random sampling with the
same density, the quality is much lower (see Figures 8 and 9). This fact shows
that the MSM has a large information content. Besides, the series obtained
for those non-structured samplings have not a well defined tendency (they are
not clearly, or not as much as the original series, increasing or decreasing).
This implies that positive and negative variations are almost equally likely in
price series: they are continuously oscillating. But, what is more surprising,
the distributions of absolute values for positive and negative increments are
quite similar. How to explain the tendency in the series?
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Fig. 8. Original (+) and reconstructed (x) (out a uniform sampling) series for
Telef6nica: daily (left; PSNR: 14.24 dB) and one-minute (right; PSNR: 12.03 dB)

Tendency changes just take place over the MSM, which is quite reduced in
comparison to the total amount of points. Over the MSM, the distributions of
positive and negative increments are still quite similar. However, the amount
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Fig. 9. Original (+) and reconstructed (x) (out a random sampling) series for
Telefénica: daily (left; PSNR: 12.09 dB) and one-minute (right; PSNR: 10.50 dB)

of positive increments is greater (vs. smaller) than that of the negative ones for
increasing (vs. decreasing) series; they are of the same order for no tendency
series. For that reason, what determines the tendency of the series is not the
absolute values of its increments, but the difference in number of positive and
negative increments over the MSM. It is now obvious that tendency is difficult
to assess with a sampling independent of the MSM. For instance, a random or
uniform sampling of the whole series at 0.30 density would just sample 30% of
MSM points, giving rise to a series with 30% as much tendency as the original
one. To end the discussion, just remark that the characterization of the MSM
as the set of tendency points is another way to express that MSM points are
the most singular, the most significant with respect to their surroundings.
Points outside the MSM are surrounded by similar, opposed tendency points,
giving rise to a vanishing change in tendency.

We have shown that the MSM plays a fundamental role in the dynamics of
the temporal series; ideally the series is fully described using this skeleton,
this essential set. According to the reconstruction formula, eq. (11), and the
definition of the essential gradient, eq. (8) (for 1D in our case), there are two
different types of information which are needed to reconstruct, namely the
geometry of the MSM (given by dr_(t)) and the values of the derivative s’ on
MSM. In the next section we will try to describe the dynamics governing the
geometrical arrangement of the MSM; we leave the study of the intensities of
the derivatives for a future work.

5 Dynamics on the MSM

Let us first define the MSM oriented density function, 6%_(#), which is given
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Sp (1) if teFo . s(t)>0

0.(t) = —6p_(t)if t € Fy , s'(t) <0 (12)

0 if t¢ Fy

So the orientated density function keeps the sign of the derivative on the
MSM. This function keeps the information about the geometry of the MSM
(as [0%._| = 0. ), and at the same time it already incorporates some basic
information about the derivative (its sign). This sign weighting is necessary to
allow the possibility of cancellations when resolution is changed. Besides, as it
was discussed in the previous section, the proportion of signs determines the
tendency of the series® . In some sense, the function 6% _ defines a naif series
in which every event (non-zero value) means a relative change in the price of
shares of the same absolute value. For that reason, a good understanding of
the dynamics of this function could be useful to device a naif sell-buy model
capable to produce correct multifractal exponents (that is, the statistics of
changes in scale). For this analysis, we took averages over the two ensembles
of data, assuming mutual statistical consistency among the different series
they consisted of.

We tried first to identify two-point dependencies in % . We computed the
mutual information between 6%_(t) and 0% (¢ + 7) for different time delays
T; assuming stationary statistics we disregard the basis points ¢. The generic
value of 0%_(t) at any point will be denoted by o, which can take the values —1,
1 or 0, depending if ¢ belongs to the MSM with negative derivative, if ¢ belongs
to the MSM with positive derivative, or if ¢ does not belong to the MSM,
respectively. We adopt the following convention: a subscript 7 associated to
a state o (i.e., 0,) indicates that the state takes place at a point which is
displaced 7 units with respect to a generic base point. We calculated the two-
point joint probability as:

P(0q,0,) = ( Prob(8,_(t) = 00,05 (t+7) =0.) ) (13)

t

® In fact the oriented density possesses stronger features: it defines (via the recon-
struction formula) a multifractal series with the same singularity exponents as the
original series. Its analysis will deserve future works.
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and the marginal probability as:

P(o) = (Prob(dy_(t)=0)) = (P(0,0,)), foranyo, (14)

t

The mutual information between the points of the oriented MSM I, is then
given by:

L= 5 % Plona) g g (15)

oo=-1,0,1 o,=-—1,0,1

that is, the Kullback distance between the joint probability P(og,0,) and the
product of the marginal probabilities P(og)P(o,) (29); it is expressed in bits.
It equals the entropy when the two variables are identical and vanishes only
when they are independent; for that reason it is a good measure of statistical
dependency. In Figure 10 we present the graphs of I, for both ensembles.

1

0.1

0.001

0.0001

1e-05

0 2 4 6 8 10

Fig. 10. Mutual information I, in semi-log plot for daily ensemble (continuous line)
and one-minute ensemble (dashed)

Results for both ensembles are comparable. The mutual information I, decays
extremely fast with the time displacement 7, so that at three time units of
distance it is already negligible (comparable with the sampling uncertainty).
This means that points in the MSM separated by such a distance can be
considered independent. We would like to provide a stationary random process
able to describe correctly this behaviour.

We propose that the joint probability P(cg, o) is obtained by 7 successive ap-
plications of an elementary transition matrix T on P(oy) (in fact this means
that the random process is a Markov chain). In this model long range de-
pendencies are a consequence of successive one-unit dependencies. Let us use
P(0g,09) as an example. We can express it as:

P(0g,02) = P(o3|og) P(oy) (16)

18



where P(o,|0g) stands for the conditional probability of obtaining the state
o, at the point at 7 units of distance once the state at the base point is fixed
to 0g. Let us expand the conditional probability in terms of the intermediate
state o1; we obtain:

P(0g,09) = > _ P(02,01|00) P(0y) (17)

o1

Conditioning with respect to o7 it is obtained:

P(og,03) = > P(o3|o1,00) P(o1|og) P(o0) (18)

o1

We assume that the random process is a stationary Markov chain, what means
P(o3]01,00) = P(03]o1). Applying it to the previous expression:

P(09,02) ZP oalo1) P(o1]|oo) P(oo) (19)

and comparing with eq. (16) we obtain the final formula for the random pro-
cess:

O'2|0'0 ZP O'2|O'1 0'1|0'0) (20)

that is, P(o2|0p) is obtained by two applications of the random process de-
scribed by P(o1|og). Let us introduce a matricial notation. We will represent
the random process by a 3 X 3 matrix given by:

too to+ to-

T = [ tiotys too (21)
ot b

where t,,,, = P(01|00). The matrix T defines the random process. With this
notation eq. (20) can be rewritten as:

P(os|og) = D to,o, toe, = T5 4 (22)

o1

that is, the conditional distribution P(c3|0g) is given by the square of the
matrix T. In general we obtain that at 7 time units the matrix T7 is applied.

To test our hypothesis, we have compared the experimental P(og,05) with
that provided by eq. (19). The results are summarized in Tables 3 and 6. The
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analysis of the results show that the hypothesis of Markovianity of the random
process holds in a very good extent. We conclude that to the experimental
extent the Markovian hypothesis is a reasonable first order approximation.

c=0]|oc=1]0c=-1

P | 0.71 0.16 0.13

Table 1
P(o) for daily ensemble. As P(c = +1) > P(0 = —1) the series exhibit an increasing
tendency

01:0 0'1:1 0’1:—1

og = 0.77 0.12 0.11

op=1 0.54 0.43 0.03

op=—1 0.57 0.05 0.38

Table 2
Transition matrix T for daily ensemble
g1 = 0 g1 = 1 g1 = -1
op = 0.51 0.11 0.09

op=1 0.11 0.04 0.01

op=—1 0.09 0.01 0.03

c0=0]01=1|01=-1

op=20 0.49 0.12 0.09

op=1 0.12 0.04 0.01

og=—1 0.09 0.01 0.03

Table 3
P(0g,09) for daily ensemble. Top: Theoretical (according to eq. (19)); bottom: ex-
perimental

c=0|oc=1]|0c=-1

P 070 | 0.20 0.10

Table 4
P(o) for one-minute ensemble. As P(0c = +1) > P(oc = —1) the series exhibit an
increasing tendency

6 Stability of the random process
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0'1:0 0'1:1 0'1:—1

0g = 0.77 0.13 0.10

op=1 0.53 0.44 0.03

oo =—1 0.50 0.21 0.29

Table 5
Transition matrix T for one-minute ensemble

c0=0]01=1|01=-1

op=0 0.49 0.13 0.07

op=1 0.13 0.06 0.02

op=—1 0.07 0.02 0.01

0'120 0'1:1 0'1:*1

oo = 0.49 0.13 0.07

op=1 0.13 0.06 0.02

opg=—1 0.07 0.02 0.01

Table 6
P(09, 02) for one-minute ensemble. Top: Theoretical (according to eq. (19)); bottom:
experimental

Let us analyze the stability of the random process associated to T. We will rep-
resent the marginal probability by a three-dimensional vector 7 = (po, p+,p—)
where p, = P(0). Let us notice that t,.,p, = P(og = 0,01 = ¢'), that is,
the joint distribution of states separated a distance of one time unit. For that
reason and using stationarity,

Z ta’crpcr = Do’ (2?))
that is,
Tp = p (24)

Eq. (24) has a great importance for the stability of the process: it means
that the marginal probability distribution p’is stable under application of the
random process T. Also, p'is a eigenvector (of eigenvalue 1) of the matrix T.
A successive, iterative application of T over any distribution function would
tend to make it more and more approximate to p as the process is applied. In
fact, we should obtain all the eigenvalues of the matrix to make sure that the
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largest one is precisely that associated to p, which would make this point an
attractor of the dynamics.

We have computed the eigenvalues associated to the random matrices T as-
sociated to both ensembles; we have represented them in Table 7, from the
largest absolute value to the smallest one, for both ensembles

Al )\2 )\3

1.00 0.36 0.20

1.00 | 0.25+0.04z | 0.25 — 0.04%

Table 7

Eigenvalues associated to the random process. Top: daily ensemble; bottom: one-
minute ensemble. The small imaginary part in the eigenvalues of the second ensem-
ble is probably a numerical artifact

We observe that the stationarity is well verified: there is actually an eigenvalue
equal to 1, and its associated eigenvector is precisely p, the marginal distribu-
tion. But more importantly, this eigenvalue is the greatest in absolute value,
so it dominates the convergence in the long run. Also, the other eigenvalues
are positive but smaller than 1, so the part they describe tends to vanish when
the process is applied iteratively. We conclude that the experimental random
processes are stable and they converge to the observed marginal distribution.

Hence, the elemental random process T governs the dynamics which generate
the oriented MSM. It would be possible to use this matrix to create a new
multifractal elemental series with the same statistics as the original one. Of
course, in practice T can be non-stationary, but anyway the time scale of
its variation should be rather large, as the factorization hypothesis seems
very consistent. Another important remark is that the stationary marginal
distribution is completely defined by T (it is the only normalized eigenvector
of eigenvalue 1). But the growing (or decreasing) character of the series is
driven by the excess (or lack) of positive signs with respect to the negative
signs in the series defined by the oriented MSM. So, the elemental random
process would not only generate multifractal series, but always with the same
growing or decreasing character: tendency is constant. To take account changes
in tendency, a study on the fluctuations in the elementary random matrix
should be introduced.

7 Conclusions

In this paper we have shown that fluctuations of returns in stock market time
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series show multifractal properties. This multifractal character is reflected in a
definite geometry for the series, arranged around fractal components of charac-
teristic power law behaviour under changes in scale. We have exploited further
this geometry and we have experimentally shown that the most singular of the
fractal components (that is, the one which is dominant when the scale is re-
duced) can be used to reconstruct the whole series to a good extent. This
means that the information about the series is contained in this set and its
dynamics is driven by it. It has a highly non-trivial structure (what questions
claims of “lack of structure” for economics series), as can be seen for the poor
performance of random and uniform sampling with the same density. Also,
an important information about the dynamics generating the MSM can be
deduced from the data: at least in a good first order approximation, this set is
constructed as a result of a Markov chain random process, in which the state
of the point (which characterizes if the point belongs to the MSM, and its
orientation in this case) is only dependent on the state of the previous point.
This random process could be considered as the basis event to describe the
dynamics underlying the series.

Future directions that should be addressed concerns the stability and econo-
metric interpretation of this elemental random process, as its performance in
generating good multifractal series, even prediction. A different but important
issue to be considered is the description of the actual intensity (gradient) pro-
file on the MSM. In fact, it can be proven (as it will be shown in future works)
that it follows a slow varying pattern with however very important events.
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