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Abstract

This article introduces a method to predict upward and downward monthly vari-
ations of the S&P 500 index by using a pool of macro-economic and financial
explicative variables. The method is based on the combination of a denoising
step, performed by Kalman filtering, with a variable selection step, performed
by a Lasso-type procedure. In particular, we propose an implementation of the
Lasso method called LagLasso which includes selection of lags for individual fac-
tors. We provide promising backtesting results of the prediction model based on a
naive trading rule.

1 Introduction

We consider the problem of predicting monthly movements of the S&P 500 index, and assume that
a small subset of macro-economic and financial predictors can efficiently represent the exogenous
influence on S&P 500. The influence of each of these predictors can change over time and it can
be lagged. Additionnally, according to economists (cf.[8]), S&P 500 is sensitive to the variations
of those predictors around their own trend rather than to the variations themselves. Therefore, we
need to filtrate the predictors : a linear state-space model is first proposed for each of them and their
innovation residuals are computed with the Kalman algorithm (cf.[4],[5],[6],[7]). These residuals
are then used to predict S&P 500 variations : the most informative residuals are identified thanks
to the Lasso method, a procedure which aims at minimizing a L2 regression fit under L1 penalty.
This constraint allows for a sparse selection which is not only a gain in terms of interpretability,
but which allows for variance reduction leading to more accurate predictions. The issue of lagged
influence between variables is adressed by slightly modifying the Lasso. Indeed, as shown in [1]
and [2], the Lasso is intimately connected to the LARS algorithm, which is an iterative procedure of
variable selection generalizing the concept of bissector in a multidimensional framework. The basic
idea consists in writing a variant of the Lasso, where both a variable and a lag are selected at each
step, all the other lags of the variables being then eliminated from the possible further selections :
we call it the LagLasso procedure. This approach is finally prospective, in the sense that we would
like not only to build a competitive prediction method for S&P 500 but also to clearly state the
problem of lag identification. This is different from [3], that introduces a LARS algorithm adapted
to time series, where each variable can be represented by a matrix made of its lagged realisations :
the algorithm manages to select iteratively blocks of lags corresponding to a single variable instead
of single lags corresponding each to a variable. In the next section, a mathematical framework of
this approach is given. The way linear state-space models are used to denoise variables is explained
as well as the modeling of S&P 500 variations through the LagLasso procedure. In the last section,
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a backtesting of this method is provided : it is built on a sample period of 20 years, uses a gliding
window of 5 years and a small number of macro-economic and financial indicators.

2 Presentation of the prediction method

More formally, we observe the predictors xt = (xi,t)1≤i≤d, where x.,t ∈ Rd,∀t and we want to
forecast the real variable yt at horizon h. The forecasting linear model is proposed :

ỹt+h =
d∑
i=1

βix̃i,t−σ(i), (∗)

where ỹt+h and x̃i,t are the innovation residuals of the variable xi,t corresponding, for each i, to
a given linear state space model, where σ(i) is a lag corresponding to the ith variable, and where
β = (β1, . . . , βd) is a real vector.

2.1 First step : Kalman filtering

We propose the following linear state space model :{
zt = Htθt + vt, vt ∼ N (0, Vt),
θt = Ftθt−1 + wt, wt ∼ N (0,Wt),
θ0 ∼ N (m0, V0),

where zt ∈ Rm stands for the observation vector, θt ∈ Rp is a hidden random vector, Ht and Ft are
real matrices of size respectively m ∗ p and p ∗ p, and are to be specified. The only parameters of
the model are the observation and evolution variances V (matrice of size m ∗m) and W (matrice of
size p ∗ p), that we estimate from available data using maximum likelihood.
The Kalman filter recursively estimates the internal state of the process θt given the sequence of
noisy observations zt. We denote by θ̂t|t the estimate of the state at time t given observations up to
and including time t , and by Pt|t the associated error covariance matrix. This can be summed up by
the system of equations : 

θ̂t|t−1 = Ftθ̂t−1|t−1, (∗∗)
Pt|t−1 = FtPt−1|t−1F

′
t +Wk−1,

rt = zt −Htθ̂t|t−1, (∗ ∗ ∗)
St = HtPt|t−1H

′
t + Vt,

Kt = Pt|t−1H
′
tS
−1
t ,

θ̂t|t = θ̂t|t−1 +Ktrt,
Pt|t = (I −KtHt)Pt|t−1,

Equation (**) gives the predicted state at step t and equation (***) the innovation residual : this is
the way we compute the quantities x̃t and ỹt stated in (*).
Finally, in our implementation, we use such a model for the response yt and a single such model for
all predictors xi,t, for simplicity of use.

2.2 Second step : selecting variables and lags with LagLasso

Predicting yt+h is achieved by selecting the most significant variables and lags, knowing that only
one lag can be chosen per variable. We implemented a Lasso-type procedure : the LagLasso, which
aims at building the vector β given in (*). From now on, we use the notation xi for x̃i,t and y for
ỹt and we use a double index for β to account for the variables and the lags. In addition, as for
the Lasso, it is necessary to offer some criterion to choose a single step in this iterative process that
determines a single vector β̂ : both Cp-type and cross-validation stopping criteria were considered.

3 Results and backtesting

In order to question the validity of this method and to explore possible refinements, several simple
test methods are given. All of them are based on the same principle : considering the last 20 years of
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LagLasso steps.
0. Choose lagmax and lagmin : σi ∈ [lagmin, lagmax], ∀i.
1. Standardization of the predictors xi,σ to have mean 0 and variance 1.
Initialisation : r = y − y, βi,σ = 0, ∀i, σ.
2. Find the predictor xj,σ most correlated with r.
3. Move βj,σ from 0 towards its least-squares coefficient 〈xj,σ, r〉, until some other competitor xk,τ ,
k 6= j, has as much correlation with the current residual as does xj,σ .
4. Move (βj,σ, βk,τ ) in the direction defined by their joint least squares coefficient of the current residual
on (xj,σ, xk,τ ), until some other competitor xl,υ has as much correlation with the current residual, i.e. :
< xl,υ, r >=< xk,τ , r >=< xj,σ, r >.
5a. If a non-zero coefficient hits zero, drop it from the active set, reinclude the variable and all its lags in
the inactive set and recompute the current joint least squares direction.
5b. Eliminate all the lags corresponding to variable j from the inactive set. Continue until d variables are
entered.

S&P 500 monthly variations, we use a gliding window containing a sufficient and constant number
of points to make a prediction of the variation of the S&P 500 index over the next month. A number
of successive predictions at horizon h = 1 month are obtained and compared with those computed
with other methods, linear state-space models and regression particularly.
Obviously, some explicative variables are needed and they have been chosen carefully : we checked
that having too much correlated variables in the data basis is usually very counterproductive, which
finally drastically limits the number of explicative variables. With the help of an economic expert,
we chose PER, OIL, NAPM, INCOME and CORP PROFIT, that are all available on the website of
the Federal Reserve Bank of St. Louis.
A first backtesting of this method consists in computing a recognition rate of upward and downward
movements of the S&P 500 depending on the amplitude of the variation of the index. Results are
provided for different maximal lags and for some other methods (cf. Table 1).
In addition, the following naive trading rule is proposed. Imagine a trader that decides to sell or
to buy one unit of S&P 500 index every month. If the prediction of the model for next month is
positive, the trader buys; if it is negative, he sells. At the end of the backtesting period, profit and
loss accounts - computed with different maximal lags and following similar strategies derived from
other methods - are compared (cf. Figure 1).

4 Conclusion

A first conclusion is that a multidimensional framework is usually more interesting than an unidi-
mensional one. Furthermore, combining a filtering method with a selection method gives promising
results : a simple state-space model combined with the Lasso outperforms all the other backtested
methods. This has to be tempered by the delicate calibration of the model : if the database contains
too much correlated variables, the results (recognition rate and profit and loss account) are clearly
worse. And since macro-economic and financial variables usually strongly depend on each other,
this limits the number of predictors in the database.
Unfortunately, taking lags into account does not improve significantly neither the recognition rate
nor the profit and loss accounts, although it is a phenomenon highlighted by economists. We believe
further improvements can be reached through a better indexing of data.

Table 1: recognition rate of S&P 500’s upward and downward movements.

Amplitude
of the
variation

Kalman and
LagLasso,
lagmax = 1

Kalman and
LagLasso,
lagmax = 6

Kalman and
LagLasso,
lagmax = 12

Level
Model

Local
Trend
Model

Lasso Regression

0 61.6% 60% 62.2% 53.8% 56.1% 61.6% 61.6%
0.01 62.5% 59.8% 61.8% 55.2% 56.5% 61.8% 61.8%
0.02 64.4% 58.8% 60.7% 53.2% 58.8% 60.7% 62.6%
0.03 64.6% 62.1% 64.6% 53.6% 58.5% 60.7% 62.1%
0.04 66% 66% 66% 50.9% 64.1% 59.7% 62.2%
0.05 66.6% 71.7% 71.7% 51.2% 71.7% 58.4% 56.4%
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Figure 1: Backtesting

KL stands for Kalman/LagLasso-type methods(lagmax = 1, 6, 12), SSM for linear State-Space
Models (Level Model and Local Trend Model) and Reg for both Regression and Lasso.
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