On Developing a Financial Prediction System:
Pitfalls and Possibilities

Stefan Zemke

STEFAN.ZEMKEQ@DSV.SU.SE

Stockholm University and Royal Institute of Technology, Department of Computer and System Sciences, Forum

100, 164 40 Kista, Sweden

Abstract

A successful financial prediction system
presents many challenges. Some are encoun-
tered over again, and though an individ-
ual solution might be system-specific, general
principles still apply. Using them as a guide-
line might save time, effort, boost results, as
such promoting project’s success.

This paper remarks on a prediction system
development stemming from author’s experi-
ences and published results. The presenta-
tion follows stages in a prediction system de-
velopment: data preprocessing, prediction al-
gorithm selection and boosting, system eval-
uation — with some commonly successful so-
lutions highlighted.

1. Introduction

Financial prediction presents challenges encountered
over again. The paper highlights some of the prob-
lems and solutions. A predictor development demands
excessive experimentation: with data preprocessing
and selection, the prediction algorithm(s), a matching
trading model, evaluation and tuning — to benefit from
the minute gains, but not fall into over-fitting. The
experimentation is necessary since there are no proven
solutions, but experiences of others, even failed, can
speed the development.

The idea of financial prediction (and resulting riches) is
appealing, initiating countless attempts. In this com-
petitive environment, if one wants above-average re-
sults, one needs above-average insight and sophistica-
tion. Reported successful systems are hybrid and cus-
tom made, whereas straightforward approaches, e.g. a
neural network plugged to relatively unprocessed data,
usually fail (Swingler, 1994).

The individuality of a hybrid system offers chances and
dangers. One can bring together the best of many ap-
proaches, however the interaction complexity hinders
judging where the performance dis/advantage is com-
ing from. This paper provides hints in major steps
in a prediction system development based on author’s
experiments and published results.

The paper assumes some familiarity with machine
learning and financial prediction. As a reference one
could use (Hastie et al., 2001; Mitchell, 1997), includ-
ing java code (Witten & Frank, 1999), applied to fi-
nance (Deboeck, 1994; Kovalerchuk & Vityaev, 2000).
Non-linear analysis (Kantz & Schreiber, 1999), in fi-
nance (Deboeck, 1994; Peters, 1991). Ensemble tech-
niques (Dietterich, 2000), in finance (Kovalerchuk &
Vityaev, 2000).

2. Data Preprocessing

Before data is fed into an algorithm, it must be col-
lected, inspected, cleaned and selected. Since even
the best predictor will fail on bad data, data qual-
ity and preparation is crucial. Also, since a predictor
can exploit only certain data features, it is important
to detect which data preprocessing/presentation works
best.

Visual inspection is invaluable. At first, one can
look for: trend — if need to remove, histogram — re-
distribute, missing values and outliers, any regulari-
ties. There are financial data characteristics (Man-
tegna & Stanley, 2000) that differ from the normally-
distributed, aligned data assumption in general data
mining literature.

Outliers may require different considerations: 1) genuine
big changes — of big interest to prediction, such data
could even be multiplied to promote recognition; 2)
jumps due to change a quality is calculated, e.g. stock
splits; all previous data could be re-adjusted or a sin-



gle outlier treated as a missing value 3) outlier regu-
larities could signal a systematic error.

Fat tails — extreme values more likely as compared to the
normal distribution — is an established property of fi-
nancial returns (Mantegna & Stanley, 2000). It can
matter in 1) situations, which assume normal distri-
bution, e.g. generating missing/surrogate data w.r.t.
normal distribution will underestimate extreme val-
ues 2) in outlier detection. If capturing the actual
distribution is important, the data histogram can be
preferred to parametric models.

Time alignment — same date-stamp data may differ in
the actual time as long as the relationship is kept con-
stant. The series originating the predicted quantity
sets the time — extra time entries in other series may
be skipped, whereas missing in other series may need
to be restored. Alternatively, all series could be con-
verted to event-driven time scale, especially for intra-
day data (Dacorogna et al., 2001).

Missing values dealt with by data mining meth-
ods (Han & Kamber, 2001) (Dacorogna et al., 2001).
If a miss spoils temporal relationship, restoration is
preferable to removal. Conveniently all misses in the
raw series are restored for feature derivation, align-
ment etc., skipping any later instances of undefined
values. If data restorations are numerous, test if the
predictor picks the inserted bias is advisable.

Detrending removes the growth of a series. For
stocks, indexes, and currencies converting into log-
arithms of subsequent (e.g. daily) returns does the
trick. For volume, dividing it by last k quotes average,
e.g. yearly, can scale it down.

Noise minimally at price discretisation level is
prevalent; especially low volume markets should be
dealt with suspicion. Discretisation of series into
few (< 10) categories (Gershenfeld & Weigend, 1993)
along noise cleaning could be evaluated against predic-
tions quality. Simple cleaning: for each series value,
find its nearest neighbor based on surrounding val-
ues, and then substitutes the value by an average of
the original and those from the neighbors (Kantz &
Schreiber, 1999). Other operations limiting noise: av-
eraging, instance multiplication, sampling — mentioned
below.

Normalization. Discretization — mapping the orig-
inal values to fewer (new) ones — e.g. positive to 1
and other to -1 — is useful for noise reduction and for
nominal input predictors. Subsequent predictor train-
ing with input discretized into decreasing number of
values can estimate noise — prediction accuracy could
increase (Kohavi & Sahami, 1996) once difference be-
tween discretized values exceeds noise, to decline later

after rough discretization ignores important data dis-
tinctions.

Redistribution — changing the frequency of some val-
ues in relation to others — can better utilize available
range, e.g. if daily returns were linearly scaled to (-1,
1), majority would be around 0.

Normalization brings values to a certain range, min-
imally distorting initial data relationships. SoftMax
norm increasingly squeezes extreme values, linearly
mapping middle, e.g. middle 95% input values could
be mapped to [-0.95, 0.95], with bottom and top
2.5% nonlinearly to (-1,-0.95) and (0.95, 1) respec-
tively. Normalization should precede feature selection,
as non-normalized series may confuse the process.

Series to instances conversion is required by
most learning algorithms expecting as an input
a fixed length vector. It can be a delay vec-
tor derived from series, a basic technique in non-
linear analysis (Kantz & Schreiber, 1999), v, =
(series;, series;_delay, -, SETI€Si_(D—_1)xdelay)- The
delay can be the least giving zero autocorrelation,
when applied to the series. Such vectors with the same
time index ¢ — coming from all input series — appended
give an instance, its coordinates referred to as features
or attributes.

Data multiplication can be done on many levels.
The frequency of a series can be increased by adding
(Fourier) interpolated points (Gershenfeld & Weigend,
1993).

Instances can be cloned with some features supple-
mented with Gaussian noise, 0-mean, deviation be-
tween the noise level already present in the fea-
ture/series, and the deviation of that series. This can
be useful when only few instances are available for an
interesting type, e.g. instances with big return. Such
data forces the predictor to look for important charac-
teristics ignoring noise — added and intrinsic. Also, by
relatively increasing the number of interesting cases,
training will pay more attention to their recognition.

Including more series can increase the number of fea-
tures. A simple test what to include, is to look for
series significantly correlated to the predicted one.
More difficult is to add non-numerical series, however,
adding a text filter for keywords in news can bring
substantial advantage.

Indicators are series derived from others, enhanc-
ing some features of interest, such as trend reversal.
Over the years traders and technical analysts trying
to predict stock movements developed the formulae



(Murphy, 1999), some later confirmed to pertain use-
ful information (R. Sullivan & White, 1999). Indicator
feeding into a prediction systems is important due to 1)
averaging, thus noise reduction, present in many indi-
cator formulae, 2) providing views of the data suitable
for prediction. Common indicators follow.

MA, Moving Average, is the average of past k values
up to date. Exponential Moving Average, EM A, =
weight * series, + (1 — weight) x EM A,_1.

Stochastic (Oscillator) places the current value relative
seriesy, —low(k)
high(k)—low(k) ’
low(k) — the lowest among the k values preceding n, k
often 14 days.

to the high/low range in a period:

MACD, Moving Average Convergence Divergence, differ-
ence of short and long-term exponential moving aver-
ages, 8 and 17, or 12 and 26 days used.

ROC, Rate of Change, ratio of the current price to price
k quotes earlier, k usually 5 or 10 days.

RSI, Relative Strength Index, relates growths to falls in a
period. RSI can be computed as positive changes (i.e.
series; — seriesi—1 > 0) sum divided by all absolute
changes sum, taking last k quotes; k£ usually 9 or 14
days.

Sampling. In my experiments with NYSE pre-
dictability, skipping 0.5 training instances with lowest
weight (i.e. weekly return) enhanced predictions, sim-
ilarly reported (Deboeck, 1994). The distribution (for
returns approximated by lognormal) was such that the
lowest-return half constituted only 0.2 of the cumula-
tive return, and lowest 0.75 — 0.5 (Mantegna & Stan-
ley, 2000). The improvement could be due to skipping
noise-dominated small changes, and/or bigger changes
ruled by a mechanism whose learning is distracted by
the numerous small changes. Thus, while sampling,
it might be worth under-representing small weight in-
stances, missing value-filled, evident-outlier instances
and older ones. The amount of data to train a model
can be estimated (Walczak, 2001).

Bootstrap — with repetitions, sampling as many ele-
ments as in the original — and deriving a predictor
for each such a sample, is useful for collecting vari-
ous statistics (LeBaron & Weigend, 1994), e.g. perfor-
mance, also ensemble creation or best predictor selec-
tion (e.g. via bumping), however not without limits
(Hastie et al., 2001).

Feature selection can make learning feasible, as
because of the curse of dimensionality (Mitchell, 1997)
long instances demand (exponentially) more data. As
always, feature choice should be evaluated together
with the predictor, as assuming feature importance

because it worked well with other predictors, may mis-
lead.

Principal Component Analysis (PCA) and claimed
better for stock data Independent Component Anal-
ysis (Back & Weigend, 1998), reduce dimension by
proposing a new set of salient features.

Sensitivity Analysis trains predictor on all features and
then drops those least influencing predictions. Many
learning schemes internally signal important features,
e.g. (C4.5) decision tree use them first, neural net-
works assign highest weights etc.

Heuristic such as hill-climbing or genetic algorithms op-
erating on binary feature selection can be used not
only to find salient feature subsets, but also — invoked
several times — to provide different sets for ensemble
creation.

Predictability assessment allows to concentrate
on feasible cases (Hawawini & Keim, 1995). Some tests
below are simple non-parametric predictors — predic-
tion quality reflecting predictability, measured, e.g., by
standard error to series standard deviation ratio.

Linear methods measure correlation between predicted
and feature series — significant non-zero implying pre-
dictability (Tsay, 2002). Multiple features can be
taken into account by multivariate regression.

Nearest Neighbor (Mitchell, 1997) offers a powerful lo-
cal predictor. Distracted by noisy/irrelevant features,
but if this ruled out, failure suggests that the most
that can be predicted are general regularities, e.g. an
outcome overall probability.

Entropy measures information content, i.e. deviation
from randomness (Molgedey & Ebeling, 2000). This
general measure, not demanding big amounts of data,
and useful in discretisation or feature selection is
worth familiarizing with.

Compressibility — the ratio of compressed to the origi-
nal sequence length — shows how regularities can be
exploited by a compression algorithm (which could be
the basis of a predictor). An implementation: series
digitized 4-bit values packed in pairs into byte array
subjected to Zip compression (Zemke, 2002a).

Detrended Fluctuation Analysis (DFA) reveals long
term correlations (self-similarity) even in non-
stationary time series (N. Vandewalle & Ph.Boveroux,
1997). DFA is more robust, so recommended to Hurst
analysis — a sensitive statistics of cycles, proper inter-
pretation requiring experience (Peters, 1991).

Chaos and Lyapunov exponent test short-term deter-
minism, thus predictability (Kantz & Schreiber,
1999). However, the algorithms are noise-sensitive
and require long series, thus conclusions should be
cautious.



Randomness tests like chi-square, can assess the likeli-
hood that the observed (digitized) sequence is ran-
dom. Such a test on patterns of consecutive digits
could hint pattern no/randomness.

Non-stationarity test can be implemented by dividing
data into parts and computing part ¢ predictability
based only on part j data. The variability of the mea-
sures (visual inspection encouraged), such as standard
deviation, assesses stationarity.

A battery of tests could include linear regression, DFA
for long term correlations, compressibility for entropy-
based approach, Nearest Neighbor for local prediction,
and a non-stationarity test.

3. Prediction Algorithms

Below, common learning algorithms (Mitchell, 1997)
are discussed, pointing their features important to fi-
nancial prediction.

Linear methods not main focus here, are widely
used in financial prediction (Tsay, 2002). In my
Weka (Witten & Frank, 1999) experiments, Locally
Weighted Regression (LWR) — scheme weighting Near-
est Neighbor predictions — discovered regularities in
NYSE data (Zemke, 2002b). Also, Logistic — non-
linear regression for discrete classes — performed above-
average and with speed. As such, regression is worth
trying, especially its schemes more specialized to the
data (e.g. Logistic to discrete) and as a final optimiza-
tion — weighting other predictions (LWR).

Neural Network (ANN) - seems the method of
choice for financial prediction (Kutsurelis, 1998; Cheng
et al., 1996). Backpropagation ANNs present the
problems of long training and guessing the net archi-
tecture. Schemes training architecture along weights
could be preferred (Hochreiter & Schmidhuber, 1997)
(Kingdon, 1997), limiting under-performance due to
wrong (architecture) parameter choice. Note, a failure
of an ANN attempt, especially using a general-purpose
package, does not necessitate prediction impossible. In
my experiments, Voted Perceptron performance often
compared with that of ANN, this could be a start,
especially when speed is important, such as in ensem-
bles.

C4.5, ILP - generate decision trees/if-then rules —
human understandable, if small. In my experiments
with Progol (Mitchell, 1997) — otherwise successful
rule-learner — applied to NYSE data, rules (resembling
technical) seldom emerged; Weka J48 (C4.5) tree-
learner predictions have not performed; GA-evolved

rules’ performance was very sensitive to 'right’ back-
ground predicates (Zemke, 1998). The conclusion be-
ing that, small rule-based models cannot express cer-
tain relationships and perform well with noisy/at times
inconsistent financial data (Kovalerchuk & Vityaev,
2000). Ensembles of decision trees, can make up for
the problems, but readability is usually lost. Rules
can also be extracted from ANN, offering accuracy and
readability (Kovalerchuk & Vityaev, 2000).

Nearest Neighbor (NN) does not create a gen-
eral model, but to predict, it looks back for the most
similar case(s) (Mitchell, 1997). Irrelevant/noisy fea-
tures disrupt the similarity measure, so pre-processing
is worthwhile. NN is a key technique is nonlinear anal-
ysis which offers insights, e.g. weighting more neigh-
bors, efficient NN search (Kantz & Schreiber, 1999).
Cross-validation (Mitchell, 1997) can also decide an
optimal number of kNN neighbors. Ensemble/bagging
NN trained on different instance samples usually does
not boost accuracy, though on different feature subsets
might.

Bayesian classifier /predictor first learns probabili-
ties how evidence supports outcomes, used then to
predict new evidence’s outcome. Though the simple
scheme is robust to violating the 'naive’ independent-
evidence assumption, watching independence might
pay off, especially as in decreasing markets variables
become more correlated than usual. The Bayesian
scheme might also combine ensemble predictions —
more optimally than majority voting.

Support Vector Machines (SVM) are a rela-
tively new and powerful learner, having attractive
characteristics for time series prediction (Muller et al.,
1997). First, it deals with multidimensional instances,
actually the more features the better — reducing the
need for (wrong) feature selection. Second, it has few
parameters, thus finding optimal settings can be eas-
ier, one of the parameters referring to noise level the
system can handle.

Performance improvement

Most successful prediction are hybrid: several learn-
ing schemes coupled together (Kingdon, 1997; Cheng
et al., 1996; Kutsurelis, 1998; Kovalerchuk & Vityaev,
2000). Predictions, indication of their quality, biases,
etc., fed into a (meta-learning) final decision layer.
The hybrid architecture may also stem from perfor-
mance improving techniques:

Ensemble (Dietterich, 2000) is a number of predictors
of which votes are put together into the final predic-



tion. The predictors, on average, are expected above-
random and making independent errors. The idea is
that correct majority offsets individual errors, thus
the ensemble will be correct more often than an in-
dividual predictor. The diversity of errors is usually
achieved by training a scheme, e.g. C4.5, on differ-
ent instance samples or features. Alternatively, dif-
ferent predictor types — like C4.5, ANN, kNN — can
be used or the predictor’s training can be changed,
e.g. by choosing the second best decision, instead of
first, building C4.5 decision tree. Common schemes
include bagging, boosting and their combinations and
Bayesian ensembles (Dietterich, 2000). Boosting is
particularly effective in improving accuracy.

Note: an ensemble is not a panacea for non-
predictable data — it only boosts accuracy of already
performing predictor. Also, readability, efficiency are
decreased.

Genetic Algorithms (GAs) (Deboeck, 1994) explore
novel possibilities, often not thought of by humans.
Therefore, it is always worth keeping some decisions
as parameters that can be (later) GA-optimized, e.g.,
feature preprocessing and selection, sampling strat-
egy, predictor type and settings, trading strategy.
GAs (typically) require a fitness function — reflecting
how well a solution is doing. A common mistake is to
define the fitness one way and to expect the solution
to perform another way, e.g. if not only return but
also variance are important, both factors should be
incorporated into fitness. Also, with more parameters
and GAs ingenuity it is easier to overfit the data, thus
testing should be more careful.

Local, greedy optimization can improve an interesting
solution. This is worth combining with a global op-
timization, like GAs, which may get near a good so-
lution without reaching it. If the parameter space is
likely nonlinear, it is better to use a stochastic search,
like simulated annealing, as compared to simple up-
hill.

Pruning properly applied can boost both 1) speed —
by skipping unnecessary computation, and 2) per-
formance — by limiting overfitting. Occam’s razor —
among equally performing models, simpler preferred —
is a robust criterion to select predictors, e.g. Network
Regression Pruning (Kingdon, 1997), MMDR (Ko-
valerchuk & Vityaev, 2000) successfully use it. In C4.5
tree pruning is an intrinsic part. In ANN, weight de-
cay schemes (Mitchell, 1997) reduce towards 0 connec-
tions not sufficiently promoted by training. In kNN,
often a few prototypes perform better than referring
to all instances — as mentioned, high return instances
could be candidates. In ensembles, if the final vote is
weighted, as in AdaBoost (Dietterich, 2000), only the
highest-weighted predictors matter.

Tabu, cache, incremental learning, gene GA
can accelerate search, allowing more exploration, big-
ger ensemble etc. Tabu search prohibits re-visiting
recent point again — except for not duplicating com-
putation, it forces the search to explore new areas.
Caching stores computationally expensive results for
a quick recall, e.g. (partial) kNN can be precom-
puted. Incremental learning only updates a model

as new instances arrive, e.g. training ANN could
start with ANN previously trained on similar data,
speeding up convergence. Gene expression GAs op-
timize solution’s compact encoding (gene), instead of
the whole solution which is derived from the encoding
for evaluation.

I use a mixture: optimizing genes stored in a tabu
cache (logged and later scrutinized if necessary).

What if everything fails but the data seems pre-
dictable? There are still possibilities: more rele-
vant data, playing with noise reduction/discretisation,
making the prediction easier, e.g. instead of return,
predicting volatility (and separately direction), or in-
stead of stock (which may require company data) pre-
dicting index, or stock in relation to index; changing
the horizon — prediction in 1 step vs. many; another
market, trading model.

Trading model given predictions, makes trad-
ing decisions, e.g. predicted up — long position,
down — short, with more possibilities (Hellstrom &
Holmstrom, 1998). Return is just one objective,
other include: minimizing variance, maximal loss
(bankruptcy), risk (exposure), trade (commissions),
taxes; Sharpe ratio etc. A practical system employs
precautions against predictors non-performance: mon-
itoring recent performance and signaling if it is below
accepted /historic level. Tt is crucial in non-stationary
markets to allow for market shifts beyond control —
politics, disasters, entry of a big player. If the shifts
cannot be dealt with, at least should be signaled before
inflicting unreparable loss. This touches the subject of
a bigger (money) management system, taking the pre-
dictions into account while hedging, but it is beyond
the scope of this paper.

4. System Evaluation

Proper evaluation is critical to a prediction system de-
velopment. First, it has to measure exactly the inter-
esting effect, e.g. trading return, as opposed to predic-
tion accuracy. Second, it has to be sensitive enough
as to distinguish often minor gains. Third, it has to
convince that the gains are no merely a coincidence.

Evaluate the right thing. Financial forecasts are
often developed to support semi-automated trad-
ing (profitability), whereas the algorithms underlying
those systems might have different objective. Thus, it
is important to test the system performing in the set-
ting it is going to be used, a trivial, but often missed
notion. Also, the evaluation data should be of exactly
the same nature as planned for real-life application,
e.g. an index-futures trading performed for index data



used as a proxy for futures price, but real futures data
degraded it. Some problems with common evaluation
strategies (Hellstrom & Holmstrom, 1998) follow.

Accuracy — percentage of correct discrete (e.g. up/down)
predictions; common measure for discrete systems,
e.g. ILP/decision trees. It values instances equally,
disregarding both instance’s weight and accuracies for
different cases, e.g. a system might get high score pre-
dicting the numerous small changes whereas missing
the big few. Actually, some of the best-performing
systems have lower accuracy than could be found for
that data (Deboeck, 1994).

Square error — sum of squared deviations from actual
outputs — is a common measure in numerical predic-
tion, e.g. ANN. It penalizes bigger deviations, how-
ever if sign is what matters this might not be opti-
mal, e.g. predicting -1 for -0.1 gets bigger penalty
than predicting +0.1, though the latter might trigger
going long instead of short. Square error minimiza-
tion is often an intrinsic part of an algorithm such
as ANN backpropagation, and changing it might be
difficult. Still, many such predictors, e.g. trained on
bootstrap samples, can be validated according to the
desired measure and the best picked.

Reliability — predictor’s confidence in its forecast — is
equally important and difficult to develop as the pre-
dictor itself (Gershenfeld & Weigend, 1993). A pre-
dictor will not always be confident — it should be able
to express this to the trading counterpart, human or
not. e.g. by an output ’undecided’. No trade on
dubious predictions is beneficial in many ways: lower
errors, commissions, exposure. In my experiments op-
timizing the reliability requirement, stringent values
emerged — why to trade if the predicted move and
confidence are low? Reliability can be assessed by
comparing many predictions: coming from an ensem-
ble, as well as done in one step and multiple steps
fashion.

Performance measure (Hellstrom & Holmstrom, 1998)
should incorporate the predictor and the (trading)
model it is going to benefit. Some points: Com-
missions need to be incorporated — many trading
’opportunities’ exactly disappear with commissions.
Risk/variability — what is the value of even high return
strategy if in the process one gets bankrupt? Data
difficult to obtain in real time, e.g. volume, might
mislead historic data simulations.

Evaluation bias resulting from the evaluation
scheme and time series data, needs to be recognized.
Evaluation similar to the intended operation can mini-
mize performance estimate bias, though different tests
can be useful to estimate different aspects, such as re-
turn, variance.

N-cross validation — data divided into N disjoint parts,
N — 1 for training and 1 for testing, error averaged
over all N (Mitchell, 1997) — in the case of time series
data, underestimates error. Reason: in at least N — 2

out of the N train-and-test runs, training instances
precede and follow the test cases unlike in actual pre-
diction when only past in known. For series, window
approach is more adept.

Window approach — segment ("window’) of consecutive
instances used for training and a following segment for
testing, the windows sliding over all data, as statistics
collected. Often, to save training time, the test seg-
ment consists of many instances. However, more than
1 instance overestimates error, since the training win-
dow does not include the data directly preceding some
tested cases. Since markets undergo regime change in
matter of weeks, the test window should be no longer
than that, or the train window’s fraction (< 20%). To
speed up training for the next test window, the pre-
vious window predictor could be used as the starting
point while training on the next window, e.g. instead
of starting with ANN random weights.

Evaluation data should include different regimes,
markets, even data errors, and be plentiful. Dividing
test data into segments helps to spot performance ir-
regularities (for different regimes).

Overfitting a system to data is a real danger. Dividing
data into disjoint sets is the first precaution: training,
validation for tuning, and test set for performance es-
timation. A pitfall may be that the sets are not as sep-
arated as seem, e.g. predicting returns 5 days ahead, a
set may end at day D, but that instance may contains
return for day D + 5 falling into a next set. Thus data
preparation and splitting should be careful.

Another pitfall is using the test set more than once.
Just by luck, 1 out of 20 trials is 95% above average,
1 out of 100, 99% above etc. In multiple test, signif-
icance calculation must factor that in, e.g. if 10 tests
are run and the best appears 99.9% significant, it re-
ally is 99.9%'° = 99% (Zemke, 2000).

Multiple use can be avoided, for the ultimate test, by
taking data that was not available earlier. Another
possibility is to test on similar, not tuned for, data —
without any tweaking until better results, only with
predefined adjustments for the new data, e.g. switch-
ing the detrending preprocessing on.

Surrogate data is a useful concept in nonlinear sys-
tem evaluation (Kantz & Schreiber, 1999). The idea
is to generate data sets sharing characteristics of the
original data — e.g. permutations of series have the
same mean, variance etc. — and for each compute an
interesting statistics, e.g. return of a strategy. To com-
pare the original series statistics to those of the surro-
gates, there are 2 ways to proceed: 1) If the statistics
is normally distributed, the usual one/two-sided test
comparing to the surrogates’ mean used. 2) If no such
assumption, the nonparametric rank test can be used:



If « is the acceptable risk of wrongly rejecting the null
hypothesis that the original series statistics is lower
(higher) than of any surrogate, then 1/a — 1 surro-
gates needed; if all give higher (lower) statistics than
the original series, then the hypothesis can be rejected.
Thus, if predictor’s error was lower on original series,
than in 19 runs on surrogates, we can be 95% sure it
is up to something.

Non/Parametric tests. Most statistical tests
(Hastie et al., 2001) (Efron & Tibshirani, 1993) have
preconditions. They often involve assumptions about
sample independence and distributions — unfulfilled
leading to unfounded conclusions. Independence is
tricky to achieve, e.g. predictors trained on overlap-
ping data are not independent. If the sampling distri-
bution is unknown, as it usually is, it takes least 30,
better 100, observations for normal distribution statis-
tics.

If the sample is smaller than 100, nonparametric test
are preferable, with less scope for assumption errors.
The backside is they have less discriminatory power —
for the same sample size (Heiler, 1999).

A predictor should significantly win (nonparametric)
comparisons with naive predictors: 1) Majority pre-
dictor outputs the commonest value all the time, for
stocks it could be the dominant up move, translating
into the buy and hold strategy. 2) Repeat previous
predictor for the next value issues the (sign of the)
previous one.

Sanity checks involve common sense (Gershenfeld
& Weigend, 1993). Prediction errors along the series
should not reveal any structure, unless the predictor
missed something. Do predictions on surrogate (per-
muted) series discover something? If valid, this is the
bottom line for comparison with prediction on the orig-
inal series — is it significantly better?

Putting it all together

To make the paper’s less abstract, some author’s
choices in a NYSE index prediction system follow.
The research (Zemke, 2002b) extends an earlier sys-
tem (Zemke, 1998). The idea is to develop a 5-days
return predictor, later on, to support a trading strat-
egy.

Data used consists of 30 years of daily NYSE 5 indexes
and 4 volume series. Data is plotted and some series
visibly mimicking other omitted. Missing values are
filled by a nearest neighbor algorithm, and the 5-days
return series to be predicted computed. The index
series are converted to logarithms of daily returns; the

volumes divided by lagged yearly averages. Additional
series are derived, depending on experiment, 10 and
15 days MA and ROC for indexes. Then all series
are Softmax normalized to -1..1 and discretized to 0.1
precision. In between major preprocessing steps series
statistics are computed: number of NaN, min and max
values, mean, st. deviation, 1,2-autocorrelation, zip-
compressibility, linear regression slope, DFA — tracing
if preprocessing does what expected — removing NaN,
trend, outliers, but not zip/DFA predictability. In the
simplest approach, all series are then put together into
instances with D = 3 and delay = 2. An instance’s
weight is corresponding time absolute 5-days return
and instance’s class — the return’s sign.

The predictor is one of Weka (Witten & Frank, 1999)
classifiers handling numerical data, 4-bit coded into a
binary string together with: which instance’s features
to use, how much past data to train on (3, 6, 10, 15, 20
years) and what part of lowest weight instances to skip
(0.5, 0.75, 0.85). Such strings are GA-optimized, with
already evaluated strings cached and prohibited from
costly re-evaluation. Evaluation: a predictor is trained
on past data and used to predict values in a disjoint
window, 20% size of the data, ahead of it; repeated 10
times with the windows shifted by the smaller window
size. The average of the 10 period returns less the
‘always up’ return and divided by the 10 values st.
deviation give a predictor’s fitness.

5. Final Remarks

Financial markets, as described by multidimensional
data presented to a prediction/trading system, are
complex nonlinear systems — with subtleties and in-
teractions difficult for humans to comprehend. This
is why, once a system has been developed, tuned
and proven performing on (volumes of) data, there
is no space for human ’adjustments’; except for going
through the whole development cycle. Without strin-
gent re-evaluation performance is likely hurt.

A system development usually involves a number of
recognizable steps: data preparation — cleaning, select-
ing, making data suitable for the predictor; prediction
algorithm development and tuning — for performance
on the quality of interest; evaluation — to see if in-
deed the system performs on unseen data. But since
financial prediction is very difficult, extra insights are
needed. The paper has tried to provide some: data en-
hancing techniques, predictability tests, performance
improvements, evaluation hints and pitfalls to avoid.
Awareness of them hopefully will make predictions eas-
ier, or at least the realization that they cannot be done
quicker.



References

Back, A., & Weigend, A. (1998). A first application of
independent component analysis to extracting structure
from stock returns. Int. J. on Neural Systems, 8(4),
473-484.

Cheng, W., Wagner, L., & Lin, C.-H. (1996). Forecasting
the 30-year u.s. treasury bond with a system of neural
networks.

Dacorogna, M., Gencay, R., Muller, U., Olsen, R., &
Pictet, O. (2001). An introduction to high-frequency fi-
nance. Academic Press.

Deboeck, G. (1994). Trading on the edge. Wiley.

Dietterich, T. G. (2000). Ensemble methods in machine
learning. Multiple Classifier Systems (pp. 1-15).

Efron, B., & Tibshirani, R. (1993). An introduction to the
bootstrap. Chapman & Hall.

Gershenfeld, N., & Weigend, S. (1993). The future of time
series: Learning and understanding. Addison-Wesley.

Han, J., & Kamber, M. (2001). Data mining. concepts and
techniques. Morgan Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The
elements of statistical learning. data mining, inference
and prediction. Springer.

Hawawini, G., & Keim, D. (1995). On the predictability
of common stock returns: World-wide evidence. North
Holland.

Heiler, S. (1999). A survey on nonparametric time series
analysis.

Hellstrom, T., & Holmstrom, K. (1998). Predicting the
stock market (Technical Report). Univ. of Umega, Swe-
den.

Hochreiter, S., & Schmidhuber, J. (1997). Flat minima.
Neural Computation, 9, 1-42.

Kantz, H., & Schreiber, T. (1999). Nonlinear time series
analysis. Cambridge Univ. Press.

Kingdon, J. (1997). Intellignet systems and financial fore-
casting. Springer.

Kohavi, R., & Sahami, M. (1996). Error-based and
entropy-based discretization of continuous features.
Proc. of Second Itn. Conf. on Knowledge Discovery and
Data Mining (pp. 114-119).

Kovalerchuk, B., & Vityaev, E. (2000). Data mining
in finance: Advances in relational and hybrid methods.
Kluwer Academic.

Kutsurelis, J. (1998). Forecasting financial markets using
neural networks: An analysis of methods and accuracy.

LeBaron, B., & Weigend, A. (1994). Evaluating neural
network predictors by bootstrapping. Proc. of Itn. Conf.
on Neural Information Processing.

Mantegna, R., & Stanley, E. (2000). An introduction to
econophysics: Correlations and complezity in finance.
Cambridge Univ. Press.

Mitchell, T. (1997). Machine learning. McGraw Hill.

Molgedey, L., & Ebeling, W. (2000). Local order, entropy
and predictability of financial time series (Technical Re-
port). Institute of Physics, Humboldt-University Berlin,
Germany.

Muller, K.-R., Smola, A., Rtsch, G., Schlkopf, B.,
Kohlmorgen, J., & Vapnik, V. (1997). Using support

vector machines for time series prediction.

Murphy, J. (1999). Technical analysis of the financial mar-
kets: A comprehensive guide to trading methods and ap-
plications. Prentice Hall.

N. Vandewalle, M., & Ph.Boveroux (1997). Detrended fluc-
tuation analysis of the foreign exchange markets. Proc.
Econophysics Workshop, Budapest.

Peters, E. (1991). Chaos and order in the capital markets.
Wiley.

R. Sullivan, A. T. A.; & White, H. (1999). Data-snooping,
technical trading rule performance and the bootstrap. J.
of Finance.

Swingler, K. (1994). Financial prediction, some pointers,
pitfalls and common errors (Technical Report). Centre
for Cognitive and Computational Neuroscience, Stirling
Univ., UK.

Tsay, R. (2002). Analysis of financial time series. Wiley.

Walczak, S. (2001). An empirical analysis of data require-
ments for financial forecasting with neural networks.

Witten, 1., & Frank, E. (1999). Data mining: Practical
machine learning tools and techniques with java tmple-
mentations. Morgan Kaufmann.

Zemke, S. (1998). Nonlinear index prediction. Physica A,
269, 177-183.

Zemke, S. (2000). Rapid fine tuning of computationally
intensive classifiers. Proceedings of AISTA, Australia.

Zemke, S. (2002a). Compression as a quick measure of
predictability. Submitted.

Zemke, S. (2002b). Weka for financial prediction. Submit-
ted.



