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The most common filters used by traders are Moving Averages – either Simple 
Moving Averages (SMA) or Exponential Moving Averages (EMA).  These are linear 
filters.  Linear filters are optimal for smoothing stationary, slowly varying signals that are 
corrupted with high frequency noise.   Unfortunately, price data is not stationary much of 
the time.  A coin flip experiment is an example of a statistical stationary process.  
However, if weighted coins are introduced into the experiment randomly, the statistics of 
the experiment now depend on which coin is used, and therefore are nonstationary.  
The signals we deal with can often be described statistically.  For example, human 
speech has noise-like statistics.  The process is nonstationary because it changes from 
moment to moment.  Although speech has noise-like characteristics, that is not to say 
that it does not carry information (unless coming from a lawyer or politician).  Price data 
resembles speech in statistical characteristics.  It is both noise-like and nonstationary.  
One of the main problems we encounter in trading when using technical analysis is that 
we must attempt to restore signals that are often nonstationary and are also corrupted 
by noise.  When dealing with nonstationary signals that have sharp transitions of their 
mean or when dealing with impulsive noise, linear filtering techniques give poor results.  
In this article I will describe how you can make some amazing nonlinear filters that 
better handles these signals. 

There are two basic kinds of filters, Finite Impulse Response (FIR) Filters and 
Infinite Impulse Response (IIR) Filters.  An EMA is an example of an IIR filter.  An 
impulse the mathematical equivalent of a sharp spike.  In sampled data, the impulse 
has a value of one for only one sample and the data is zero for all other samples.  In 
contrast, when an impulse is applied to an IIR Filter, a portion of the first output is fed 
back to the input and added to the next data input sample.  Because this calculation is 
iterative, the effects of the impulse is theoretically present in the output forever – hence 
the name IIR.  When the impulse is applied to the input of an FIR Filter, a SMA for 
example,  the effects of the impulse will be present in the filter output only over the 
length of the filter and the output will be zero otherwise – hence the name FIR. 

Perry Kaufman, Tushar Chande (see the sidebar) and others have designed 
nonlinear IIR filters to better smooth market data.  The basic approach is to craft a 
volatility-adjusted value for the alpha parameter in an EMA.  These are certainly 
workable approaches, but their effectiveness is constrained by the opposing 
requirements of providing adequate smoothing while vigorously attacking major price 
movements. 

The filters I have invented are nonlinear FIR filters.  It turns out that they provide 
both extraordinary smoothing in sideways markets and aggressively follow major price 
movements with minimal lag.  The development of my filters starts with a general class 
of FIR filters called Order Statistic (OS) filters.  In contrast to linear filters, where 
temporal ordering of the samples is preserved, OS filters base their operation on the 
ranking of the samples within the filter window.  The data are ranked by their summary 
statistics, such as their mean or variance,  rather than by their temporal position.    



Among OS filters, the median filter is the best known.  It is used in video circuits 
to sharpen the edges of images and to remove impulsive noise.  In a median filter, the 
output is the median value of all the data values within the observation window.  As 
opposed to an averaging filter, the median filter simply discards all data except the 
median value.  In this way, impulsive noise spikes and extreme price data are 
eliminated rather than being included in the average.  The median value can fall at the 
first sample in the data window, at the last sample, or anywhere in between.  Thus, 
temporal characteristics are lost.   For example if the data inputs to a five tap FIR filter 
are sequentially [3 4 3 3 9], the median value is 4.  This median is neither the average 
value (which is 4.4) nor the value at the center of the filter.  In this case the big data 
spike value of 9 is ignored.  As another example, if the data inputs were [3 3 3 8 9] the 
median value is 8, as opposed to the average value of 5.2.  This example shows the 
median filter can follow fast changes in data rapidly.  

The median filter tends to smooth out short-term variations that lead to whipsaw 
trades with linear filters.  On the other hand, the lag of a median filter in response to a 
sharp and sustained price movement is substantial – it necessarily is about half the filter 
window width.  The response of a median filter that has a 10 bar window width is shown 
in Figure 1.  Note that the filter did not respond to small price movements in 
October/November nor in January/February, which possibly could have eliminated 
several potential whipsaw trades that would have been produced by linear filters.   

Finding the median is a simple sorting problem.  We only need to list the data 
samples within the filter width in the order of the their amplitudes and pick the center 
value.  Median filters can be smoothed with an Exponential Moving Average to make 
them more presentable and easier to read. 

Like OS filters, Ehlers filters are robust.  Additionally, they also exploit both the 
rank-order and the temporal characteristics of the data.  The generalized Ehlers filter 
can be oriented to any statistic of your choice, making the coefficients extremely easy to 
calculate.   The most obvious statistic to use is price momentum because this data 
enables the nonlinear Ehlers filter to rapidly follow price changes (as it enabled the 
KAMA IIR filter to do the same).  The range of statistic used is virtually limitless.  For 
example, the Ehlers filter could be nonlinear with respect to acceleration (the rate 
change of momentum), signal-to-noise ratio, volume, money flow (delta price times 
volume), and so on.  Even other indicators, such as Stochastic or RSI can be used as a 
statistic.  This will become more apparent after I explain the calculating procedure. 



 
Figure 1.  Response of a 10 Bar Median Filter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



The Ehlers filter has a formulation similar to that of the FIR filter.  If “y” is the filter 
output and “xi” is the ith input across a filter window width “n”, then the equation is: 

y = c1x1 + c2x2 + c3x3 + c4x4 + . . . . . .+ cnxn  
The c’s are the coefficients that contain the statistic in which you are interested.   As a 
simple example, a weighted moving average uses a statistic inversely proportional to 
the data sample position within the averaging window.  In TradeStation notation, the 
equation for such a filter would be written as: 
 y = (4*Price + 3*Price[1] + 2*Price[2] + Price[3]) / 10  
Note that a weighted moving average has each coefficient normalized to the sum of the 
coefficients.  This normalization keeps the average scaled that the same as the price on 
your charts.  For example, if all 5 prices within the filter are the same, then the filter 
output necessarily is the same as any of those 5 prices.  As a more general example, if 
you are interested in the 5 bar momentum, each coefficient would be, in EasyLanguage 
notation: 
 Price[count] – Price[count + 5] 
  Where count is the position within the filter window 
In this way, the coefficients are ordered according to their size within the window.  For 
example, c3 could possibly have the largest momentum and c1 could be the next largest 
momentum, and their temporal location within the filter is retained.  Unity gain of the 
filter is retained by normalizing all of the coefficients to their sum, just as we did for the 
weighted moving average.   So, the complete formal description of the Ehlers filter is: 

 
 The statistic used in the Ehlers filters should be detrended for maximum 
effectiveness.  If we do not detrend the statistic, each of the coefficients will have a 
large common term relative to any differences there may be between them.  For 
example, if a 5 tap filter has the statistic as [-1 –2 0 2 1], the statistic has no common 
term, and there is a large percentage change between positions within the filter.  
However, if the statistic is [99 98 100 102 101], the coefficients have a common term of 
100 although the difference between coefficients is the same as in the first example.  In 
this latter case there is only a small percentage difference between the coefficients and 
the Ehlers filter would have performance virtually indistinguishable from a simple 
moving average. 

The EasyLanguage code for the Ehlers filter is given in Figure 2 for the particular 
example of a 5 bar momentum. 
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Figure 2.  EasyLanguage Code to Compute Ehlers Filters 

Inputs: Price((H+L)/2), 
   Length(15); 
 
Vars:   count(0), 
   SumCoef(0), 
   Num(0), 
   Filt(0); 
 
Array:  Coef[25](0); 
 
{Coefficients can be computed using any statistic of choice ---- 
    ----- a 5 bar momentum is used as an example} 
 
For count = 0 to Length - 1 begin 
 Coef[count] = AbsValue(Price[count] - Price[Count + 5]); 
end; 
 
{Sum across the numerator and across all coefficients} 
Num = 0; 
SumCoef =0; 
For count = 0 to Length -1 begin 
 Num = Num + Coef[count]*Price[count]; 
 SumCoef = SumCoef + Coef[count]; 
end; 
Filt = Num / SumCoef; 
 
Plot1(Filt, "Ehlers"); 
  

 
 The example filter has fifteen coefficients, although the array of coefficients is 
dimensioned to 25 to allow experimentation using a longer filter (if a filter longer than 25 
samples is desired, the dimension of the Array must be increased accordingly).  In the 
first calculation we find each coefficient in the filter as the five bar momentum.  The next 
computation is to sum the numerator as the product of each coefficient and the price 
(the x’s in the general equation) at the corresponding sample, and sums the coefficients 
alone.  Finally, the filter is completed by taking the ratio of the numerator to the 
coefficient sum.  The performance of this filter is shown in Figure 3. 
 Figure 3 illustrates the fact that the momentum-derived Ehlers filter clearly 
responds quickly to rapid price movements while rejecting minor price movements to a 
greater degree.  This kind of filter can be used to quickly respond to changes in trend 
direction without producing the whipsaws that are so prevalent when linear filters are 
employed.  The Ehlers filter can be made to be very aggressive by squaring each 
coefficient. 
 The greater flexibility of Ehlers filters opens up whole new avenues of technical 
analysis research.  For example, the statistic can be some tangible parameter of market 
activity such as money flow or volume.  On the other hand, more arcane parameters 
such as Signal to Noise Ratio can be used as the statistic.  In this case, the coefficients 
where the Signal to Noise Ratio is the greatest would have the largest weight, 
discounting the price data values where the Signal to Noise Ratio is less.  Also, Ehlers 



filters can be adaptive.  For example, the length of the 5 Bar Momentum Ehlers filter in 
our example could be adaptive to the length of the measured cycle period.  Such a filter 
would be both adaptive and nonlinear. 
 The flexibility and adaptability of the Ehlers filter is demonstrated in Figure 4, 
where the statistic used is the difference between the current price and the previously 
calculated value of the filter.  This version has some aspects of an IIR filter. 
 
 
Figure 3.  Performance of a 15 Bar Ehlers Filter using a 5 Bar Momentum Compared to 

the Performance of a 15 Bar SMA 
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15 Bar Ehlers Filter:
 5 Bar Momentum



 
Figure 4. Performance of an Adaptive 15 Bar Ehlers Filter Compared to the 

Performance of a 15 Bar SMA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Regardless of the flexibility of the Ehlers filter, it is useful to step back and reflect 
on the motivation for deriving this filter type.  By so doing, we may discover an optimum 
solution for the calculation of the coefficients.   We know market data is most often 
nonstationary.  We also know that we want to follow the sharp and sustained 
movements of price as closely as possible.  This led video engineers to use the median 
filter as an edge detector.  But not all edges are the same.  We can visualize the 
sharpness of edges in Figure 5 by imaging looking down on this figure as we would on a 
piece of paper, illuminated from above our left shoulder, and hanging over the edge of a 
desk.  The edge at the top of Figure 5 is very sharp, as if the paper were creased.  
Continuing down Figure 5 the light diffusion is more dispersed, giving the illusion that 
the edge becomes more rounded.  In fact, the shading of Figure 5 was generated by a 
Gaussian function whose standard deviation increased from top to bottom in the figure. 
  

15 Bar SMA

15 Bar Adaptive 
Ehlers Filter



 
Figure 5.  Visualizing the Sharpness of an Edge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If we consider the gray shading levels in Figure 5 as distances, we have a way of 
computing filter coefficients in terms of sharpness of the edge.  White is the maximum 
distance in one direction from the median gray and black is the maximum distance in 
the other direction.  Thus, distance is a measure of departure from the edge, taking into 
account the edge sharpness.   

Transitioning to price charts, the difference in prices can be imagined as a 
distance.  Recalling the Pythagorean theorem (where the length of the hypotenuse of a 
triangle is equal to the sum of the squares of the lengths of the other two sides), we can 
apply it to our needs and say that a generalized length at any data sample is the square 
root of the sum of the squares of the price difference between that price and each of the 
prices back for the length of the filter window.  The sum of the distances squared at 
each data point are the coefficients of the Ehlers filter.  Suppose the last 10 data values 
were [1 1 1 1 1 1 2 3 4 5].  The coefficients of the Ehlers filter would then be calculated 
as: 

C1 = 1 + 22 + 32 +  42 + 42 = 46 
C2 = 1 + 22 + 32 +  32 + 32 = 32 
C3 = 1 + 22 + 22 +  22 + 22 = 17 
C4 = 1 + 1 +1 + 1 + 1 = 5 
C5 = 0 



The calculation of the distance-like coefficients are perhaps best understood with 
reference to the EasyLanguage code for the filter in Figure 6.  If the prices across the 
filter observation window are the same, then the coefficients of the filter are all the 
same, and we have the equivalent of a SMA.  On the other hand, if the prices shift 
rapidly, the distances from the increased price points increase, and higher weights are 
given to these filter coefficients.  The performance of the distance coefficient Ehlers filter 
is shown in Figure 7. 
 
 

Figure 6.  EasyLanguage Code for the Distance Coefficient Ehlers Filter 
 
Inputs:     Price((H+L)/2), 
  Length(15); 
 
Vars:  count(0), 
  LookBack(0), 
  SumCoef(0), 
  Num(0), 
  Filt(0); 
 
Array: Coef[25](0), 
  Distance2[25](0); 
 
For count = 0 to Length - 1 begin 
 Distance2[count] = 0; 
 For LookBack = 1 to Length - 1 begin 
  Distance2[count] = Distance2[count] + (Price[count] – Price[count 
+ LookBack])*(Price[count] - Price[count + LookBack]); 
 end; 
 Coef[count] = Distance2[count]; 
end; 
Num = 0; 
SumCoef =0; 
For count = 0 to Length -1 begin 
 Num = Num + Coef[count]*Price[count]; 
 SumCoef = SumCoef + Coef[count]; 
end; 
If SumCoef <> 0 then Filt = Num / SumCoef; 
 
Plot1(Filt, "Ehlers"); 
 
 The filter coefficients can be made to be even more nonlinear than calculated in 
Figure 6.  For example, the distance can be cubed or raised to the fourth power (by 
squaring the squared distance). A reciprocal Gaussian response is an even more 
nonlinear function of distance that we can use to calculate the filter coefficients.  These 
more nonlinear responses follow the edges in price movement more aggressively.  
However, the very fact that they are so nonlinear removes much of the gray area in the 
response.    

The most nonlinear calculations produce results that are not discernable from 
median filters.  The coefficients become black and white, so there is very little middle  
ground gray area.  The focus of my current research is to identify the onset of the price 
shift more accurately.  The currently calculated distance functions are related to the 



change of price.  In calculus terms, this is the first derivative.  The shift of the rate 
change of price is the ideal identifier for the impending price move.  In calculus terms, 
we can use the maximum of the second derivative to pinpoint the onset of the price 
change.  The challenge is how to translate the second derivative into filter coefficients 
without introducing so much noise that the filter response is unusable. 
 The opportunities to use Ehlers filters in technical analysis are limitless.  I am 
sure whole books will be devoted to cataloging the various statistics and applications 
where they work the best.  In the meantime, you will have had the opportunity of 
exploiting them for your own fun and profit.   
 
 
 
John Ehlers is the president of MESA Software and is a frequent contributor to Stocks & 
Commodities.  This article is adapted from his forthcoming book, ROCKET SCIENCE 
FOR TRADERS, published by John Wiley & Sons, with availability later this Spring. 



 
Figure 7  Performance of the Distance Coefficient Ehlers Filter 
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SIDEBAR 
 

KAUFMAN’S ADAPTIVE MOVING AVERAGE (KAMA)1   
Kaufman’s Adaptive Moving Average (KAMA) is based on the concept that a 

noisy market requires a slower trend than one with less noise.  The basic principle is 
that the trendline must lag further behind the price in a relatively noisy market to avoid 
being penetrated by the price.  The moving average can speed up when the prices 
move consistently in one direction.  According to Perry Kaufman, who invented the 
system, KAMA is intended to use the fastest trend possible, based on the smallest 
calculation period for the existing market conditions.  It does this by changing the alpha 
of the EMA with each new sample.  The equation for KAMA is: 

 KAMA = S*Price + (1 – S)*KAMA[1] 
  Where S = Smoothing factor 

This is exactly the same equation that we use for the EMA except the variable S 
replaces the alpha constant of the EMA. 
 The equation for the Smoothing factor involves two boundaries and an Efficiency 
Ratio. 
  S = (E*(fastest – slowest) + slowest)2 

Fastest means the alpha of the shortest period boundary.  Slowest means the alpha of 
the longest period boundary.  The suggested period boundaries are 2 and 30 bars.  In 
this case the two alphas are calculated to be: 
  Fastest = 2/(2+1) = .6667 
  Slowest = 2/(30+1) = .0645 
Simplifying the equation for the Smoothing factor, we get: 
  S = (.6022*E + .0645)2 
 The efficiency ratio (E) is the absolute value of the difference of price across the 
calculation span divided by the sum of the absolute value of the individual price 
differences across the calculation span.  The equation for E is 

 The default value for N is 10.   However testing to find the best length is 
suggested. 

                                            
1 Perry J. Kaufman, “Trading Systems and Methods, Third Edition”, John Wiley & Sons, pp 436-438 
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VARIABLE INDEX DYNAMIC AVERAGE (VIDYA)2 
 Variable Index Dynamic Average (VIDYA) uses a pivotal smoothing constant 
which is fixed.  The suggested value of this constant is 0.2, corresponding to the alpha 
of a 9 day EMA.  The equation for VIDYA is 
  VIDYA = 0.2*k*Close + (1 - .2*k)*VIDYA[1] 
Again, this is exactly the same equation as an EMA except the relative volatility term, k,  
has  been included to introduce the nonlinearity.   The volatility term is the ratio of the 
standard deviation of Closes over the last “n” days to the standard deviation of Closes 
over the last “m” days, where m is greater than n.  Suggested values are n=9 and 
m=30. 
 

 

                                            
2 Tushar S. Chande and Stanley Kroll, “The New Technical Trader”, John Wiley & Sons, New York, 1994 
 


