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Abstract 
 
This research examines and analyses the use of Neural Network Regression (NNR) 
models in foreign exchange (FX) forecasting and trading models. The NNR models are 
benchmarked against traditional forecasting techniques to ascertain their potential 
added value as a forecasting and quantitative trading tool. 

In addition to evaluating the various models using traditional forecasting accuracy 
measures, such as root mean squared errors, they are also assessed using financial 
criteria, such as risk-adjusted measures of return. 

Having constructed a synthetic EUR/USD series for the period up to 4 January 1999, 
the models were developed using the same in-sample data, leaving the remainder for 
out-of-sample forecasting, October 1994 to May 2000, and May 2000 to July 2001, 
respectively. The out-of-sample period results were tested in terms of forecasting 
accuracy, and in terms of trading performance via a simulated trading strategy. 
Transaction costs are also taken into account. 

It is concluded that NNR models do have the ability to forecast EUR/USD returns for 
the period investigated, and add value as a forecasting and quantitative trading tool.  
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1.  Introduction 

Since the breakdown of the Bretton Woods system of fixed exchange rates in 1971- 
1973 and the implementation of the floating exchange rate system, researchers have 
been motivated to explain the movements of exchange rates.  The global FX market is 
massive with an estimated current daily trading volume of USD 1.5 trillion, the largest 
part concerning spot deals, and is considered deep and very liquid. By currency pairs, 
the EUR/USD is the most actively traded. 

The primary factors affecting exchange rates include economic indicators, such as 
growth, interest rates and inflation, and political factors.  Psychological factors also play 
a part given the large amount of speculative dealing in the market. In addition, the 
movement of several large FX dealers in the same direction can move the market. The 
interaction of these factors is complex, making FX prediction generally difficult. 

There is justifiable scepticism in the ability to make money by predicting price changes 
in any given market. This scepticism reflects the efficient market hypothesis according 
to which markets fully integrate all of the available information, and prices fully adjust 
immediately once new information becomes available. In essence, the markets are fully 
efficient making prediction useless. However, in actual markets the reaction to new 
information is not necessarily so immediate. It is the existence of market inefficiencies 
that allows forecasting. However, the FX spot market is generally considered the most 
efficient, again making prediction difficult. 

Forecasting exchange rates is vital for fund managers, borrowers, corporate treasurers, 
and specialised traders. However, the difficulties involved are demonstrated by that 
only three out of every ten spot foreign exchange dealers make a profit in any given 
year (Carney and Cunningham, 1996). 

It is often difficult to identify a forecasting model because the underlying laws may not 
be clearly understood. In addition, FX time series may display signs of nonlinearity 
which traditional linear forecasting techniques are ill equipped to handle, often 
producing unsatisfactory results. Researchers confronted with problems of this nature 
increasingly resort to techniques that are heuristic and nonlinear. Such techniques 
include the use of Neural Network Regression (NNR) models. 

The prediction of FX time series is one of the most challenging problems in forecasting.  
Our main motivation in this paper is to determine whether NNR models can extract any 
more from the data than traditional techniques. Over the past few years, NNR models 
have provided an attractive alternative tool for researchers and analysts, claiming 
improved performance over traditional techniques. However, they have received less 
attention within financial areas than in other fields. 

Typically, NNR models are optimised using a mathematical criterion, and subsequently 
analysed using similar measures. However, statistical measures are often 
inappropriate for financial applications.  Evaluation using financial measures may be 
more appropriate, such as risk-adjusted measures of return.  In essence, trading driven 
by a model with a small forecast error may not be as profitable as a model selected 
using financial criteria. 

The motivation for this research is to determine the added value, or otherwise, of NNR 
models by benchmarking their results against traditional forecasting techniques. 
Accordingly, financial trading models are developed for the EUR/USD exchange rate, 
using daily data from 17 October 1994 to 18 May 2000 for in-sample estimation, 
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leaving the period from 19 May 2000 to 3 July 2001 for out-of-sample forecasting1.  
The trading models are evaluated in terms of forecasting accuracy and in terms of 
trading performance via a simulated trading strategy. 

Our results clearly show that NNR models do indeed add value to the forecasting 
process. 

The research is organised as follows.  Section 2 presents a brief review of some of the 
research in FX markets. Section 3 describes the data used, addressing issues such as 
stationarity. Section 4 presents the benchmark models selected and our methodology.  
Section 5 briefly discusses NNR model theory and methodology, raising some issues 
surrounding the technique. Section 6 describes the out-of-sample forecasting accuracy 
and trading simulation results. Finally, Section 7 provides some concluding remarks.  

2.  Literature Review 

Financial applications of NNR models began to emerge in the late Eighties. It is outside 
the scope of this research to provide an exhaustive survey of all FX applications.  
However, a brief review of some of the material is presented. 

Bellgard and Goldschmidt (1999) examined the forecasting accuracy and trading 
performance of several traditional techniques, including random walk, exponential 
smoothing, and ARMA models with recurrent neural network (RNN) models2. The 
research was based on the Australian Dollar to US dollar (AUD/USD) exchange rate 
using half hourly data during 1996. They conclude that statistical forecasting accuracy 
measures do not have a direct bearing on profitability, and FX time series exhibit 
nonlinear patterns that are better exploited by neural network models. 

Tyree and Long (1995) disagree, finding the random walk model more effective than 
the NNR models examined. They argue that although price changes are not strictly 
random, in their case the US dollar to Deutsche Mark (USD/DEM) daily price changes 
from 1990 to 1994, from a forecasting perspective what little structure is actually 
present may well be too negligible to be of any use. They acknowledge that the random 
walk is unlikely to be the optimal forecasting technique. However, they do not assess 
the performance of the models financially. 

The USD/DEM daily price changes were also the focus for Refenes and Zaidi (1993).  
However they use the period 1984 to 1992, and take a different approach. They 
developed a hybrid system for managing exchange rates strategies. The idea was to 
use a neural network model to predict which of a portfolio of strategies is likely to 
perform best in the current context. The evaluation was based upon returns, and 
concludes that the hybrid system is superior to the traditional techniques of moving 
averages and mean-reverting processes. 

El Shazly and El Shazly (1997) examined the one month forecasting performance of a 
NNR model compared with the forward rate of the British pound (GBP), German Mark 
(DEM), and Japanese Yen (JPY) against a common currency, although they do not 
state which, using weekly data from 1988 to 1994. Evaluation was based on 
forecasting accuracy and in terms of correctly forecasting the direction of the exchange 

                                                
1 The EUR/USD exchange rate only exists from 4 January 1999: it was retropolated from 17 October 
1994 to 31 December 1998 and a synthetic EUR/USD series was created for that period using the fixed 
EUR/DEM conversion rate agreed in 1998, combined with the USD/DEM daily market rate. 
2 A brief discussion of RNN models is presented in Section 5. 
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rate. Essentially, they conclude that neural networks outperformed the forward rate 
both in terms of accuracy and correctness. 

Similar FX rates are the focus for Gençay (1999). He examined the predictability of 
daily spot exchange rates using four models applied to five currencies, namely the 
French Franc (FRF), DEM, JPY, Swiss Franc (CHF), and GBP against a common 
currency from 1973 to 1992. The models include random walk, GARCH(1,1), NNR 
models and nearest neighbours. The models are evaluated in terms of forecasting 
accuracy and correctness of sign. Essentially, he concludes that non-parametric 
models dominate parametric ones. Of the non-parametric models, nearest neighbours 
dominate NNR models. 

Yao et al. (1996) also analysed the predictability of the GBP, DEM, JPY, CHF, and 
AUD against the USD, from 1984 to 1995, but using weekly data. However, they take 
an ARMA model as a benchmark. Correctness of sign and trading performance were 
used to evaluate the models. They conclude that NNR models produce a higher 
correctness of sign, and consequently produce higher returns, than ARMA models.  In 
addition, they state that without the use of extensive market data or knowledge, useful 
predictions can be made and significant paper profit can be achieved. 

Yao et al. (1997) examine the ability to forecast the daily USD/CHF exchange rate 
using data from 1983 to 1995. To evaluate the performance of the NNR model, ‘buy 
and hold’ and ‘trend following’ strategies were used as benchmarks. Again, the 
performance was evaluated through correctness of sign and via a trading simulation.  
Essentially, compared with the two benchmarks, the NNR model performed better and 
produced greater paper profit. 

Carney and Cunningham (1996) used four datasets over the period 1979 to 1995 to 
examine the single-step and multi-step prediction of the weekly GBP/USD, daily 
GBP/USD, weekly DEM/SEK (Swedish Krona) and daily GBP/DEM exchange rates.  
The neural network models were benchmarked by a naïve forecast  and the evaluation 
was based on forecasting accuracy.  The results were mixed, but concluded that neural 
network models are useful techniques that can make sense of complex data that defies 
traditional analysis. 

A number of the successful forecasting claims using NNR models have been 
published. Unfortunately, some of the work suffers from inadequate documentation 
regarding methodology (El Shazly and El Shazly, 1997; Gençay, 1999). This makes it 
difficult to both replicate previous work and obtain an accurate assessment of just how 
well NNR modelling techniques perform in comparison to other forecasting techniques. 

Notwithstanding, it seems pertinent to evaluate the use of NNR models as an 
alternative to traditional forecasting techniques, with the intention to ascertain their 
potential added value to this specific application, namely forecasting the EUR/USD 
exchange rate. 

3. The Exchange Rate and Related Financial Data 
The FX market is perhaps the only market that is open 24 hours a day, seven days a 
week. The market opens in Australasia, followed by the Far East, the Middle East and 
Europe, and finally America. Upon the close of America, Australasia returns to the 
market and begins the next 24-hour cycle. The implication to forecasting applications is 
that in certain circumstances, because of time-zone differences, researchers should be 
mindful when considering which data and which subsequent time lags to include. 
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In any time series analysis it is critical that the data used is clean and error free since 
the learning of patterns is totally data-dependent. Also significant in the study of FX 
time series forecasting is the rate at which data from the market is sampled. The 
sampling frequency depends on the objectives of the researcher and the availability of 
data. For example, intraday time series can be extremely noisy and “a typical off-floor 
trader…would most likely use daily data if designing a neural network as a component 
of an overall trading system” (Kastra and Boyd, 1996:220). For these reasons the time 
series used in this paper are all daily closing data obtained from a historical database 
provided by Datastream. 

The investigation is based on the London daily closing prices for the EUR/USD 
exchange rate3. The obvious place to start selecting data, along with the EUR/USD, is 
with the other leading traded exchange rates. In addition, other related financial market 
data can be used, including stock market price indices, 3-month interest rates, 10-year 
benchmark bond yields, the price of Brent Crude oil, and the price of gold bullion. The 
price of commodities as represented by the CRB Index is also considered. The data 
obtained is presented in Table 1 along with their Datastream mnemonics. 

Table 1 - Data and Datastream mnemonics  

Number Variable Mnemonics 
1 FTSE 100 - PRICE INDEX FTSE100 
2 DAX 30 PERFORMANCE - PRICE INDEX DAXINDX 
3 S&P 500 COMPOSITE - PRICE INDEX S&PCOMP 
4 NIKKEI 225 STOCK AVERAGE - PRICE INDEX JAPDOWA 
5 FRANCE CAC 40 - PRICE INDEX FRCAC40 
6 MILAN MIB 30 - PRICE INDEX ITMIB30 
7 DJ EURO STOXX 50 - PRICE INDEX DJES50I 
8 US EURO-$ 3 MONTH (LDN:FT) - MIDDLE RATE ECUS$3M 
9 JAPAN EURO-$ 3 MONTH (LDN:FT) - MIDDLE RATE ECJAP3M 
10 EURO EURO-CURRENCY 3 MTH (LDN:FT) - MIDDLE RATE ECEUR3M 
11 GERMANY EURO-MARK 3 MTH (LDN:FT) - MIDDLE RATE ECWGM3M 
12 FRANCE EURO-FRANC 3 MTH (LDN:FT) - MIDDLE RATE ECFFR3M 
13 UK EURO-£ 3 MONTH (LDN:FT) - MIDDLE RATE ECUK£3M 
14 ITALY EURO-LIRE 3 MTH (LDN:FT) - MIDDLE RATE ECITL3M 
15 JAPAN BENCHMARK BOND -RYLD.10 YR (DS) - RED. YIELD JPBRYLD 
16 ECU BENCHMARK BOND 10 YR (DS)'DEAD' - RED. YIELD ECBRYLD 
17 GERMANY BENCHMARK BOND 10 YR (DS) - RED. YIELD BDBRYLD 
18 FRANCE BENCHMARK BOND 10 YR (DS) - RED. YIELD FRBRYLD 
19 UK BENCHMARK BOND 10 YR (DS) - RED. YIELD UKMBRYD 
20 US TREAS.BENCHMARK BOND 10 YR (DS) - RED. YIELD USBD10Y 
21 ITALY BENCHMARK BOND 10 YR (DS) - RED. YIELD ITBRYLD 
22 JAPANESE YEN TO US $ (WMR) - EXCHANGE RATE JAPAYE$ 
23 US $ TO UK £ (WMR) - EXCHANGE RATE USDOLLR 
24 US $ TO EURO (WMR) - EXCHANGE RATE USEURSP 
25 Brent Crude-Current Month,fob U$/BBL OILBREN 
26 GOLD BULLION $/TROY OUNCE GOLDBLN 
27 Bridge/CRB Commodity Futures Index - PRICE INDEX NYFECRB 

 
All the series span the period from 17 October 1994 to 3 July 2001, totalling 1749 
trading days. The data is divided into two periods: the first period runs from 17 October 
1994 to 18 May 2000 (1459 observations) used for model estimation and is classified 
                                                
3 EUR/USD is quoted as the number of USD per Euro: for example, a value of 1.2657 is USD1.2657 per 
Euro. The EUR/USD series for the period 1994-1998 was constructed as indicated in footnote 1. 
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in-sample, while the second period from 19 May 2000 to 3 July 2001 (290 
observations) is reserved for out-of-sample forecasting and evaluation. The division 
amounts to approximately 17% being retained for out-of-sample purposes. 

Over the review period there has been an overall appreciation of the USD against the 
Euro, as presented in Figure 1. The summary statistics of the EUR/USD for the 
examined period are presented in Table 2, highlighting slight skewness and low 
kurtosis. The indication is that the series requires some type of transformation. The use 
of data in levels in the FX market has many problems, “FX price movements are 
generally non-stationary and quite random in nature, and therefore not very suitable for 
learning purposes… Therefore for most neural network studies and analysis concerned 
with the FX market, price inputs are not a desirable set” (Mehta, 1995:191).  

Figure 1 - EUR/USD London daily closing prices (17 October 1994 to 3 July 2001) 

 
Table 2 - EUR/USD summary statistics (17 October 1994 to 3 July 2001) 

Minimum Mean Maximum Std. Dev. Skewness Kurtosis 
0.8287 1.117697 1.3470 0.136898 -0.329711 2.080124 

 
To overcome these problems, the EUR/USD series is transformed into rates of return.  
Given the price level P1, P2,…, Pt, the rate of return at time t is formed by: 

1
1

−







=

−t

t
t P

P
R  

An advantage of using a returns series is that it helps in making the time series 
stationary, a useful statistical property. 

Formal confirmation that the EUR/USD returns series is stationary is confirmed at the 
5% significance level by both the ADF and Phillips-Peron test statistics. 

Transformation into returns often creates a noisy time series. Formal confirmation 
through testing the significance of the autocorrelation coefficients reveals that the 
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series is white noise at the 95% confidence level. For such series the best predictor of 
a future value is zero. In addition, very noisy data often makes forecasting difficult. 

The EUR/USD returns summary statistics for the examined period are presented in 
Table 3. They reveal a slight skewness and high kurtosis, which “is common in high 
frequency financial time series data” (Gençay, 1999:94). 

Table 3 - EUR/USD returns summary statistics (17 October 1994 to 3 July 2001) 

Minimum Mean Maximum Std. Dev. Skewness Kurtosis 
-0.024898 -0.000214 0.033767 0.005735 0.434503 5.009624 

 
A further transformation includes the creation of interest rates yield curve series, 
generated by: 

ratesinterest month  3-yields bondbenchmark year  10=YC  

In addition, all of the time series are transformed into returns series in the manner 
described above to account for their non-stationarity. 

4.  Benchmark Models: Theory and Methodology 
The premise of this research is to examine the use of NNR models in EUR/USD 
forecasting and trading models. Their performance is compared with other traditional 
forecasting techniques to ascertain their potential added value as a forecasting tool.  
Such methods include ARMA modelling, logit estimation, moving average 
convergence/divergence (MACD) technical models and a naïve strategy. Except for the 
straightforward naïve strategy, all benchmark models were estimated on our in -sample 
period. As all of these methods are well documented in the literature, they are as a 
result simply outlined below.  

4.1  Naïve Strategy  

The naïve strategy assumes that the most recent period change is the best predictor of 
the future. The simplest model is defined by: 

tt YY =+1
ˆ  

where tY  is the actual rate of return at period t 

 1
ˆ

+tY  is the forecast rate of return for the next period 

The performance of the strategy is evaluated in terms of forecasting accuracy and in 
terms of trading performance via a simulated trading strategy. 

4.2  MACD Strategy 
Moving average methods are considered quick and inexpensive and as a result are 
routinely used in financial markets. The techniques use a weighted average of past 
observations to smooth short-term fluctuations. In essence, “a moving average is 
obtained by finding the mean for a specified set of values and then using it to forecast 
the next period” (Hanke and Reitsch, 1998:143). 

The MACD model is defined as: 

( )
n

YYYY
YM ntttt

tt
121

1

...ˆ +−−−
+

++++
==  
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where tM  is the moving average at time t 
n  is the number of terms in the moving average 

tY  is the actual level at period t 4 

1
ˆ

+tY  is the level forecast for the next period 

The MACD strategy used is quite simple. Two moving average series are created with 
different moving average lengths. The decision rule for taking positions in the market is 
straightforward. Positions are taken if the moving averages intersect. If the short-term 
moving average intersects the long-term moving average from below a ‘long’ position is 
taken. Conversely, if the long-term moving average is intersected from above a ‘short’ 
position is taken5. 

The forecaster must use judgement when determining the number of periods n on 
which to base the moving averages. The combination that performed best over the in-
sample period was retained for out-of-sample evaluation. The model selected was a 
combination of the EUR/USD and its 35-day moving average, namely n = 1 and 35 
respectively or a (1,35) combination. The performance of this strategy is evaluated 
solely in terms of trading performance. 

Several other ‘adequate’ models were produced and their performance evaluated. The 
trading performance of some of these combinations, such as the (1,40) and (1,60) 
combinations, and the (1,35) combination results were only marginally different. For 
example, the Sharpe ratio differs only by 0.02, and the average gain/loss ratio by 0.15. 
However, the (1,35) combination has the lowest maximum drawdown at –12.43% and 
lowest probability of a 10% loss at 4.95%6. On balance, the (1,35) combination was 
considered ‘best’ and therefore retained. 

4.3  ARMA Methodology 
ARMA models are particularly useful when information is limited to a single stationary 
series7, or when economic theory is not useful.  They are a “highly refined curve-fitting 
device that uses current and past values of the dependent variable to produce accurate 
short-term forecasts” (Hanke and Reitsch, 1998:407). 

The ARMA methodology does not assume any particular pattern in a time-series, but 
uses an iterative approach to identify a possible model from a general class of models.  
Once a tentative model has been selected, it is subjected to tests of adequacy. If the 
specified model is not satisfactory, the process is repeated using other models until a 
satisfactory model is found. Sometimes, it is possible that two or more models may 
approximate the series equally well, in this case the most parsimonious model should 
prevail. For a full discussion on the procedure refer to Box et al. (1994), Gouriéroux 
and Monfort (1995), Pindyck and Rubinfeld (1998). 

The ARMA model takes the form: 

qtqtttptpttt wwwYYYY −−−−−− −−−−+++++= εεεεφφφφ ...... 221122110  

                                                
4 In this strategy the EUR/USD levels series is used as opposed to the returns series. 
5 A ‘long’ EUR/USD position means buying Euros at the current price, while a ‘short’ position means 
selling Euros at the current price. 
6 A discussion of the statistical and trading performance measures used to evaluate the strategies is 
presented in Section 6. 
7 The general class of ARMA models is for stationary time-series. If the series is not stationary an 
appropriate transformation is required. 
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where tY  is the dependent variable at time t 

1−tY , 2−tY , and ptY −  are the lagged dependent variable 

0φ , 1φ , 2φ , and pφ  are regression coefficients 

tε  is the residual term 

1−tε , 2−tε , and pt−ε  are previous values of the residual 

1w , 2w , and qw  are weights 

Several ARMA specifications were tried out. In particular, an ARMA(4,4) model was 
estimated but was unsatisfactory as several coefficients were not significant at the 95% 
confidence level. However, once its non-significant AR(1) and MA(1) terms are 
removed all of the coefficients become significant at the 95% confidence level.  
Examination of the autocorrelation function of the error terms reveals that the residuals 
are random at the 95% confidence level and a further confirmation is given by the 
serial correlation LM test. 

The selected ARMA model takes the form: 

432432 7569.03519.01686.17489.03620.01510.10002.0 −−−−−− ++−−−+−= ttttttt YYYY εεε  

The model selected was retained for out-of-sample estimation. The performance of the 
strategy is evaluated in terms of traditional forecasting accuracy and in terms of trading 
performance. Several other adequate models were produced and their performance 
evaluated. For example, ARMA(5,5), and ARMA(10,10) models were produced to 
check for any ‘weekly’ effect. None performed better, consequently the model selected 
was retained. Ultimately, we picked the model with the best in-sample trading 
performance and that satisfied the usual statistical tests. 

4.4  Logit Estimation 

The logit model belongs to a group of models termed classification models. They are a 
multivariate statistical technique used to estimate the probability of an upward or 
downward movement in a variable. As a result they are well suited to rates of return 
applications where a recommendation for trading is required. For a full discussion of 
the procedure refer to Thomas (1997), Pesaran and Pesaran (1997) or Maddala 
(2001). 

The approach assumes the following regression model: 

ttppttt XXXY εββββ +++++= ,,22,110
* ...  

where *
tY  is the dependent variable at time t 

tX ,1 , tX ,2 , and tpX ,  are the explanatory variables at time t 

0β , 1β , 2β , and pβ  are the regression coefficients 

tε  is the residual term 

However, *
tY  is not directly observed; what is observed is a dummy variable tY  defined 

by 





=
0

1
tY  

if *
tY  > 0 

otherwise 
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Therefore, the model requires a transformation of the explanatory variable, namely the 
EUR/USD returns series into a binary series. The procedure is quite simple: a binary 
variable equal to one is produced if the return is positive, and a zero otherwise. The 
same transformation for the explanatory variables, although not necessary, was 
performed for homogeneity reasons. 

A basic regression technique is used to produce the logit model.  The idea is to start 
with a model containing several variables, including lagged dependent terms, then 
through a series of tests the model is modified. 

The selected logit model takes the form: 

tttttttt XXXXXXY ε+++= 654321
* 0.3937-0.3692-0.25250.28620.2872-0.3613-0.2492  

where tX 1 ,…, tX 6  are the JP_yc(-2), UK_yc(-9), JAPDOWA(-1), ITMIB30(-19), 
JAPAYE$(-10), and OILBREN(-1) binary explanatory variables, respectively 
(Datastream mnemonics as mentioned in Table 1, yield curves, and lags in 
brackets are used to save space). 

All of the coefficients in the model are significant at the 95% confidence level. The 
overall significance of the model is tested using the likelihood ratio (LR) test.  The null 
hypothesis that all the coefficients except the constant are not significantly different 
from zero is rejected at the 95% confidence level. 

To justify the use of Japanese variables, which seems difficult from an economic 
perspective, the joint overall significance of this subset of variables is tested using the 
LR test for redundant variables. The null hypothesis that these coefficients, except the 
constant, are not jointly significantly different from zero is rejected at the 95% 
confidence level. In addition, a model that did not include the Japanese variables, but 
otherwise identical, was produced and the trading performance evaluated. The Sharpe 
ratio, average gain/loss ratio and correct directional change were 1.33, 1.01, and 
54.31% respectively. The corresponding values for the selected model were 2.27, 1.01, 
and 58.19%. 

The model selected was retained for out-of-sample estimation. The forecasts produced 
range between zero and one, requiring transformation into a binary series. Again, the 
procedure is quite simple: a binary variable equal to one is produced if the forecast is 
greater than 0.5, and a zero otherwise. 

The performance of the strategy is evaluated solely in terms of trading performance.  
Several other adequate models were produced and their performance evaluated.  
None performed better in-sample, therefore the above model was retained. 

5.  Neural Network Models: Theory and Methodology 
Neural networks require few a priori assumptions about the model under study, as a 
result they are well suited to problems where economic theory is of little use. In 
addition, neural networks are universal approximators capable of approximating any 
continuous function (Hornik et al., 1989). 

Many researchers are confronted with problems where important nonlinearities exist 
between the independent variables and the dependent variable. Often, in such 
circumstances, traditional forecasting methods lack explanatory power. Recently, 
nonlinear models have attempted to cover this shortfall. In particular, NNR models 
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have been applied with increasing success to financial markets, which often contain 
nonlineraties (Dunis and Jalilov, 2001). 

Theoretically, the advantage of NNR models over traditional forecasting methods is 
because, as is often the case, the model best adapted to a particular problem cannot 
be identified. It is then better to resort to method that is a generalisation of many 
models, than to rely on an a priori models (Dunis and Huang, 2001). 

However, NNR models have been criticized and their widespread success has been 
hindered because of their black-box nature, excessive training times, danger of 
overfitting, and the large number of ‘parameters’ required for training. As a result, 
deciding on the appropriate network involves much trial and error. 

For a full discussion on neural networks, please refer to Haykin (1999), Kaastra and 
Boyd (1996), Kingdon (1997), and Zhang et al. (1998).  Notwithstanding, we give below 
a brief description of NNR models and procedures. 

5.1  Neural Network Models 

A neural network is typically organised into several layers of nodes. The first layer is 
the input layer, the number of nodes corresponding to the number of variables, and the 
last layer is the output layer, the number of nodes corresponding to the forecasting 
horizon for a forecasting problem8. The input and output layer can be separated by one 
or more hidden layers9. The nodes in adjacent layers are fully connected.  Each neuron 
receives information from the preceding layer and transmits to the following layer 
only10. The neuron performs a weighted summation of its inputs; if the sum passes a 
threshold the neuron transmits, otherwise it remains inactive. In addition, a bias neuron 
may be connected to each neuron in the hidden and output layers. The bias has a 
value of positive one and is analogous to the intercept in regression models.  An 
example of a fully connected NNR model with one hidden layer and two nodes is 
presented in Figure 2. 

Figure 2 - A single output fully connected NNR model 
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8 Linear regression models may be viewed analogous to neural networks with no hidden layers (Kaastra 
and Boyd, 1996).   
9 Networks with hidden layers are multilayer networks; a multilayer perceptron network is used in this 
research. 
10 If the flow of information through the network is from the input to the output, it is known as 
‘feedforward'. 
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where ][i
tx  ( )5,,2,1 L=i  are the NNR model inputs at time t 

][ j
th  ( )2,1=j  are the hidden nodes outputs 

ty  and ty~  are the actual value and NNR model output, respectively 

The vector ),,,( ][]2[]1[ nxxxA L=  represents the input to the NNR model where ][i
tx  is the 

level of activity of the ith input.  Associated with the input vector is a series of weight 
vectors ),,,( 21 njjjj wwwW L=  so that ijw  represents the strength of the connection 

between the input ][i
tx  and the processing unit jb . There may also be the input bias jϕ  

modulated with the weight jw0  associated with the inputs. The total input of the node 

jb  is the dot product between vectors A  and jW , less the weighted bias. It is then 

passed through a nonlinear activation function to produce the output value of 
processing unit jb : 

( )j

n

i
jjij

i
j Xfwwxfb =








−= ∑

=1
0

][ ϕ  

Typically, the activation function takes the form of the logistic function, which 
introduces a degree of nonlinearity to the model and prevents outputs from reaching 
very large values that can ‘paralyse’ NNR models and inhibit training (Kaastra and 
Boyd, 1996; Zhang et al., 1998). This research uses the logistic function: 

( )
Xjj e

Xf
−+

=
1

1
 

The modelling process begins by assigning random values to the weights. The output 
value of the processing unit is passed on to the output layer. If the output is optimal, 
the process is halted, if not, the weights are adjusted and the process continues until 
an optimal solution is found. The output error, namely the difference between the 
actual value and the NNR model output, is the optimisation criterion. Commonly, the 
criterion is the root mean squared error (RMSE). The RMSE is systematically 
minimised through the adjustment of the weights. Basically, training is the process of 
determining the optimal solutions network weights, as they represent the knowledge 
learned by the network. Since inadequacies in the output are fed back through the 
network to adjust the network weights, the NNR model is trained by backpropagation11 
(Shapiro, 2000). 

A common practice is to divide the time-series into three sets called the training, test 
and validation (out-of-sample) sets, and to partition them roughly 2/3, 

1/6, and 1/6 
respectively. The testing set is used to evaluate the generalisation ability of the 
network. The technique consists of tracking the error on the training and test sets. 
Typically, the error on the training set continually decreases, however the test set error 
starts by decreasing and then begins to increase. From this point the network has 
stopped learning the similarities between the training and test sets, and has started to 
learn meaningless differences, namely the noise within the training data. For good 
generalisation ability, training should stop when the test set error reaches its lowest 

                                                
11 Backpropagation networks are the most common multilayer network and are the most used type in 
financial time series forecasting (Kaastra and Boyd, 1996). We exclusively use them in this research. 
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point. The stopping rule reduces the likelihood of overfitting, i.e. that the network will 
become overtrained (Mehta, 1995; Dunis and Huang, 2001). 

An evaluation of the performance of the trained network is made on new examples not 
used in network selection, namely the validation set. Crucially, the validation set should 
never be used to discriminate between networks, as any set that is used to choose the 
best network is, by definition, a test set. In addition, good generalisation ability requires 
that the training and test sets are representative of the population, inappropriate 
selection will affect the network generalisation ability and forecast performance 
(Kaastra and Boyd, 1996; Zhang et al., 1998). 

5.2  Issues in Neural Network Modelling 

Despite the satisfactory features of NNR models, the process of building them should 
not be taken lightly. There are many issues that can affect the networks performance 
and should be considered carefully. 

The issue of finding the most parsimonious model is always a problem for statistical 
methods and particularly important for NNR models because of the problem of 
overfitting. Parsimonious models not only have the recognition ability but the more 
important generalisation ability. Overfitting and generalisation are always going to be a 
problem for real-world situations, this is particularly true for financial applications where 
time-series may well be quasi-random, or at least contain noise. 

One of the most commonly used heuristics to ensure good generalisation is the 
application of some form of Occam’s Razor. The principle states, “unnecessary 
complex models should not be preferred to simpler ones.  However…more complex 
models always fit the data better” (Kingdon, 1997:49). The two objectives are, of 
course, contradictory. The solution is to find a model with the smallest possible 
complexity, and yet can still describe the data set (Kingdon, 1997; Haykin, 1999). 

A reasonable strategy in designing NNR models is to start with one layer containing a 
few hidden nodes, and increase the complexity while monitoring the generalisation 
ability. The issue of determining the optimal number of layers and hidden nodes is a 
crucial factor for good network design, as the hidden nodes provide the ability to 
generalise. However, in most situations there is no way to determine the best number 
of hidden nodes without training several networks. Several rules of thumb have been 
proposed to aid the process, however none work well for all applications.  
Notwithstanding, simplicity must be the aim (Mehta, 1995). 

Since NNR models are pattern matchers, the representation of data is critical for a 
successful network design. The raw data for the input and output variables are rarely 
fed into the network, they are generally scaled between the upper and lower bounds of 
the activation function. For the logistic function the range is [0, 1], avoiding the 
functions saturation zones. Practically, as in this research, a normalisation [0.2, 0.8] is 
often used with the logistic function, as its limits are only reached for infinite input 
values (Zhang et al., 1998). 

Crucial for backpropagation learning is the learning rate of the network as it determines 
the size of the weight changes. Smaller learning rates slow the learning process, while 
larger rates cause the error function to change wildly without continuously improving.  
To improve the process a momentum parameter is used which allows for larger 
learning rates. The parameter determines how past weight changes affect current 
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weight changes, by making the next weight change in approximately the same 
direction as the previous one12 (Kaastra and Boyd, 1996; Zhang et al., 1998). 

5.3  Neural Network Modelling Procedure 

Conforming to standard heuristics, the training, test and validation sets were partitioned 
approximately 2/3, 

1/6, and 1/6 respectively. The training set runs from 17 October 1994 
to 8 April 1999 (1169 observations), the test set runs from 9 April 1999 to 18 May 2000 
(290 observations) and the validation set runs from 19 May 2000 to 3 July 2001 (290 
observations), reserved for out-of-sample forecasting and evaluation, identical to the 
out-of-sample period for the benchmark models. 

To start, traditional linear cross-correlation analysis helped establish the existence of a 
relationship between EUR/USD returns and potential explanatory variables. Although 
NNR models attempt to map nonlinearities, linear cross-correlation analysis can give 
some indication of which variables to include in a model, or at least a starting point to 
the analysis (Diekmann and Gutjahr, 1998, Dunis and Huang, 2001). 

The analysis was performed for all potential explanatory variables. Lagged terms that 
were most significant as determined via the cross-correlation analysis are presented in 
Table 4. 

Table 4 - Most significant lag of each potential explanatory variable (in returns) 

Variable Best Lag 
DAXINDX 10 
DJES50I 10 

DMARKE$ 16 
FRCAC40 10 
FTSE100 5 
GOLDBLN 19 

ITMIB 9 
JAPAYE$ 10 
OILBREN 1 
SPCOMP 1 
USDOLLR 12 

BD_yc 19 
EC_yc 2 
FR_yc 9 
IT_yc 2 
JP_yc 6 
UK_yc 19 
US_yc 1 

NYFECRB 20 

 
The lagged terms SPCOMP(-1) and US_yc(-1) could not be used because of time-
zone differences between London and the US, as discussed at the beginning of 
Section 3. As an initial substitute SPCOMP(-2) and US_yc(-2) were used. In addition, 
various lagged terms of the EUR/USD returns were included as explanatory variables. 

Variable selection was achieved via a forward stepwise NNR procedure, namely 
potential explanatory variables were progressively added to the network. If adding a 
new variable improved the level of explained variance over the previous ‘best’ network, 
                                                
12 The problem of convergence did not occur within this research, as a result a learning rate of 0.1 and 
momentum of zero were exclusively used. 
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the pool of explanatory variables was updated. Since the aim of the model building 
procedure is to build a model with good generalisation ability, a model that has a higher 
level of explained variance has a better ability. In addition, a good measure of this 
ability is to compare the level of explained variance of the test and validation sets: if the 
test set and validation set levels are similar the model has been built to generalise well. 

The decision to use explained variance is because EUR/USD returns is a stationary 
series and stationarity remains important if NNR models are assessed on the level of 
explained variance (Dunis and Huang, 2001). The level of explained variance for the 
training, test and validation sets of the selected model are presented in Table 5. 

Table 5 - NNR model explained variance for the training, test, and validation sets 

Training Set Test Set Validation Set 
3.4% 2.3% 2.2% 

 
If after several attempts there was failure to improve on the previous ‘best’ model, 
variables in the model were alternated in an attempt to find a better combination. This 
procedure recognises the likelihood that some variables may only be relevant 
predictors when in combination with certain other variables. 

Once a tentative model is selected, post-training weights analysis helps establish the 
importance of the explanatory variables. The idea is to find a measure of the 
contribution a given weight has to the overall output of the network, in essence allowing 
detection of insignificant variables. Such analysis includes an examination of the 
weight matrix within the network. The principle is to include in the network variables 
that are strongly significant. In addition, a small bias weight is preferred. The weight 
matrix of the selected model suggests that the explanatory variables are strongly 
significant. The input to hidden layer weight matrix of the final model is presented in 
Appendix 1. 

The selected model contained the returns of the explanatory variables presented in 
Table 6, having one hidden layer containing five hidden nodes. 

Table 6 – NNR model explanatory variables (in returns) 

Variable Lag 
GOLDBLN 19 
JAPAYE$ 10 

JAPDOWA 15 
OILBREN 1 
USDOLLR 12 

FR_yc 2 
IT_yc 6 
JP_yc 9 

JAPAYE$ 1 
JAPDOWA 1 

 
Here again, to justify the use of the Japanese variables a further model that did not 
include these variables, but otherwise identical, was produced and the performance 
evaluated. The levels of explained variance for the training and test sets of this further 
model were 1.4 and 0.6 respectively, which are much lower than the selected model. 
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The model selected was retained for out-of-sample estimation. The performance of the 
strategy is evaluated in terms of traditional forecasting accuracy and in terms of trading 
performance. 

Several other adequate models were produced and their performance evaluated, 
including recurrent neural network (RNN) models13. In essence, the only difference 
from NNR models is the addition of a loop back from a hidden or the output layer, to 
the input layer. The loop back is then used as an input in the next period. There is no 
theoretical or empirical answer to whether the hidden layer or the output should be 
looped back. However, the looping back of either allows RNN models to keep the 
memory of the past14, a useful property in forecasting applications. However, this 
feature comes at a cost, as RNN models require more connections, raising the issue of 
complexity.  Since simplicity is the aim, a less complex model that can still describe the 
data set is preferred. 

The statistical forecasting accuracy results of the NNR model and the RNN model were 
only marginally different, namely the mean absolute percentage error (MAPE) differs 
by 0.06%, and the Theil's Inequality Coefficient by 0.0002.  However, the results in 
terms of trading performance were identical. 

The decision to retain the NNR model over its RNN counterpart is because the RNN 
model is more complex and yet does not possess any decisive added value over the 
simpler model. 

6.  Forecasting Accuracy and Trading Simulation 

To compare the performance of the strategies, it is necessary to evaluate them on 
previously unseen data. This situation is likely to be the closest to a true forecasting or 
trading situation. To achieve this, all models retained an identical out-of-sample period 
allowing a direct comparison of their forecasting accuracy and trading performance. 

6.1  Out-of-Sample Forecasting Accuracy Measures 
Several criteria are used to make comparisons between the forecasting ability of the 
benchmark and NNR models, including mean absolute error (MAE), root mean squared 
error (RMSE)15, mean absolute percentage error (MAPE) and Theil’s inequality 
coefficient (Theil-U)16. For a full discussion on these measures, refer to Hanke and 
Reitsch (1998), and Pindyck and Rubinfeld (1998). We also include correct directional 
change (CDC) which measures the capacity of a model to correctly predict the 
subsequent actual change of a forecast variable. The statistical performance measures 
used to analyse the forecasting techniques are presented in Appendix 2. 

6.2  Out-of-sample Trading Performance Measures 
Statistical performance measures are often inappropriate for financial applications.  
Typically, modelling techniques are optimised using a mathematical criterion, but 
ultimately the results are analysed on a financial criterion upon which it is not 
optimised. In other words, the forecast error may have been minimised during model 

                                                
13 For a discussion on recurrent neural network models refer to Dunis and Huang (2001).   
14 The looping back of the output layer is an error feedback mechanism, implying the use of a nonlinear 
error-correction model (Dunis and Huang, 2001). 
15 The MAE and RMSE statistics are scale-dependent measures but allow a comparison between the 
actual and forecasts values, the lower the values the better the forecasting accuracy. 
16 When it is more important to evaluate the forecast errors independently of the scale of the variables, 
the MAPE and Theil-U are used. They are constructed to lie within [0,1], zero indicating a perfect fit. 
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estimation, but the evaluation of the true merit should be based on the performance of 
a trading strategy. Without actual trading, the best means of evaluating performance is 
via a simulated trading strategy. The procedure to create the buy and sell signals is 
quite simple: a EUR/USD buy signal is produced if the forecast is positive, and a sell 
otherwise17. 

For many traders and analysts market direction is more important than the value of the 
forecast itself, as in financial markets money can be made simply by knowing the 
direction the series will move. In essence, “low forecast errors and trading profits are 
not synonymous since a single large trade forecasted incorrectly … could have 
accounted for most of the trading system’s profits” (Kaastra and Boyd, 1996:229). 

The trading performance measures used to analyse the forecasting techniques are 
presented in Appendix 3. Some of the more important measures include the Sharpe 
ratio, maximum drawdown and average gain/loss ratio. The Sharpe ratio is a risk-
adjusted measure of return, with higher ratios preferred to those that are lower, the 
maximum drawdown is a measure of downside risk and the average gain/loss ratio is a 
measure of overall gain, a value above one being preferred (Fernandez-Rodriguez et 
al., 2000; Dunis and Jalilov, 2001). 

The application of these measures may be a better standard for determining the quality 
of the forecasts. After all, the financial gain from a given strategy depends on trading 
performance, not on forecast accuracy. 

6.3  Out-of-Sample Forecasting Accuracy Results 

The forecasting accuracy statistics do not provide very conclusive results, unless one 
includes the CDC measure. Each of the models evaluated are nominated ‘best’ at least 
once. Interestingly, the naïve model has the lowest Theil -U statistic at 0.69; if this 
model is believed to be the ‘best’ model there is likely to be no added value using more 
complicated forecasting techniques. The ARMA model has the lowest MAPE statistic at 
99.80%. The NNR model has the lowest MAE and RMSE statistics, however the values 
are only marginally less than the ARMA model. It is really the CDC measure that 
singles out the NNR model as ‘best’ performer, predicting most accurately 57.24% of 
the time. A majority decision rule would therefore select the NNR model as the overall 
‘best’ model. A comparison of the forecasting accuracy results is presented in Table 7. 

Table 7 - Forecasting accuracy results18 

  Naïve  MACD ARMA Logit NNR 
Mean Absolute Error 0.0080 - 0.0057 - 0.0056 
Mean Absolute Percentage Error 315.67% - 99.80% - 107.38% 
Root Mean Squared Error 0.0102 - 0.0074 - 0.0073 
Theil's Inequality Coefficient 0.6900 - 0.9452 - 0.8788 

 Correct Directional Change 55.86% 28.57% 52.76% 53.79% 57.24% 

 
6.4  Out-of-Sample Trading Performance Results 
A comparison of the trading performance results is presented in Table 8. The results of 
the NNR model are quite impressive. It generally outperforms the benchmark 

                                                
17 A buy signal is to buy Euros at the current price or continue holding Euros, while a sell signal is to sell 
Euros at the current price or continue holding US dollars. 
18 As the MACD model is not based on forecasting the next period and binary variables are used in the 
logit model, statistical accuracy comparisons with these models were not always possible. 
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strategies, both in terms of overall profitability with annualised return of 29.68%, and in 
terms of risk-adjusted performance with a Sharpe ratio 2.57. The downside risk as 
measured by the probability of a 10% loss is the lowest at 0.09%; however the logit 
model has the lowest downside risk as measured by maximum drawdown at -5.79%. 

Table 8 - Trading performance results 

  Naïve  MACD ARMA Logit NNR 

Annualised Return 21.34% 15.25% 4.99% 21.05% 29.68% 
Cumulative Return 24.56% 17.55% 5.74% 24.22% 34.16% 
Annualised Volatility 11.64% 11.70% 11.71% 11.64% 11.56% 
Sharpe Ratio 1.83 1.30 0.43 1.81 2.57 
Maximum Daily Profit 3.38% 1.84% 3.38% 1.88% 3.38% 
Maximum Daily Loss -2.10% -3.23% -2.10% -3.38% -1.82% 
Maximum Drawdown -9.06% -6.12% -10.66% -5.79% -9.12% 
% Winning Trades 55.86% 28.57% 52.76% 53.79% 57.24% 
% Losing Trades 44.14% 71.43% 47.24% 46.21% 42.76% 
Number of Up Periods 162 4 153 156 166 
Number of Down Periods 126 10 135 132 122 
Number of Transactions 127 15 53 141 136 
Total Trading Days 290 290 290 290 290 
Avg Gain in Up Periods 0.58% 6.31% 0.56% 0.61% 0.60% 
Avg Loss in Down Periods -0.56% -0.77% -0.59% -0.53% -0.54% 
Avg Gain/Loss Ratio 1.05 8.19 0.95 1.14 1.12 
Probability of 10% Loss 0.70% 10.81% 38.39% 0.76% 0.09% 
Profits T-statistics 76.50 54.39 7.25 30.79 43.71 

Number of Periods Daily returns Rise 128 128 128 128 128 
Number of Periods Daily returns Fall  162 162 162 162 162 
Number of Winning up Periods 65 - 40 49 52 
Number of Winning down Periods 97 - 113 106 114 
% Winning up Periods 50.78% - 31.25% 38.28% 40.63% 
% Winning down Periods 59.88% - 69.75% 65.43% 70.37% 

 
The NNR model predicted the highest number of winning down periods at 114. The 
naïve model forecast the highest number of winning up periods at 65, however the 
NNR model was ‘second best’ for this measure. Interestingly, all models were more 
successful at forecasting a fall in the EUR/USD returns series, as indicated by a greater 
percentage of winning down periods to winning up periods. 

The NNR model has the highest number of transactions at 136, while the MACD 
strategy has the lowest at 15. In essence, the MACD strategy has longer ‘holding’ 
periods compared to the other models, suggesting that the MACD strategy is not 
compared ‘like with like’ to the other models. In addition, the MACD strategy has the 
highest average gain/loss ratio at 8.19, but again this value cannot be compared ‘like 
with like’ to the other models. 

As with statistical performance measures, financial criteria clearly single out the NNR 
model as the one with the most consistent performance: it is therefore considered the 
‘best’ model for this particular application. 

6.5  Transaction Costs 

So far, our results have been presented without accounting for transaction costs during 
the trading simulation. However, it is not realistic to account for the success or 
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otherwise of a trading system unless transactions costs are taken into account. 
Between market makers, a cost of 3 pips (0.0003 EUR/USD) per trade (one way) for a 
tradable amount, typically USD 5-10 million, would be normal. The NNR model had the 
highest number of transactions at 136. The procedure to approximate the transaction 
costs for the NNR model is quite simple. A cost of 3 pips per trade and an average out-
of-sample EUR/USD 0.8971 value produce an average cost of 0.033% per trade. Since 
the EUR/USD time series is a series of bid rates, the approximate out-of-sample 
transactions costs for the NNR model trading strategy is about 2.27%, namely 
0.033%*(136/2). Therefore, even accounting for transaction costs, the extra returns 
achieved with the NNR model still make this strategy the most attractive one despite its 
relatively high trading frequency. 

7.  Concluding Remarks 
This research has evaluated the use of NNR models in forecasting and trading the 
EUR/USD exchange rate. The performance was measured statistically and financially 
via a trading simulation taking into account the impact of transaction costs on models 
with higher trading frequencies. The logic behind the trading simulation is, if profit from 
a trading simulation is compared solely on the basis of statistical measures, the 
optimum model from a financial perspective would rarely be chosen.  

The NNR model was benchmarked against traditional forecasting techniques to 
determine any added value to the forecasting process. Having constructed a synthetic 
EUR/USD series for the period up to 4 January 1999, the models were developed 
using the same in-sample data, 17 October 1994 to 18 May 2000, leaving the 
remaining period, 19 May 2000 to 3 July 2001, for out-of-sample forecasting. 

Forecasting techniques rely on the weaknesses of the efficient market hypothesis, 
acknowledging the existence of market inefficiencies, with markets displaying even 
weak signs of predictability. However, FX markets are relatively efficient, reducing the 
scope of a profitable strategy. Consequently, the FX managed futures industry average 
Sharpe ratio is only 0.8, although a percentage of winning trades greater than 60% is 
often required to run a profitable FX trading desk (Grabbe, 1996). In this respect, it is 
worth noting that all our models failed to reach a 60% accuracy of winning trades, the 
highest of which was the NNR model at 57.24%. Nevertheless, all but one of the 
models examined in this research achieved an out-of-sample Sharpe ratio higher than 
0.8, the highest of which was again the NNR model at 2.57. This seems to confirm that 
the use of quantitative trading is more appropriate in a fund management than in a 
treasury type of context.  

Forecasting techniques are dependent on the quality and nature of the data used. If the 
solution to a problem is not within the data, then no technique can extract it. In addition, 
sufficient information should be contained within the in-sample period to be 
representative of all cases within the out-of-sample period. For example, a downward 
trending series typically has more falls represented in the data than rises. The 
EUR/USD is such a series within the in-sample period. Consequently, the forecasting 
techniques used are estimated using more negative values than positive values. The 
probable implication is that the models are more likely to successfully forecast a fall in 
the EUR/USD, as indicated by our results, with all models forecasting a higher 
percentage of winning down periods than winning up periods. However, the naïve 
model does not learn to generalise per se, and as a result has the smallest difference 
between the number of winning up to winning down periods. 
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Overall our results confirm the credibility and potential of NNR models as a forecasting 
technique. However, while NNR models offer a promising alternative to traditional 
techniques, they suffer from a number of limitations. One of the major disadvantages is 
the inability to explain their reasoning. In addition, statistical inference techniques such 
as significance testing cannot always be applied, resulting in a reliance on a heuristic 
approach. The complexity of NNR models suggests that they are capable of superior 
forecasts, as shown in this research, however this is not always the case. They are 
essentially nonlinear techniques and may be less capable in linear applications than 
traditional forecasting techniques (Campbell et al., 1997; Balkin and Ord, 2000; Lisboa 
and Vellido, 2000). 

Further investigation into RNN models is possible, or into combining forecasts. Many 
researchers agree that individual forecasting methods are misspecified in some 
manner, suggesting that combining multiple forecasts leads to increased forecast 
accuracy (Dunis and Huang, 2001). However, initial investigations proved 
unsuccessful, with the NNR model remaining the ‘best’ model. Two simple model 
combinations were examined, a simple averaging of the ARMA, naïve and NNR model 
forecasts, and a regression-type combined forecast using the ARMA, logit and NNR 
model. (For a full discussion on the procedures, refer to Clemen (1989), Granger and 
Ramanathan (1984) and Hashem (1997)). The lack of success using the combination 
models was undoubtedly because the performance of the benchmark models was so 
much weaker than that of the NNR model: it is unlikely that combining relatively ‘poor’ 
models with an otherwise ‘good’ one will outperform the ‘good’ model alone. 

Overall, despite the limitations and potential improvements mentioned above, our 
results strongly suggest that NNR models can add value to the forecasting process, 
and that, for the EUR/USD exchange rate and the period considered, NNR models 
outperform the more traditional modelling techniques analysed in this paper. 
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Appendix 1 - The input to hidden layer weight matrix 

 

GOLD 
BLN 
(-19) 

JAPAY 
E$ 

(-10) 

JAP 
DOWA 
(-15) 

OIL 
BREN 

(-1) 

 US 
DOLLR 

(-12) 
FR_yc 

(-2) 
 IT_yc 

(-6) 
JP_yc 

(-9) 

JAPAY 
E$ 
(-1) 

JAP 
DOWA 

(-1) Bias 
C[1,0] 0.2316 -0.2120 -0.4336 -0.4579 -0.2621 -0.3911 0.2408 0.4295 0.4067 0.4403 -0.0824 
C[1,1] 0.4016 -0.1752 -0.3589 -0.5474 -0.3663 -0.4623 0.2438 0.2786 0.2757 0.4831 -0.0225 
C[1,2] 0.2490 -0.3037 -0.4462 -0.5139 -0.2506 -0.3491 0.2900 0.3634 0.2737 0.4132 -0.0088 
C[1,3] 0.3382 -0.3588 -0.4089 -0.5446 -0.2730 -0.4531 0.2555 0.4661 0.4153 0.5245 0.0373 
C[1,4] 0.3338 -0.3283 -0.4086 -0.6108 -0.2362 -0.4828 0.3088 0.4192 0.4254 0.4779 -0.0447 

 
Appendix 2 - Statistical performance measures 
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Appendix 3 - Trading simulation performance measures 

Performance Measure Description 
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Winning up Periods (%) WUT=100*(NWU/NPR)  

Winning down Periods (%) WDT=100*(NWD/NPF) 
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Appendix 3 - Trading simulation performance measures (continued) 

Performance Measure Description 
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2
*

1
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*252σ  

Sharpe Ratio 
A

AR
SR

σ
=  

Maximum Daily Profit Maximum value of tR  over the period 

Maximum Daily Loss Minimum value of tR  over the period 

Maximum Drawdown 

Maximum negative value of ( )∑ TR̂  over the period 
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






= ∑

=
==

t
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XMinMD
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% Winning Trades WT=100*(Number of tR >0)/Total number of trades 

% Losing Trades LT=100*(Number of tR <0)/Total number of trades 

Number of Up Periods Nup= Number of tR >0 

Number of Down Periods Ndown= Number of tR <0 

Number of Transactions ∑
=

=
N

t
tLNT

1

 where, 1=tL  if 0~*~
1 <−tt yy  else 0=tL  

Total Trading Days Number of all tR s 

Avg Gain in Up Periods AG=(Sum of all tR >0)/Nup 

Avg Loss in Down Periods AL=(Sum of all tR <0)/Ndown 

Avg Gain/Loss Ratio GL=AG/AL 

Probability of 10% Loss 

( ) 








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where, 
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













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










+

+
+=

22 **

**
1*5.0

ALLTAGWT

ALLTAGWT
P  

MaxRisk is the risk level defined by the user; this research, 10% 

Profits T-statistics T-statistics=
A

AR
N

σ
*  

 
(Dunis and Jalilov, 2001) 
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