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Fluctuation patterns in high-frequency financial asset returns
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Abstract – We introduce a new method for quantifying pattern-based complex short-time
correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for
a random walk time series. When we apply this method to high-frequency time series data of the
German DAX future, we find clear correlations on short time scales. In order to subtract trivial
autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the
antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity
of this stochastic process from the original data, remaining pattern-based correlations can be
observed.

Copyright c© EPLA, 2008

Introduction. – Often the assumption is made
that price dynamics of financial markets obey random
walk statistics. However, real financial time series show
deviations from this assumption [1–5], like fat-tailed price
increment distributions [6–8]. Scaling behavior, short-
time anti-correlated price changes and volatility cluster-
ing [9,10] are also well known and can be reproduced,
e.g., by a statistical model of the continuous double
auction [11,12] or by various agent-based models [13–21].
Both price formation processes and cross correla-
tions [22,23] between different stocks and indices have been
studied with the intention to optimize asset allocation
and portfolios. It is also known that stock markets display
a reversion tendency after large price movements [24,25].
The rise of hedge fund industry in recent years and their
interest in taking advantage of short-time correlations
also boosted the analysis of the market microstructure,
which is the study of the process of exchanging assets
under explicit trading rules [26], and which is naturally
studied and modeled intensively by the financial commu-
nity [27–31] in order to minimize order execution costs.
In this letter, we study autocorrelations of financial

market data in the anti-persistent short-time regime.
For this purpose we analyze the randomness of financial
markets employing specific conditional probability distri-
bution functions, which reflect the main market response
on given price impacts. According to common wisdom, the

(a)E-mail: preis@uni-mainz.de

anti-persistence on short time scales is due to the bid ask
bounce. In order to account for this effect, we introduce a
simple stochastic model, in which the price is the sum of
a random walk part and a second part describing the bid
ask bounce. We show that beyond the correlations which
are due to the bid ask bounce there are correlations in the
fluctuation patterns, which we will call “complex correla-
tions” in the following. In order to identify such complex
correlations, we introduce a new method for quantifying
pattern-based correlations of a time series on short time
scales.

Reproduction of the scaling behavior on short
time scales. – Scientific market modeling can only be
based on price time series, which are the outcome of the
trading decisions of the market participants comprising
the “many particle system” of a financial market. The
following analysis is based on historic price time series of
the German DAX future contract (FDAX) traded at the
European Exchange (EUREX), which is one of the world’s
largest derivatives exchanges. The time series, which is
displayed in the inset of fig. 1, contains 2709952 trades
recorded from 2 January 2007 to 16 March 2007.
A future contract is a contract to buy or sell a proposed

underlying asset —in this case the German DAX index—
at a specific date in the future at a specified price. The
time series analysis of futures has the advantage that the
prices are created by trading decisions alone. Contrarily,
stock index data are derived from a weighted summation
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Fig. 1: (Color online) Hurst exponent H(∆t) [32–35] in depen-
dence of time lag ∆t calculated by the relationship 〈|p(t+
∆t)− p(t)|q〉1/q ∝∆tHq(∆t), with q= 2 for the FDAX time
series. Also shown is the Hurst Exponent for a synthetic anti-
correlated random walk p∗γ(t) (ACRW) for various values of the
random walk control parameter γ. The optimal value γ = 0.16
is found by fitting the ∆t= 1 anti-correlation of the price time
series to the one of the ACRW. Then, also the time lag depen-
dence of the Hurst exponent is reasonably approximated. The
FDAX time series is shown in the inset.

of stock prices. With a large liquidity and inter-trade
waiting times down to 10−2 seconds, an impressive data
base is available, containing the transaction prices, the
volumes, and the appropriate time stamps. Let p(t) be
the transaction price at time t, which is a discrete variable
t= 1, 2, . . . , T . As shown in fig. 1, the time-lag–dependent
Hurst exponent H(∆t) indicates an anti-persistent
behavior of financial data sets on short time scales.
The Hurst exponent is calculated by a local derivative
of the mean-square displacement, i.e., the relationship
〈(p(t+∆t)− p(t))2〉 ∝∆t2H(∆t) is used. This is a trivial
consequence of the negative autocorrelation of price time
series at time lag 1, caused by the non-zero bid-ask
spread —the gap between the best available offer and
the best available demand in an order book, which stores
offers and demands during the trading process [19]. These
jumps around the spread can be added synthetically to a
random walk. Let p∗γ(t) be the time series of the synthet-
ically anti-correlated random walk created in a Monte
Carlo simulation through p∗γ(t) = aγ(t)+ b(t). With prob-
ability γ ∈ [0; 1/2] the expression aγ(t+1)− aγ(t) =+1
will be applied and with probability γ a decrement
aγ(t+1)− aγ(t) =−1 will occur. With probability 1− 2γ
the expression aγ(t+1) = aγ(t) is used. The stochastic
variable b(t) models the bid-ask spread and can take
the value 0 or 1 in each time step, each with probability
1/2. Thus, by changing γ, the characteristic time scale of
process aγ in comparison to process b can be modified.
As shown in fig. 1, the strength of anti-persistence is
controllable. For γ = 0.16 the anti-persistence of the
FDAX data is reproduced resulting also in a reasonable
agreement with the observed time dependence of the
Hurst exponent.
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Fig. 2: (Color online) Probability distribution function (PDF)
and conditional probability distribution function (CPDF)
profile for the FDAX time series: In the upper part, the
PDF P (∆p(∆t−)) is shown semi-logarithmically for ∆t− = 10.
Additionally, a Gaussian least mean-square fit φ(∆p(∆t−)) =
u exp(−v∆p2) is provided in order to exhibit the fat-tailed
nature of the price change distributions. The CPDF is only
presented for price movements ∆p, occurring with probability
larger than a threshold value λ indicated in the top part. In
the bottom part, the price changes are analyzed conditionally.
The color code gives the conditional expectation value 〈p(t+
∆t+)− p(t)|∆p(∆t−)〉t in dependence of ∆t+ and ∆p(∆t−).

Probability distribution function. – A fat-tailed
overall probability distribution function (PDF) of price
changes is shown exemplarily for a time interval ∆t− = 10
in the upper part of fig. 2 and for a time interval ∆t− = 45
in the upper part of fig. 3. In order to examine the
randomness of future price movements in the time interval
∆t+ in dependence of previous price impacts ∆p in the
time interval ∆t− one can look at conditional probability
distribution functions (CPDF).
In the lower part of fig. 2, this conditional expectation

value 〈p(t+∆t+)− p(t)|p(t)− p(t−∆t−)〉t in dependence
of the time interval ∆t+ and the price jumps ∆p(∆t−)
for ∆t− = 10 is presented. A tendency to counterbalance
jumps can be clearly identified. On average a price reduc-
tion of 10 price ticks is, e.g., counteracted by about 5
price ticks within 10 transactions. These results can be
reproduced only qualitatively by the trivial random walk
model introduced before. Trivially, process b can counter-
act by maximally 1 tick. Qualitatively, the counteracting
tendency is the same and is due to the anti-correlation of
the time series for lag 1. However, the modified random
walk has no fat tails by construction, reducing the coun-
teracting effect. Also for other values ∆t− ∈ [1; 100] the
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Fig. 3: (Color online) Probability distribution function (PDF)
and conditional probability distribution function (CPDF)
profile for FDAX time series for ∆t− = 45. In contrast to fig. 2
with ∆t− = 10, the PDF is broader and also the corresponding
CPDF in the lower part shows more details. A smaller counter-
acting tendency can be observed for this time interval. In the
online version one can find an animation (cpdf.gif, 2.8MB),
which illustrates the dependency of ∆t− in detail.

most significant counter-movements are present in the
non-Gaussian tails.

Pattern conformity. – This investigation supports
the assumption that the CPDF profile of financial market
data on short time scales is influenced but not completely
determined by the anti-correlation at time lag one. If
complex correlations exist on these time scales one has to
find a sophisticated observable to quantify them. The exis-
tence of such correlations implies that market participants
—human traders and most notably automated trading
algorithms— react to a given time series pattern just like
to comparable patterns in the past. On medium and large
time scales, this is the basic assumption of the controver-
sially discussed technical analysis. However, on tick-by-
tick basis, the effect of algorithmic trading is larger. To
quantify the additional correlations, we define a general
pattern conformity observable, which is not limited to the
application to financial market time series.
The aim is to compare the current reference pattern

of time interval length ∆t− with all previous patterns in
the time series p(t). The current observation time shall
be denoted by t̂, then the reference interval is given
by [t̂−∆t−; t̂ ). The forward evolution after this current
reference interval —the distance to t̂ is expressed by ∆t+—
is compared with the prediction derived from historical
patterns. As the volatility is not constant in time, all
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Fig. 4: (Color online) Schematic visualization of the pattern
conformity calculation mechanism. The normalized reference

pattern p̃∆t
−

t̂
(t) and the by τ shifted comparison pattern

p̃∆t
−

t̂−τ (t− τ) have the maximum value 1 and the minimum value
0 in [t̂−∆t−; t̂ ), as illustrated by the filled rectangle. For the
pattern conformity calculation, it will be checked for each time
interval ∆t+ starting at t̂ whether reference and comparison
pattern are above or below the last value of the reference

pattern p̃∆t
−

t̂
(t̂− 1). If both are above or below this level, then

+1 is added to the non-normalized pattern conformity. If one
is above and the other below, then −1 is added.

comparison patterns have to be normalized with respect
to the current reference pattern. For this reason, we use
the true range —the difference between high and low. Let
ph(t̂,∆t

−) be the maximum value of a pattern of length
∆t− at time t̂ and analogously pl(t̂,∆t−) be the minimum
value. We construct a modified time series, which is true
range adapted in the appropriate time interval, through

p̃∆t
−

t̂
(t) =

p(t)− pl(t̂,∆t−)
ph(t̂,∆t−)− pl(t̂,∆t−)

, (1)

with p̃∆t
−

t̂
(t)∈ [0; 1] ∀ t∈ [t̂−∆t−; t̂ ), as illustrated in

fig. 4. At this point, the fit quality Q∆t
−

t̂
(τ) between

the current reference sequence p̃∆t
−

t̂
(t) and a comparison

sequence p̃∆t
−

t̂−τ (t− τ) for t∈ [t̂−∆t−; t̂) has to be deter-
mined by a least mean-square fit through

Q∆t
−

t̂
(τ) =

∆t−∑
θ=1

(
p̃∆t

−
t̂
(t̂− θ)− p̃∆t−

t̂−τ (t̂− τ − θ)
)2

∆t−
, (2)

withQ∆t
−

t̂
(τ)∈ [0, 1] as a result of the true range adaption.

In order to quantify the value of reference and compar-
ison pattern relative to the reference point p̃∆t

−
t̂
(t̂− 1) at

time ∆t+ after t̂, one can define

ω∆t
−

t̂
(τ,∆t+) =

(
p̃∆t

−
t̂
(t̂− 1+∆t+)− p̃∆t−

t̂
(t̂− 1)

)

×
(
p̃∆t

−
t̂−τ (t̂− τ − 1+∆t+)− p̃∆t

−
t̂
(t̂− 1)

)
, (3)

as motivated in fig. 4. In the example shown in fig. 4,
ω∆t

−
t̂
(τ,∆t+) is larger than 0 for all possible ∆t+, as

p̃∆t
−

t̂−τ (t̂− τ − 1+∆t+) is below and p̃∆t
−

t̂
(t̂− 1+∆t+) is

also below the reference point p̃∆t
−

t̂
(t̂− 1). In such cases,

the pattern conformity observable should be increased in
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Fig. 5: (Color online) (a) Pattern conformity Ξχ=10(∆t
−,∆t+)

for a random walk time series with 3× 106 time steps and
τ̂ = 104. It is close to 0 for all combinations of ∆t+ and ∆t−.
(b) Pattern conformity with the same parameter settings for
a time series of a straight line, which is exactly 1 for all
parameter combinations. This reflects the perfect correlation
of the underlying process.

contrast to cases in which one of the reference pattern and
comparison pattern sequences is above and the other one
below the reference point.
With this element, one can consequently define an

observable for the pattern conformity, which is normal-
ized, by

Ξχ(∆t
+,∆t−) =

∑T−∆t+
t̂=∆t−

∑t̂
τ=τ∗

sgn
(
ω∆t

−
t̂
(τ,∆t+)

)

exp (χQ∆t−
t̂

(τ))∑T−∆t+
t̂=∆t−

∑t̂
τ=τ∗

|sgn(ω∆t−
t̂
(τ,∆t+))|

exp (χQ∆t−
t̂

(τ))

, (4)

where sgn(x) is the sign function with sgn(0) = 0. We
limit the evaluation for each pattern to a maximum of τ̂
historical patterns in order to save computing time. Thus,
the definition

τ∗ =
{
t̂− τ̂ , if t̂− τ̂ −∆t− � 0,
∆t−, else,

(5)

is applied. The exponential function with parameter χ
weighs terms according to their degree of conformity
with the reference pattern given through the fit quality
Q∆t

−
t̂
(τ).

In fig. 5, the pattern conformity for a standard random
walk time series is shown, which exhibits no correlations
by construction. The pattern conformity for a perfectly
correlated time series —a straight line— is shown, too.
With this method, it is possible to search for complex
correlations in financial market data quantified through
pattern conformity. In fig. 6a, Ξχ(∆t

−,∆t+) is shown
for the FDAX time series, in which a significant pattern
conformity can be detected. Parts of the correlations
stem from the trivial negative autocorrelation for ∆t= 1
caused by the jumps around the spread. In order to try
to correct for this, in fig. 6b, the pattern conformity of
the ACRW with γ = 0.16 is substracted from the data of
fig. 6a. Obviously, the autocorrelation for ∆t= 1 which is
understood from the order book structure is not the sole
reason for the pattern conformity shown in fig. 6a. Thus,
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Fig. 6: (Color online) (a) Pattern conformity ΞFDAXχ=100(∆t
−,∆t+)

of FDAX time series with τ̂ = 104. (b) FDAX pattern confor-
mity corrected by the ACRW with γ = 0.16 and with 3× 106
time steps. Thus, Ξ∗ =ΞFDAXχ=100−ΞACRWχ=100 is shown. (c) Identical
to (b), but the fit quality of a pattern is not only calculated by
the prices. Appropriate transaction volumes are incorporated,
too (see text). (d) Same as (b), but inter-trade waiting times
are used in combination with prices to calculate the fit quality.

clear evidence is obtained that financial market data show
pattern correlation on very short time scales beyond the
simple anti-persistence due to the gap between bid and
ask prices.
So far, the comparison between reference and past

patterns was based on the price time series, Q∆t
−

t̂
(τ) =

Qp,∆t
−

t̂
(τ), alone. Now, we also incorporate the time series

of transaction volumes v(t), i.e., Q∆t
−

t̂
(τ) =Qp,∆t

−

t̂
(τ)+

Qv,∆t
−

t̂
(τ), to improve the pattern selection. Then the

pattern conformity is increased as shown in fig. 6c.
In contrast, using the inter-trade waiting time ι(t)

(Q∆t
−

t̂
(τ) =Qp,∆t

−

t̂
(τ)+Qι,∆t

−

t̂
(τ)) decreases the pattern

conformity for small values of ∆t− as one can see in
fig. 6d. These results are qualitatively independent of the
applied weighting method. If the exponential weighing
of terms in eq. (4) is replaced, e.g., through a cutoff rule
for choosing terms, comparable results are achieved. It
is only important that patterns with better agreement to
historical patterns have also a higher weight.
However, also an alternative concept can be used in

order to reduce the trivial autocorrelation parts from the
pattern conformity observable which are caused by the
jumps around the bid-ask spread. But for this approach,
another kind of data set is required. So far, a historical
FDAX data set with transaction price, transaction time
stamp and transaction volume was used. Now, we apply
so-called level 1 quotes, which contain not only the
last traded price p(t), but also information on the best
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Table 1: Autocorrelation ρ(∆t) of the various data sets for the
time lags ∆t= 1, ∆t= 2, and ∆t= 3.

Data set ∆t= 1 ∆t= 2 ∆t= 3

FDAX time series −0.306 −0.022 0.000
FDAX (last price, level 1) −0.133 −0.017 −0.006
FDAX (midpoint, level 1) −0.082 0.027 0.007
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Fig. 7: (Color online) Last traded prices of FDAX level 1
data set recorded from 26 March 2007 to 30 March 2007
containing 282755 quotes. The Hurst exponent H(∆t) in
dependence of time lag ∆t calculated by the relationship
〈|p(t+∆t)− p(t)|q〉1/q ∝∆tHq(∆t) with q= 2 is shown in the
inset for the time series of last traded prices and for the time
series of midpoints. The midpoint time series shows a smaller
anti-persistence on short time scales in conformity with a
smaller absolute autocorrelation presented in table 1 at time
lag ∆t= 1.

available bid pb(t) and the best available ask price pa(t).
One has to note that time t= 1, 2, . . . , T is now a quote
counter (in the investigations above it has to be considered
as a transaction counter) with the consequence that each
new best ask or best bid price causes a new quote with
an old last traded price. Thus, as more bid and ask
updates than updates of last price can be observed, the
autocorrelation of the level 1 last price time series exhibits
a smaller negative value in contrast to the original FDAX
time series, as shown in table 1.
With this level 1 data set, which contains 282755 quotes,

recorded from 26 March 2007 to 30 March 2007, it is
possible to create a midpoint time series pm(t) = (pa(t)+
pb(t))/2, which eliminates by construction the bid-ask
spread jumps. A smaller negative anticorrelation at time
lag ∆t= 1 and positive autocorrelation at time lag ∆t= 2
can be observed as shown in table 1. Additionally, the
scaling behavior of the time series based on last prices and
the time series based on midpoints can be seen in fig. 7.
Consequently, the midpoint time series exhibits a

smaller antipersistence in comparison with the last
price time series. The qualitative difference between the
time-dependent Hurst exponent of the last price time
series and our original price time series can be explained
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Fig. 8: (Color online) (a) Pattern conformity ΞFDAXχ=10 (∆t
−,∆t+)

of FDAX level 1 time series for midpoint quotes. (b) Pattern
conformity ΞFDAXχ=100(∆t

−,∆t+) of FDAX level 1 time series for
midpoint quotes. In all cases τ̂ = 104 is applied.

by the fact, that not necessarily each new quote contains
a new last traded price. The fluctuations on medium and
long time scales are due to the limited data set.
Now, the pattern conformity observable of the midpoint

time series is determined for χ= 10 and χ= 100. The
results are shown in fig. 8. First of all, note that an increase
of χ, which reflects a stricter pattern selection, leads to a
broader and more distinct minimum for medium reference
pattern interval length with about ∆t− = 10. However, the
large pattern conformity value for larger values of ∆t−

remains unaltered, if comparing fig. 8a with fig. 8b. But
more interesting is the comparison of the results of fig. 8b
with fig. 6b. The change from last prices to midpoint prices
removes also trivial autocorrelation parts in the pattern
conformity observable, and thus both data sets are in
rather good agreement.

Conclusion and outlook. – Summarizing, we have
analyzed high-frequency asset returns in detail. First of all,
market impacts were investigated systematically by using
conditional probability distribution functions (CPDF).
The negative autocorrelation of the return time series for
consecutive ticks results in a reversion tendency after a
price shift on short time scales. Thus, the CPDF behav-
ior can be reproduced qualitatively by a synthetically
anti-correlated random walk, which reflects the short-time
antipersistence of the Hurst exponent. Furthermore, we
have introduced a method to measure complex correla-
tions within a time series by pattern conformity. This
pattern conformity observable is 0 for a random walk and 1
for a perfectly correlated time series. Checking the pattern
conformity of financial data sets, we find that there is a
small tendency to follow historic patterns on very short
time scales. An increase of observed correlations occurs if
the trading volume is included in the measure of agreement
between actual and comparison time series. An additional
concept for removing trivial autocorrelation parts from
the pattern conformity observable was applied based on
level 1 quote data sets. A further analysis in order to find
complex correlations in financial markets will be under-
taken in the context of prevalent market models as [18,19],
because the pattern conformity can also be a foundation
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for the improvement of such models. Furthermore, also
other noisy data sets like climate change data sets or
geographical landscape data sets can be investigated.
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