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Abstract

This paper presents a novel and hardware-efficient architecture for power-of-two FFT processors. The proposed design
is based on the phase-amplitude splitting technique which converts a DFT to cyclic convolutions and additions. The cyclic
convolutions are implemented with a filter-like structure and the additions are computed with several stages of butterfly
processing units. The proposed architecture requires no multiplier, and comparisons with other designs show it can save up
to 39% total equivalent gates for an 8-bit 16-point FPGA-based FFT processor.
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1. Introduction

The fast Fourier transform (FFT) is a vital DSP
tool, and is widely used in engineering and scientific
research. Researchers have devoted much effort to
developing FFT processors based on various FFT
algorithms for real-time applications implemented
using very large-scale integrated (VLSI) circuits
[1-11]. One-dimensional FFT processors in the
literature divide into two categories: systolic and
non-systolic processors. Systolic processors take in
input data continuously, while non-systolic proces-
sors operate on one frame of data at a time, and
accept another batch of data only when the previous
transform finishes. An N-point non-systolic proces-
sor usually requires much less area but more clock
cycles than an N-point systolic processor. Thus,
non-systolic processor architectures are suitable
for applications which demand small devices, while
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systolic processor architectures are preferred for
high-speed applications [12]. In this paper, novel
designs of systolic FFT processors are presented.

2. Systolic processor architectures

A systolic FFT processor usually consists of a
chain of processing units (PEs) which pass data
through the system continuously. High speed is
achieved at the cost of extensive silicon area. This is
due to the numbers of large commutator blocks,
which permute the I/O data and intermediate
results, and also the multiplier blocks. Many
approaches have been proposed to perform the
permutations and multiplications. In Despain’s
designs [1-3], internal shift registers are used to
schedule the data entering the butterfly and store
intermediate results. Other designs [4-6] use delay
commutators to switch data among multiple data
paths so that data enter PEs in a proper order.
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In the above designs, multiplications are imple-
mented with adder trees. As the multipliers consume
much silicon area, various implementation propo-
sals have been made to save area, including the
CORDIC technique [2], the distributed arithmetic-
based design [7], the memory-based design [§] and
adder-based designs [9-11]. In comparison with
ROM-based designs [7,8], adder-based designs
can further reduce area requirements. In filter-like
adder-based designs [9], a prime length DFT is first
converted to a cyclic convolution, which is per-
formed using a filter-like architecture. In parallel
adder-based designs [10], an N-point DFT is first
converted to a cyclic convolution by the chirp-Z
transform. This convolution is then implemented
with parallel adders. A parallel adder-based pro-
cessor normally consists of three parts: the pre-
processing unit, the post-processing unit and the
parallel adder unit.

For power-of-two FFTs, existing adder-based
designs still require at least two multipliers: one in
the pre-processing unit and one in the post-
processing unit. However, the multipliers can be
removed with a novel factorization technique which
converts a power-of-two DFT into short cyclic
convolutions and additions. This paper proposes a
novel design of power-of-two FFT processors which
requires no common multiplier at all. The proposed
design has much lower hardware complexity com-
pared with other existing adder-based power-of-two
FFT processors. The new factorization technique is
described in Section 3, and then the design of a
16-point FFT processor is given as an example in
Section 4. The hardware cost of various designs
is compared in Section 5, and conclusions are
presented in Section 6.

3. The phase-amplitude splitting technique

As a discrete Fourier transform (DFT) matrix
can be seen as a redundant representation of
N-points located on the unit circle and can be
generated by rotating a vector of unit amplitude
to different phase angles, the DFT matrix contains
both the amplitude and phase information of the
unit vector. Treating the phase and amplitude as
orthogonal subspaces results in a new decomposi-
tion, proposed by Shepherd et al. [13], the
phase-amplitude (PA) decomposition of the DFT
matrix.

The PA splitting method decomposes a DFT
matrix FN into the product of a matrix G and a

matrix H using a special mapping: each element
Fji of the DFT matrix FN is compared with
a threshold, and the G matrix is generated according
to the comparison, so that the resulting matrix
G has only entries +1, +i and +1+i. The H
matrix is computed by multiplying the inverse
of G with the DFT matrix. A is either a dense or
a sparse matrix, with real floating-point entries. For
a prime DFT of size N, the matrix H is dense, and
the main (N —1) x (N —1) block in H can be
converted to a cyclic matrix using row and column
permutations. For a power-of-two DFT, the matrix
H is sparse, and can be converted to a block
diagonal matrix using row and column permuta-
tions. For example, the factorization of the 5-point
DFT is

F5=G5XH5, (1)

where Fs5 denotes the 5-point DFT matrix,

1 1 1 1 1
1 —i —1—-1 —1+4i i
Gs=|1 —-1-i i —i —1+4i
I —1+i —i i —1—i
1 i 141 —-1-i —i
and
1 0.1667 0.1667 0.1667 0.1667
0 0.8726 —0.1620 0.0196 0.1031
Hs= |0 0.0196 0.8726 0.1031 —0.1620
0 —0.1620 0.1031 0.8726 0.0196
0 0.1031 0.0196 —0.1620 0.8726

The factorization of the 8-point DFT is
Fg = Gg X Hg, (2)

where Fg denotes the 8-point DFT matrix,
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and
‘T 0 0 0 0 0 0 0 7
0 0853 0 0 0 01464 0 0
o 0o 1 0 0 0 0 0
0 0 0 0836 0 0 0 0.1464
Bs=1o o 0o o 1 0o 0o o
0 01464 0 0 0 08536 0 0
o 0 0 0 0 0 1 0
0 0 0 01464 0 0 0 0.8536]

This PA splitting method can be used for
factoring not only short DFTs as above, but applies
directly to large DFTs such as the 541, 7919, 2048
and 8192-point DFTs.

4. Design of the 16-point FFT processor

In this section, the design of a 16-point FFT
processor is given as an example to show one
potential application of the PA splitting technique.

Using the PA technique, the 16-point DFT matrix
splits into G and H. H, which is sparse, is converted
into a block diagonal matrix using row and column
permutations. G factors into two matrices with
4-point DFTs and a diagonal matrix with integer
elements, using column permutations. So the
16-point FFT can be performed as follows:

Y=Pisx{U4®F4)x Pigx GD

X (I4 ® F4) x HD x P1g x X, 3)
where
X = [x0, X1, X2, X3, ..., X145 Xls]T,
Y =[y0,y1,¥2, )3 ...,y14,y15]T, ® denotes the tensor
product, xg, X1, X, ..., X5 are discrete inputs and yy,

V1, Vo, ..., V15 are discrete outputs. The factors of the
16-point DFT matrix can be generated using the
following MATLAB routine:

I, = eye(4);

L6 = eye(16);

F, = dftmtx(4);

Pis = [16(1,2); Li6(5,2); 116(9,:); T16(13,0); I16(2,2);
116(6,2); 116(10,2); I16(14,2); 116(3,0); 116(7,0);
Lis(11,); L1s(15,:); T16(452); 116(8,2);

L6(12,2); 116(16,)];
HBy4; = circulant([0.8536,0,0.1464, 0]);
HBy, = circulant([0.8887, 0.2646,
—0.0352, —0.1181]);

HD = blkdlag(14, HB42, HB41, HB,42);

GD = diag([1,1,1,1,1,1,1—1, —1, 1, 1—1, —1, — 1 —1,
1,—i,—1-1,—1]);

The function eye(n) generates the n x n identity
matrix, dftmtx(n) returns the n x n DFT matrix,
and circulant() creates a circulant matrix with its
first column equal to the input vector. The function
blkdiag() produces a block diagonal matrix using
the input matrices, and the diag() generates a
diagonal matrix using the input vector.

As shown in (3), the 16-point DFT is converted to
short cyclic convolutions, additions, 4-point DFTs
and permutations. The 4-point DFT involved in the
transform is given below in (4). As can be seen, the
input data to the 4-point DFT should be permuted
so that the output of the butterfly computation can
stay in place:

S 1o 1 0 I 1 0 0
S 01 0 I I =1 0 0
S| lto =1 o o o 1 1
S3 01 0 -1 0 0 —i i
100 0 To
0010 T
“lo 10 0| |1 @
00 0 1 T

where Ty, Ty, T, Ts are discrete inputs and Sy, Si,
S, S3 are discrete outputs.

Fig. 1 shows the architecture of the 16-point FFT
processor. The data are first sent to a 16 word RAM
operating in the read-before-write mode. The
address signals of the RAM are 0,1,2 ... 15 in the
first 16 clock cycles, then 0, 4, 8, 12, 1, 5, 9, 13, 2,
6,10, 14, 3, 7, 11, 15 in the next 16 clock cycles. The
address signals repeat every 32 cycles and the 16
words of data {xg, x1, x> ... xX15} are partitioned into
length-4 sequences. The data are then sent into the
cyclic convolution block. After cyclic convolution,
4-point DFTs are performed on each of the length-4
sequences. The first delay commutator reorders the
data in each sequence so that the stay-in-place
butterfly operations can be performed. The output
of the DFTs are multiplied with constants from
the set {1,1—1,—1,—1—1,—1}. 4-point DFTs are
performed again. The output of the processor is
obtained in a natural order.

The architecture of the cyclic convolution block is
shown in Fig. 2. It consists of an adder network to
perform multiplications by constant twiddle factors,
a block B1 to add up the partial results of the cyclic
convolutions, and a block B2 to schedule the results.
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Fig. 1. Block diagram of the 16-point FFT processor.
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Fig. 2. Architecture of the cyclic convolution block.

Table 1
CSD coding of the twiddle factors

™ CSD coding

0.8536
0.1464
0.8887
0.2646
0.0352
0.1181

—1

—1

S OO = O =
S o oo oo
(= == )
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S — O OO =
OO == O
—_—0 oo o =
|

The adder network is designed by using canonic
signed digit (CSD) coding and sub-expression
sharing techniques. The 9-bit CSD coding of the
twiddle factors, 1-bit of the integer part and 8-bit of
the fraction part, is given in table in Table 1. As can

Input

>>2 >>3 >[4

1 - I

) N ¥
> 9 >>4 I
=2
>>2 >>5
>>3
>>1 i v
va ) D
i ) >>3
MDe
0.2646 0.8536 0.8887 0.0352 0.1464 0.1181

Fig. 3. Adder network for constant multiplications.

be seen, the terms x — x>2, x + x> 3 and x — x> 3,
where x denotes input data, can be shared by two or
more constant multiplications. Fig. 3 shows the
structure of the adder network.

As shown above, the input data of the cyclic
convolution block {xg, x4, X3, X12, X1, X5, X9, X13, X2,
X10, X6» X14, X3, X7, X11, X15} are partitioned into four
length-4 sequences. The first length-4 sequence
{x0, X4, X3, X1>} 1s sent into B2 directly, and the data
are routed to the output port through the registers
and multiplexers in B2. The second sequence
{x1, x5, X9, X153} 1s sent to the adder network and
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the block Bl for the cyclic convolution with the
vector [0.8887, —0.1181, —0.0352, 0.2646]. When x3
comes in, the convolution results are loaded into
the registers in B2. Similarly, the third sequence
{x5, X6, X10, X147} 18 sent to the adder network and the
block B1 for the 4-point cyclic convolutions with the
vector [0.8536,0,0.1464,0], and the forth sequence
{x3, X7, x11, X15} for the cyclic convolution with the
vector [0.8887,0.2646, —0.0352, —0.1181].

5. Hardware cost and comparison

Assuming the input data of the processor are
complex, the system word length is 8 bits and the
twiddle factors are 9 bits. Each butterfly unit
requires two adders and two 2-to-1 multiplexers.
The hardware cost of the design is summarized in
Table 2, which also gives the hardware cost of the
radix-4 design based on [3] and the design based on
[11] which is based on the chirp-z transformation.
The size of ROM for twiddle factors is included.
For the radix-4 design based on [3], a 32 word RAM
is required for re-ordering the output and 12 words
of RAM for twiddle factors. The design in [11]
needs 10 words of RAM for holding twiddle factors.

As shown in the table, the proposed design
requires much less area than the design in [11] in
terms of the number of multipliers and adders.

To ensure 1-bit accuracy in a shift-and-add multi-
plier for multiplying integers with decimal fractions,
the internal word length of the multiplier should be
increased by log, Wy bits, where W} is the system
word length. So a complex multiplier requires 16
11-bit adders and an 8-bit adder to add up the
products when W7y equals to 8, that is approximately
23 8-bit adders. If the multiplier is pipelined by 4
delays to achieve the same logic depth as the proposed
design, 16 11-bit registers are required, that is §
registers for partial results and 8 for shift operations
on the multiplicand. Thus, some 22 8-bit registers are
required. So the design based on [3] requires 31 adders
and 37 registers. Compared to the proposed design, it
requires 10 more adders, 32 more storage units and

Table 2
Comparison of the hardware cost of various designs

ten fewer multiplexers. In other words, the proposed
design saves roughly 10 complex adders and 27
storage units, which are 32% of the total adders and
46% of the total storage units required in the design
based on [3], as a multiplexer requires less than half of
the area of a register in an 8-bit system [9].

If the system word length was doubled, the
number of adders required by the complex multi-
plier would also double. The hardware cost of the
design based on [3] would be 49 16-bit adders, 35
16-bit registers, twenty words of RAM and eleven
multiplexers with the multiplier pipelined by four
delays. On the other hand, the number of adders
required in the proposed design would be not
greater than 29 and there would be no change
in the number of other hardware units. So the
proposed design can save more area when the
system word length increases.

Moreover, the proposed design is suitable for
high-speed applications as the combinational logic
depth in each stage is kept low. As shown in Figs. 1
and 3, the average combinational logic depth is only
three layers of additions.

The design is implemented as a drop-in module for
the Xilinx Virtex-I1Ixc2v-2000 FPGA with speed grade-
4, and can reach a frequency of 65 MHz. It utilizes 851
out of 10,752 slices, 1564 out of 21,504 look up tables
and 1 out of 56 Block RAMs. The total equivalent gate
count is 90,928. In contrast to the proposed design, the
design based on [3] and the shift-and-add multiplier
uses 735 out of 10,752 slices, 1,236 out of 21,504 look
up tables and 2 out of 56 Block RAMs. The total
equivalent gate count is 149,745. In both designs,
unscaled fixed-point arithmetic is used, the internal
word length expands from 8 to 13 bits, and the results
are obtained in a natural order. Compared to the
design based on [3], the proposed multiplier-less
systolic design saves 58,817 gates, which is 39% of
the total gates required, at the same speed level.

The PA splitting-based method can also be
used for building 32 and 64-point FFT processors.
Table 3 gives hardware costs of the 16, 32 and
64-point FFT processors.

Method Multiplier Adder Register ROM/RAM (words) Multiplexer
Radix-4 based on [3] 1 8 15 44 11
Radix-4 in [11] 2 24 8 42 9
Proposed 0 21 33 16 21
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Table 3
Hardware costs of the 16, 32 and 64-point FFT processors

Multiplier Adder Register RAM/ MUX

ROM

(words)
16-point 0 21 33 16 21
32-point 0 32 64 30 30
64-point 0 44 144 112 50

6. Conclusion

This paper presents a novel and hardware-efficient
systolic architecture for power-of-two DFTs. The
proposed design is based on the phase-amplitude
splitting technique which converts a DFT to cyclic
convolutions and additions. The cyclic convolutions
can be implemented with a filter-like structure and
the additions can be computed with several stages
of butterfly processing units. The proposed design
requires no multiplier. The design of the 16-point
FFT processor is given as an example to show the
advantages of the new approach. Comparisons with
other designs show the proposed architecture can
save up to 39% gate cost for an 8-bit 16-point
FPGA-based FFT processor.
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