

mq4build.com

mq4build
documentation
An Illustrated Guide for Fast Start and Informed
Usage of Interactive Time Series Analysis and Source
Code Generation Utility

Stoyan Ivanov
[Date]

Chapter One “Fast start”

This chapter contain introduction material about mq4build basic concepts and functionality. The

topics covered are: interface of the software, evaluation engine concepts, elements for building visual

research. At the end of chapter, description of buffer conditions will unveil the base for all evaluation

process.

The concepts are explained and complemented with screenshots for easy transition to the live

software. Same time, attempt was, text to be done as compact as possible.

Before start:

mq4build is an analysis utility. The utility allows defining conditions over ready defined technical

indicators and combining them for modelling of specific time series behavior - patterns.

mq4build, even being very flexible, is not a universal programming language. It is not programming

language at all. There are no classes, objects, loops, variables, functions or complex expressions to deal with.

Thus, the expressive power of the engine is constrained. Not everything the researcher could imagine, can

be implemented with present engine. The tradeoff is that engine is optimized for the wide class of designs,

related to history patterns modelling. Users, that do not have software programming experience will find

most added value here – they are enabled to perform analysis, design and implement patterns on their own.

Same time, experienced programmers could find out mq4build as useful productivity tool.

mq4build, even being fun, is not a game. The interactivity elements are provided to enable non

programmer users to perform efficient exploration and analysis of existing data. However, the overall user

experience heavily depends on performance of the underlying indicators. The internal evaluation in

mq4build is organized in efficient way but when using many indicators or slow ones, the system will need

time to perform evaluation and to visualize the results. So, do not expect 60 FPS interaction!

mq4build, even distributed as indicator, is not a technical indicator. It is not designed for performing

analysis of real time events. For this purpose, the embedded source code generator will create a quality

production code implementing evaluation logic, equivalent with the logic that is defined in mq4build.

mq4build, even working with most custom indicators, is not capable to work with every custom

technical indicator for Metatrader 4. Indicators, that does not create buffers could not be used with

mq4build. Indicators that re-evaluate their buffers (repainting) will not work properly or will not work at all.

Further, we could consider the wide existing variety of indicators implementation: there are indicators that

call themselves; indicators with non-standard interface etc. most probably, these exotic implementations

will have exotic problems to integrate.

General view of technical analysis chart with

attached mq4build panel

mq4build Panel with a simple program

Panel width can be modified by dragging the grey

triangle in the middle of the image.

 documentation
An Illustrated Guide for Fast Start and Informed Usage of

mq4build, interactive time series analysis and source code

generation utility

Introduction
This documentation may appear big, because I do not have the talent to

make it small. The intention is to keep text compact, with visual glues on

the left side of page.

Vision
Mq4build is a tool for visual analysis of time series.

Currently mq4build is implemented as a custom indicator for the popular

platform Metatrader4. It appears as a panel in the right side of the main

chart window.

Analysis is done by adding technical indicators on the chart and further

defining a structured set of conditions and relationships, called elements.

The ability of mq4build to do this with simple mouse manipulations and

to give immediate feedback on defined elements makes the utility a

powerful analysis solution. Facilitation of a loopback between definitions

and results increases quality and speeds up the process of system design.

In addition, mq4build is capable to generate production quality mql4

source code for evaluation of defined analysis. The generated code is

independent of mq4build environment.

Interface
Mq4build interface is implemented with a panel and interaction

functionality with indicator buffers.

mq4build Panel
The panel have heading, code window, comment line and a toolbar with

context sensitive commands.

The heading contains current program name.

The code window contains program elements.

The comment line is used for editing comments on elements and also for

input of the program name.

The toolbar contains buttons for the commands, applicable to the

currently selected element.

The panel height always fits the height of the main chart window.

The panel width fits the space between chart shift and right border of the

chart. This allows panel width to be customized by dragging the chart shift

mark.

Code window with selected program validation

trigger

Fragment of code window with program validation

trigger details hidden

Buttons Expand and Fold

Comment line and the toolbar with button More

Button Update for capturing indicators, available

when Program element is selected.

Selecting an available buffer. A label with the

name of the selected buffer is visible.

Code Window
The code window contains brief description of all currently defined

elements. Each element is showed on a separate line with indentation.

When an element is selected, the system performs the following actions:

- the selected element is highlighted;

- the element comment is displayed in the comment line;

- the set of available user interface commands for the element is

evaluated and synchronized with the toolbar;

- the selected element (with its sub elements) is evaluated;

- the results of evaluation are synchronized and displayed on chart;

The elements, that contain one or more other elements can be expanded

or folded to show / hide the underlying content.

The visualization state of the element – expanded or folded does not

affect the evaluation process of the element and the contained elements.

Also, the visualization state of the element does not affect the evaluation

of the element when it is contained by some higher order element.

Comment line
The comment line is located below code window. The comment line is

used for entering comments on elements and displaying them.

Also, the comment line is used to enter file names for saving or loading

the current analysis.

Toolbar
The toolbar holds buttons for the commands, available for currently

selected element in the code window.

When the width of the panel does not allow all needed buttons to be

displayed, the toolbar displays the button More, allowing shifting of

visualized buttons, similar as this is done on mobile devices.

Buffers interaction
Mq4build is capable to capture technical indicators, applied on chart and

to use their buffers for the analysis and source code generation purposes.

To capture indicators: Function “Update” must be used after adding or

removing indicators on chart, when modifying values of input parameters

and when defining indicator levels.

Capture of the indicators is expensive operation that cannot be done

seamless in Metatrader 4 environment. For synchronization, the function

Update must be manually used every time when the chart setup is

changed.

When user is selecting buffers, the system will choose the indicator buffer

which is nearest to mouse pointer and will display a label with selected

buffer name. The lower right corner of the label will exactly touch the

selected buffer.

The system will not select buffers if visualization for their indicator is

disabled for the current chart time frame (using the tab Visualization and

the time frame checkboxes from Indicator Setup dialog).

Evaluation engine

Code fragment with different nested elements:

The program, containing two blocks and a

validation trigger.

The expanded block 2, containing two conditions,

validation trigger and invalidation trigger.

Element comments follow the symbol ` .

Schematic representation of a program evaluation

sequence.

Failure on each stage before reaching next stage

resets the process to Block 1.

This process is evaluated independent for long and

short directions.

Visualization of signals, generated by a sample

program.

Elements
Mq4build features five elements to compose evaluation functionality.

These elements are: program, block, condition, trigger and direction.

All the elements except ‘direction’ define evaluation of two Boolean

values. One value is for long direction and the other value is for short

direction. Elements ‘direction’ are either long or short and evaluate single

Boolean value.

Evaluation is defined by element rules. Rules for every element are

described in this section.

The system performs evaluation of defined elements and display the

results for the currently selected element.

program
The results of program evaluation are signals for long and short direction,

evaluated independent. Following the underlying logic, any combination

of signals can appear. After a signal is evaluated, on next bar, the signal is

reset and the evaluation process is started from initial state.

Structure
Program is defined as a sequence of blocks and a validation trigger. The

block sequence can be empty.

Evaluation rules
If there are defined blocks, they are evaluated as sequence following

these rules:

1. Initialization: For both directions, long and short there is exactly

one active block. Initially, the active blocks for both directions

are the first ones;

2. Advance: If the active block evaluates ‘true’ next block in the

sequence becomes active – advance;

3. Reset: If the block before active block evaluates ‘false’ the first

block in the sequence becomes active – reset;

4. Signal: If the last block in the sequence becomes active and the

validation trigger becomes active – the system indicate signal in

the corresponding direction and make active the first block;

This sequence construction allows describing complex history patterns.

The informal interpretation will sound like so:

To have a signal: I want to happen block 1 conditions and after that, while

block 1 is not invalidated, block 2 must happen and having it valid it is

needed block 3 etc. and finally, I want the validation trigger.

In program: Blocks evaluate as ordered sequence.
In block: Conditions evaluate as unordered set.

Block 1

Block 2

Block ...

Validation Trigger

Signal

Code fragment with definition of a block, defined

by two conditions, validation trigger and

invalidation trigger.

Visualization of block evaluation results.

Periods when block is evaluated for short

direction are backgrounded red. Periods when

block evaluated long direction have blue

background.

Visualization appear after selecting the block in

the code window.

Visualization of validation trigger

Visualization of invalidation trigger

Visualization of composed condition

Here the validation and invalidation triggers for

long and short directions are mutually exclusive.

This result is having always defined long or short

direction in non-overlapping time periods.

Such a construction is by far not required. For

example, conditions that measure the time series

volatility will have positive evaluation results for

long and short directions aligned – ‘true’ or ‘false’

for both directions at same time periods, as in the

visualization below:

block
The result of block evaluation for respective direction is ‘true’ for the

period of time, starting with evaluating positive Validation rule and

ending with evaluating positive Invalidation rule.

Structure
Block is defined by a set of conditions, validation trigger and invalidation

trigger. The set of conditions can be empty.

Blocks are part of structure of the program.

Evaluation rules
The block remembers the result of previous evaluation as state.

Validation: If the block state is ‘false’, if all the conditions and the

validation trigger are evaluated ‘true’, the block evaluation result is ‘true’.

Invalidation: If the block state is ‘true’, if the invalidation trigger is

evaluated ‘true’, the block evaluation result is ‘false’.

Memory: If none of the above evaluation rules apply, the block state is

not changed.

The Memory rule enables defining time periods, starting with a set of

conditions. This as a structure element facilitates the history research of

these time periods. Having the visualization feedback, blocks can be

tuned and refined by editing the conditions in block definition. This

process leads to more effective and precise definitions.

condition

Structure
Condition is defined by a validation trigger and an invalidation trigger.

Evaluation rules
Validation: When the condition is ‘false’ and validation trigger evaluates

‘true’, the condition evaluation result is ‘true’.

Invalidation: When the condition is ‘true’ and invalidation trigger evaluate

‘true’.

Memory: If none of the above evaluation rules apply, the condition state

is not changed.

Conditions are very similar to the blocks as a structure element, except,

the conditions do not utilize sub elements other than validation and

invalidation triggers.

Our concept for evaluation of conditions and blocks, based on validation

and invalidation triggers require some justification. We designed these

evaluation rules to provide very high expressive power of elements.

Validation and invalidation triggers could be arbitrary, based on different

indicators, evaluated on a different time frames. This flexibility gives a

powerful weapon for the researcher.

Same time, this power comes for a price. Correct definitions will require

careful selection of compatible triggers. Happily, visual feedback,

provided by the environment helps to keep the constructed logic under

control. Also, visual manipulation allows easy fixing of problems.

Code fragment, showing a trigger definition with

its two direction elements.

Visualization of a trigger evaluation results

Red dots represent positive evaluations of the

trigger in short direction and blue dots – in long

direction.

Code fragment, representing a pair of direction

elements. In this example the direction elements

are defined on M15 time frame and evaluate the

cross over event of the two presented indicator

buffers MA_2 and MA_1.

The general format for presenting a pair of

direction elements in code is:

long <timeframe> <buffer event> <comment>

short <timeframe> <buffer event> <comment>

trigger
Triggers function is to group two direction elements in a single construct.

Trigger elements do not have a memory, they fire a single event and

immediately forget about that.

Structure
A trigger is defined by two direction elements – one for long direction and

one for the short direction.

Evaluation rules
Follow: For long direction, trigger evaluation result is the evaluation result

of the long direction element.

Follow: For short direction, trigger evaluation result is the evaluation

result of the short direction element.

direction
Direction elements are defined by an indicator buffers condition and a

time frame.

Direction elements are part of trigger definitions and come always by pair

– one element for the long evaluation direction and another one for the

short evaluation direction.

It has to be noted, that predefined evaluation direction does not imply

constraints on the directional nature of the buffer event, used for

element definition. The evaluated trigger could be part of overall design

that has logic, indifferent to time series direction of change or even

pointing conditions counter to the evaluated direction. For example, such

a triggers could be dynamics filters, for which direction interpretation is

not relevant. Another example are retracement identifications, looking

for a conditions with direction opposite to the evaluated direction. In the

last case we will have direction element for example ‘long’, which will be

defined by a buffer event, having nature to identify changes of time series

in short direction.

To avoid ambiguities, we strongly recommend commenting the created

elements.

Best practice: Use comments to specify the design logic of every element.

Technical indicator with two arrow buffers – green

and red arrows.

Button Condition for defining conditions over

indicator buffers.

The command is available when a direction

element is selected in the code window. Using

command Condition will put the system in

condition definition mode.

Text label, proposing condition definition.

After mouse click, the system locks current

proposal and gives options to accept or reject the

locked condition.

Code fragment with defined direction element,

generated after confirmation of the proposed

condition.

Feedback. The system will evaluate and display the

defined direction element. Here the red dots

represent the direction element and follow the

original buffer arrows as expected.

The defined direction element is available for

further processing by the evaluation engine,

working together with the other defined

elements.

Buffer conditions
The buffer conditions can be:

- appearance of an arrow - keyword defined;

- change of a buffer value from defined to undefined or vice versa,

keywords appear / disappear;

- change of a buffer direction – keywords turn up / down;

- crossing over of two buffers – keywords cross up / down;

The buffer conditions are defined by user visual interaction with the

environment. The general sequence is:

1. User request condition definition using condition command ;

2. User points to an example of the event that has to be defined;

3. The system tries to guess the desired buffer event;

4. In case of identification, the system proposes it to user;

5. User either accept or reject the system proposal;

When proposed condition is accepted, the system will perform these

actions:

6. Remember the condition;

7. Compose a definition for the current direction element with the

defined condition, evaluated on the current chart time frame;

8. Perform evaluation of the newly defined direction element;

9. Visualize the evaluation results on the chart.

Condition “defined”
This condition is based on an indicator buffer, providing single arrow

signals.

How to:

To define the condition, use Condition command to put the system in

condition definition mode. The system will start scanning the available

indicator buffers.

Hover the mouse pointer around an indicator arrow of the desired buffer.

The system will identify the arrow and will propose the condition

definition in the text label, pointing the indicator buffer.

Having proposed condition definition, click the left mouse button. The

system will lock the currently identified condition and will ask for final

acceptance.

Click 1: Point the desired buffer with defined value

and click to lock the buffer selection.

Click 2: Navigate mouse pointer to an area where

buffer values are not defined. The system will

change the color of text label and will propose

definition of condition “appear”. Mouse click in

this state.

Click 3: The system will lock “appear” condition

and will ask for confirmation / rejection.

Code fragment with defined direction element,

evaluating buffer condition “appear” on time

frame M30 for the buffer #4 of displayed technical

indicator.

Visualization of evaluated element

Condition “appear / disappear”
This condition is based on indicator buffer, alternating periods with

defined and undefined values. Often, indicators which change line color

are implemented with two or more buffers of this type, using a separate

buffer for each different line color.

How to:

To implement buffer condition “appear” use Condition command to

put the system in condition definition mode. The system will start

scanning the available indicator buffers.

Hover the mouse pointer around an indicator buffer defined value. The

system will identify the buffer and will show the buffer name in the text

label.

Mouse click to lock the buffer selection and navigate left from the

selected point to an area, where buffer values are not defined. (line

disappear). The system will propose definition of buffer condition

“appear”.

Having proposed condition definition, click the left mouse button. The

system will lock the currently identified condition and will ask for final

acceptance.

How to:

The process for implementing buffer condition “disappear” is the same,

except after locking the buffer we navigate right direction from the

selection point to an area, where the buffer line disappears.

The described definition process is a sketch for describing the desired

buffer event by visual example on the actual buffer. In essence, we point

an area, where the target condition to be defined actually happens.

How to:

The same sketching technique is used for definition of the other buffer

conditions:

For the buffer condition “turn up” we sketch two points of a single buffer

and in the area between them the buffer has local minimum and turns its

direction from falling to raising.

For the buffer condition “cross up” we sketch two points on two buffers

and in the area between them the two buffers cross their values.

Same for “turn down”. Same for “cross down”.

I will not further challenge the reader’s patience with repetitive detailed

explanations of these similar techniques. Much more useful will be to

work out the corresponding functionality in the actual environment.

Condition “cross up / down”

Condition “turn up / down”

