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statistical assumptions, in particular the threshold autoregressive model of Tong and
Lim [75] and the local linear model of Priestley [64,41,63].

The threshold autoregressive model is formally equivalent to local linear approx
imation with fixed disjoint neighborhoods. A “threshold” corresponds to a partition
on a given coordinate. The most important lesson learned from thinking in determin-
istic terms is the scale of implementation needed to get good results. For example,
Tong and Lim discuss a threshold on one of the variables, splitting the state space 3.1
in half, and using a different linear map for each half. While this is certainly a
major improvement over a single linear map, and introduces enough nonlinearity to
reproduce phenomena such as limit cycles and chaos, it is clearly inadequate to ap-
proximate a general nonlinear transformation with any accuracy. When we use fixed
disjoint neighborhoods we typically partition the state space into hundreds or thou-
sands of parts, putting thresholds on all the state space variables, in order to get
good results. Also, as seen in Figure (4), using overlapping neighborhoods makes a
big improvement.

Priestley’s local linear model is a generalization of the threshold autoregressive
model, with a different procedure for determining the charts appropriate for a given
state. Instead of imposing a metric as we do, or using fixed disjoint neighborhoods as
Tong and Lim do, Priestley uses an algorithm that is similar to the Kalman filter to
track the free parameters in time. They vary in time as a “random walk”, changing
according to a linear dynamical equation. His approach has severa) attractive features,
but the use of a linear equation for the parameters is unduly restrictive for modeling
general nonlinear transformations. Also, the assumption of continuity in time means
that this approach will not perform well for discrete time maps. Priestley’s method
avoids the arbitrariness of choosing a particular metric, but only through a loss of
flexibility in other respects.

The value of assuming that the randomness of a time series is caused by chaotic
dynamics rather than a more conventional random process is that it gives a new
perspective. The deterministic dynamical systems approach leads naturally to inno-
vations such as trajectory segmenting or the use of an explicit metric. This makes
it natural to go to higher order approximation schemes, which can lead to big im-
provements in accuracy, as our numerical work clearly demonstrates. The dynamical
systems viewpoint is also essential for producing the error estimates described in
Section 3. Ultimately, of course, all of these methods should be judged on their
performance in real-world applications.

also suggest improvements for computing nonlinear statistical properties such as the
fractal dimension, as discussed in Section 4.

Unless otherwise stated, in this section we will assume that time is discrete, and
scaled so that ¢ = 0,1,2,.... We discuss some of the problems that arise when time
is continuous in Section 3.3.

Dependence on number of data points

The approximation error generally depends on the number of data points. When the
accuracy improves as a power law in N, as it generally does for local approximation
schemes, the dependence on N is described by the order of approximation, which we
defined in Equation (16) as the scaling exponent. It is clear that for good forecasts
we want to make the order of approximation as large as possible. One way to achieve
this is by using local polynomials. For example, in Figure (4), we use first and second
degree local polynomial charts, using data generated by the sine map,

Ty = M&ﬁﬁﬁﬂuvq AHMV

where —1 < z; < 1. Similarly, in Figure (5) we show the scaling behavior of the
Mackey-Glass delay differential equation [55],

0.2z(¢t —T)
1+z(t — Ty

= —0.1z(t) + (19)

with ' = 17. The resulting slopes are roughly ﬁbq where m is the degree of the
chart, and D is from previous independent calculations [24].

In general it is not always possible to achieve ¢ = m + 1. For example, for the
delay equation we were unable to improve our results significantly using cubic charts.
Improving the order of approximation is the central problem in nonlinear modeling.

3.2 Dependence on extrapolation time

Naturally for a chaotic system errors depend strongly on the time that we attempt
to extrapolate into the future. The rate at which errors grow depends on the way we
make predictions. There are two choices: We can make iterative forecasts by fitting a
mode] for T =1 and iterating to make predictions for T = 2,3, .... Alternatively, we
can make direct forecasts by fitting a new model for each individual 7. On the surface
direct forecasting might seem more accurate, since each model is “tailored” for the
time it is supposed to predict, and there is no accumulation of errors due to iteration.
In fact, as we shall show here, if the model is sufficiently accurate, the opposite is true.
Approximation errors for iterative forecasting grow roughly according to the largest
Lyapunov exponent A, whereas for direct forecasts the errors Erow as ¢ mas-

To show this we must first introduce the new notion of higher order Lyapunov

3 Scaling of Error estimates

In this section we estimate forecasting errors. The errors depend on properties of
the dynamics, such as the attractor dimension D and the Lyapunov spectrum {);}.
They also depend on properties of the data set, such as the number of data points,
N, and the signal-to-noise ratio S, as well as the extrapolation time T. The resulting
scaling laws provide an a priori means of estimating the quality of forecasts, and they exponents.
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Figure 4: Local approximation by polynomials for the sine map. The slopes ar
roughly —¢ = —(m + 1), where m is the degree of the polynomial, and ¢ is th
order of approximation. For the data points shown with circles we used neares
neighborhoods for the predictions, and for those indicated by triangles we used disjoin
neighborhoods, constructed with the k-d tree. . ;

Figure 5: Local approximation by polynomials for the Mackey-Glass delay differential
equation withI' = 17T, At = 1, 7 = 6, and d = 4 for a fixed extrapolation time T' = 85.
(The characteristic time is roughly 50.) Each value of E is based on an average of
500 forecasts. Using independently computed values for the attractor dimension D
[24], we find that the measured value of g ~ m + 1, within the expected statistical
error.
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3.2.1 Higher order Lyapunov exponents We begin by recursively differentiating the map.
Since the accuracy of an approximation scheme depends on higher derivatives, o1 = f(z) (24)
direct forecasting the growth rate of errors with time depends on the average grow 2y = fle)d o
rate of higher derivatives under iteration. This can be described in terms of a genera Al , ¢ : . a2 (29)
ization of the Lyapunov exponents, which we describe in this section. For simplicit T = [z + f(z:)(2)) (26)

we will only discuss the one dimensional case here, leaving the general case for
future paper [19].

Consider a one dimensional map, z:41 = f(z:). Assume that f is analytic.
will define the ¢** order Lyapunov exponent as

It is clear that the behavior of higher Lyapunov exponents is more complicated than
that of the first order exponent. For example, A() = (log | f'(z)|),, but in general
X £ (log | 79)(z)])..

To get an intuitive feeling for Equation (26), suppose we neglect the first term on

the right. This implies that for large ¢, zy grows roughly as the square of z}. However,
since by definition (|z}]) grows as "', this suggests that the exponent for the second
derivative is roughly twice that of the first.
. We can prove a related inequality by making certain assumptions. Divide Equa-
tion (26) by (z,f'(z,))% and rewrite it in terms of y, = z"[(z/)*. After taking
absolute values, averaging over z,, and making the assumption that y; and f(z,) are
uncorrelated, the result is

A9 = lim Wwom lz{9],

t—oo

where z{? is the ¢'* derivative of the t™* iterate, &Ma = wlnemmﬁeov. This reduces to

usual Lyapunov exponent when ¢ = 1. Equation (20) can also be expressed in terms
of the ¢** order Lyapunov number

AD = lim [29]*.

i ! | ()]
(lyea]) < + 2. 27
For the remaining discussion we will assume that f is analytic. Furthermore, o A_\ Aanzvz.ﬁ»c A f A.Sv_mv 1)

will assume that f is ergodic with a natural measure and corresponding probabilit
density function P(z), so that we can rewrite Equation (20) as

Let a = {|f'(z,)|™"), and b = Al_ﬁmwwlw_mvu Equation (27) can be solved to give

! ! daft _ : 1-at
X® = Jim = (log @) = WWM\F@_ (@) P(2)de @ {lyel) < a¥(lyol) + (7— —)b.

Using the ensemble average above, it is possible to interchange the average an

If we also assume that l2/|7% and lz{| are uncorrelated, then we can write {lyshy =
the logarithm, to define a new set of exponents (913

(Iz¥1){|=4|™%). Dividing and taking logarithms gives

1 =l 5 loglef”) e log([af]) < ~log(lef|™) +log(a*(uol) + (= )p)
Since {|z}|7%)

IN—2 - - . .
It is clear that I > MA@, For many examples, as a rough approximation we shoul > (|24])™" and there is a minus sign in front of the logarithm, we can

find _ make this substitution and preserve the inequality. Dividing by ¢ gives
N?v ~~ >@v WHOWCHJV < Nwo A_.S\_v 4 HH A 5 u 1— gt
; G —log{a*{ly, -
We will use this approximation to give us a rough idea of the relationship betwee t ! & 1 °8\@ {lwol) +( 1—a )b) (28)

first and higher order Lyapunov exponents, and also to estimate the scaling of o
error estimates, acknowledging in advance that there are certainly examples for whi
this approximation breaks down. ;
When f is analytic the behavior of higher order Lyapunov exponents'is at le
approximately related to the first order Lyapunov exponent. To demonstrate this w
will prove an equality for I in terms of /(). ;

By mmmbmmoﬁ_ mo.n a owm”oao mapping (log {f'(z.)]}) = A® > 0. Since log({f'(z,)]} >
(log | f ASR:Y.HW.& also implies that log(|f'(z.)|) > 0. If we assume that g <1, when
we take the limit as ¢ — oo the term on the right vanishes, giving

lim w_oﬂ_&_v < lim m_oﬂ_iv

t—oc0 ¢ vt

13When ¢ = 1 this exponent is what Fujisaka [32] calls the —1 order characteristic exponent. H
generalizes the Lyapunov exponents in a different way, analogous to the definition of generalize
dimensions [37].

Applying the definition of I9) from Equation (22) gives

1) < 9 (20)
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A similar relationship holds for general q. If we assume that the approximation

Fquation (23) is valid, then we haye where P(z,) weights the errors on each individual forecast according to the frequency

with which they occur. Taking logarithms and referring to Equations (22) and (23)
2@ g2, shows that the mean error must scale as
For the numerical examples we have studied so far, this gives rough agreement. (See log (| E(zs4+)l), ~ g T AT (34)
Figure (6) for example.) ,
There seems to be an analogy between higher order Lyapunov exponents and the
generalized Renyi dimensions and entropies [37]. We intend to investigate this in
more detail in the future [19], as well as possible connections to the higher order
characteristic exponents of Fujisaka [32].

For the numerical examples that we have studied this is a fairly good approximation.

3.2.3 TIterative forecasting

In'this section we derive error estimates for iterated forecasting, t.e., constructing an
approximant for T = 1 and then iterating to predict T = 2,3,.... Assume that at
T =1 we approximate f by a map g. Define the error of approximation as

é(z) = g(z) - f(=) (35)

where [§(z)] is small and bounded. Similarly, define the approximation error at time

T as

3.2.2 Direct forecasting

In this section we estimate the rate of growth of errors for direct forecasting, 1.
constructing a new approximant .\,n. to approximate fr at each time T. The centr:
assumption is that the rate of growth of errors for ¢** order approximation is depe
dent on the average rate of growth of the ¢** derivative, which can be described it
terms of the ¢** order Lyapunov exponent.

To make this a little more concrete, it is probably worth explicitly demonstrating
this for an example. Suppose that we use linear interpolation, and approximate
function F' over an interval [z, z5] as

Ar(z) = g"(z) - (=),

so by definition A; = 6. Assume that for any given T’ our approximation is good
muommr so mrwn Ar(z) is small and bounded by A qp > |Az(z)| for all . Thus, the
scaling derived here will only be valid in the limit that the approximation is quite
accurate.

F(zq) — F(z1) .
——— 2 From the previous two equations we get

Ty — I

F(z) = F(z) = F(z;) +

(z — z3).

Az(e) = f(¢77(2)) + 6(g7 (=) - f7(2).

 Expand f(¢7"(z)) and §(¢7"!(x)) to first order in a Taylor series about f7~!(z).
Assume that § and f are both smooth, so that f* = O(1) and 6" = O(1), where again
O(z) means “of the same order as z”, and make use of '+ &8 = g'. This implies

The error that we make with this approximation is E(z) = F(z) — F(z). This ca
be estimated by expanding F in a Taylor’s series about z;, to get
F'(z

E(z) = ...lw.b?u —z;)(z — 23) + O(%),
where € = 4 — 21, and O(€") indicates that the remaining terms are of order ¢* Ag(z) = Q\QHL?ED@LAHV +&( M.L?\,vv +O0(AZ ) (36)
smaller. The average absolute error is ) .
. By expanding this expression for T — 2,T—-3,..., it is clear that
1 f= 1
(B =+ [7 1BE)lde = | @)lé +0() (52 -
1 o .

Ar{z) = 3 I (7 (2)6(F (=) + O(AZ,,) (37)
Consider a one dimensional chaotic map, z:4+1 = f(z:), (where the subscript no 3=0 i1
represents time). Again, assume this map is ergodic. Suppose we want to approximate
the T iterate fT using linear interpolation. If we use uniform knots (#; = € in
Equation (31)), from Equation (32) we get

If we &.mo assume that &' = O(A..), then we can approximate g’ by f’, and from
the chain rule we can write the product of derivatives as the derivative of the iterate
so that this becomes ’
42 .\.H 2

(1B = 5 [ 155 @I+ @) = Sl + 0, Pl

Ar(@) = 3 T—(@)8(z;1) + O(A2,). (39)

=1
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is O(€?)), but still small. §” may cause problems, however, since it is a delta function.
Intuitively, since we are taking an average, and the integral of the second derivative
is O(e), problems due to this seem unlikely, but this should be investigated in more
detail. The safe case is when g and f are both smooth.

So far, we have restricted our discussion to one dimension, which is especially sim-
ple because there is only one Lyapunov exponent. In more than one dimension there
can be more than one positive Lyapunov exponent, and the situation is more compli-
cated. However, for long times, a displacement between an approximate trajectory
and a true trajectory will typically line itself up along the most unstable direction,
so that, as long as the largest Lyapunov exponent is sufficiently larger than the oth-
ers, it will asymptotically dominate. Thus in higher dimensions we expect that the
growth of errors will be dominated by the largest Lyapunov exponent. Note that this
is revised from our previous paper [23]; although the metric entropy is related to the
short term rate of loss of information, it does not seem to be the relevant quantity
here. 14

To conclude, for an iterative forecasting scheme satisfying the assumptions above
we conjecture that the errors grow according to

Take absolute values and average over z, to get

T T—j
(a2@) = 0L (e85 + 0(A2,0).

=1

It simplifies matters if we assume for the moment that f(z) is 2 one dimensional map

and that m%?b and é(z;-1) are uncorrelated. A_MA&L_V is F&m@mﬂ&mﬁ of 5.

definition (22) the average derivative A_m%aw?o:v ~ L/, where L = . We can th
rewrite this as

T-1

(lAz(2)l) =~ (l6(=)]) 3° L°

i=0 ;

Note that this is a natural result. It says that the cumulative error amplification fror

the first step is LT, from the second step is L7~2, etc. Summing the series gives

T -1

{1ar(2)]) = ——-(18(2)])-

In the limit of large T the asymptotic rate of growth is ~
g Yy FE~ le.m\(:nﬂu,u A%UV

1

T _ T
him h|H. =L

4 71 where Am, is the largest Lyapunov exponent. Comparing this to Equation (34), the
— 00 —_

difference is that the errors for iterative forecasts grow at an exponential rate given
by Amaz, in contrast to gAp.. for direct forecasts.

Intuitively, the superiority of iterative estimates must come from the fact that
they make use of the regular structure of the higher iterates. The time series that
§(fTY2)) < ¢'(fT (=) Ar_1(z). (43 _ We are trying to approximate are generated by iterating a dynamical system, and
so iterative approximations are more natural. The power of the iterative procedure
Is reminiscent of Barnsley’s methods for constructing complicated fractals from the
recursive application of simple affine mappings [2]. Some preliminary results indicate
the advantages of iterated forecasting in neural nets [49]. ’

The validity of these estimates for a simple example is demonstrated in Figure
(6), where we show the approximation error as a function of the extrapolation time
T. As predicted, the error grows roughly according to Equation (34) for direct ap-
proximation and according to' Equation (45) for iterative approximation.

For iterated forecasts we should expect that the distribution of errors will have long
tails. As we have seen here, the cumulative error after many iterations is dominated
by the product of the errors along the way. As long as the second moment exists, a
corollary of the central limit theorem is that the probability density function of the
product of many random numbers is log-normal. We expect that this will also be
true for iterated forecasts, at least in the limit where we have a very accurate model
and iterate many times. Log-normal distributions have long tails, corresponding to
occasional very poor forecasts. Thus, if we are concerned with bounds on the worst
case error rather than the mean square error, we might expect that iterated forecasts

To get an alternative view that gives a feeling for what these assumptions mean
we could return to Equation (36) and assume that

Again approximating g by f and recursively substituting for Ap_;, this leads to
Ar(z) = mwam?vmﬁev Taking logarithms and absolute values, and assuming that 6(z
is uncorrelated with mmm?uvu we get

dfT

dz

(log|Ar(2)]) = {log| == ()]} + (|log 6(z)]) = TAW + (|log §(<)]), (44
This agrees wjth previous estimates of Lorenz [54]. This also shows that the as
sumption of Equation (43) is roughly equivalent to the other assumptions we made
leading up to Equation (42). It also suggests that the correspondence with:Lyapuno
exponents is more exact if we use (log E) rather than log{E) to evaluate the errors.

Either of these derivations depends on the assumption that f' = O(1}); §' =
O(Ammez), and 8” = O(1). This is not surprising: If the derivatives of the approxi
mation are sufficiently different from those of the true dynamics, then in general the
approximation will have different Lyapunov exponents. This should not be a problem
for smooth approximation schemes, but this comes under question for methods such
as linear interpolation, for which g is only C'. For linear interpolation with a uniform
knot spacing ¢, it is fairly easy to show that § = O(e), which is larger than § (which

14We would like to thank Martin Casdagli for pointing out this mistake.




