286 287

H.wwmmw_ mem.m functions [61] have been recently suggested by Casdagli [12] for
bobrnmwa Bomorb.m. They are a global interpolation scheme with good localization
properties. In their simplest form, they only depend on the distance between points.”

2.2.1 Representations

Chaotic dynamics does not occur unless f is nonlinear, so to approximate chaotic
dynamics we must make nonlinear models. There are an infinite number of ways to

esent nonlinear functions, and finding good nonlinear approximations is a difficult N
repr
. ok S g o, whi R(z) = 3" ded(lz - zol) (10)
problem. As soon as we pick a representation, we make an ad hoc assumption, which =
may or may not be a good one. With prior information we may be guided to a better) .
ay y g p ybeg where || || is the Euclidean norm, and # is a label attached to the points in the

representation, but in the absence of any theoretical understanding we are forced to
make arbitrary choices.

At this point finding a good representation is largely a matter of trial and error. We
make a guess and then test to discover whether it produces a good model. Convenience
plays an important role, since fitting parameters is usually time consuming unless it
can be reduced to a linear problem.® Certain representations perform better than
others across a wide class of problems, but although there are a few rigorous results
[51], this is mainly a matter of numerical lore.

We now discuss a few of the representations that we are currently exploring.

time series. The coeflicients A; are chosen to satisfy the interpolation conditions
z(t'+T) = R(z(t")). If 4 is taken to be ¢(r) = (r2 + an..mu where # > —1 and 8 # 0
(the form we use in this paper) the linear system given by Equation (10) has a E&@cm
solution as long as the =(#') are distinct. A special case of radial basis functions are
thin plate splines.

Neural networks provide another alternative. Although on the surface neural
networks seems quite different, on closer examination it becomes clear that this differ-
ence is superficial. Neural networks can be viewed as just another class of functional
representations. This was explicitly demonstrated by Lapedes and Farber [49], who
recently applied a standard feed-forward neural net with two hidden layers [65] to
some of the forecasting problems that we studied in reference [23]. Their neural net
can be written as

Polynomials are a good representation because their parameters can be linearly
fit to minimize least squares deviations, and because they arise naturally in Taylor
expansions. The use of polynomials for forecasting was suggested by Wiener {76],
who proposed them for moving average models, and Gabor [33,34], who proposed

them for autoregressive models. Polynomials have also recently been used for fitting HHT) = MUS _

deterministic equations of motion by several authors [23,16,18]. The most general ’ - - K2k = G0 (11)
form for an m®" degree d-dimensional polynomial is

; i zz = tanh wiY; — ek 12
Am(z1,.. TR SREREY TN (9) NU 393 ’ (12)
. . y; = tanh wT; — a; 13
where MuwuH t; < m. The number of parameters a;,_;, is @Wﬁm ~ d™. Fitting this ! M Y (13)
many parameters rapidly becomes impractical when m and d are large. Polynomials z; = z(t—ir), . (14)

have the disadvantage that they do not extrapolate well beyond their domain of va*

lidity since [|Al| — oo as ||z]| — co. where y; and z; are the values of the neurons in the two hidden layers, and z; are

the input neurons. Thus, the neurons are simply coordinates in the state space.
The label “neural network” implies a particular functional representation, involving
a sum over coordinates, followed by a sigmoidal function such as tanh. While this
form is motivated by biological considerations, for problems in artificial intelligence
or forecasting there is no reason to adhere to it unless it is better than others.
Lapedes and Farber determine the parameters @ and w using back-propagation,
which is essentially a nonlinear least squares algorithm. The tanh representation has
several nice properties [49], but it has the disadvantage that parameters cannot be fit
by solving a linear problem, and the the back propagation algorithm is time consum-
ing. As a result, fitting parameters takes several orders of magnitude more computer

Rational approximation by the ratio of two polynomials provides an appeal-
ing alternative [62]. Rational approximations extrapolate better than polynomials,
particularly when the numerator and denominator are of the same degree, since they
remain bounded as ||z]| — co. Furthermore, like polynomials, fitting parameters by
least squares is linear. The work of Bayly et al. [3] suggests that rational approxima-
tion does a good job of fitting some chaotic attractors, and preliminary investigations
of Lee and Lee [50] suggest that they may also be a good choice for forecasting prob-
lems.

SEven when the least squares problem is linear, the solution is not well behaved if the data are 7Often a pol o1 .
. , : polynomial is added as well, but d t .
singular. This can be improved through singular value decomposition [62], which is the method we ut we do not use this

use throughout this paper.

288
289

time.

2.2.2 Local approximation

To make a good approximation for a function f, a representation must be able to
conform to its variations. If f is well-behaved, any complete representation will
provide a good approximation, as long as it has enough free parameters, and enough
data to stably solve them. However, if f is complicated, there is no guarantee that
any given representation will approximate f efficiently.

The dependence on representation can be reduced by local approzimation. The
basic idea is to break up the domain of f into local neighborhoods and fit different
parameters in each neighborhood. When f is smooth the neighborhoods can be small
enough so that f does not vary sharply in any of them, making the constraints of a
particular representation less important.

Local approximation usually produces better fits for a given number of data points
than global approximation, particularly for large data sets. It seems that most global
representations reach a point of diminishing returns where adding more parameters
or more data only gives a marginal improvement in accuracy. Higher order terms may
oscillate, and actually cause the behavior to get worse. Past a certain point, adding
more local neighborhoods is usually more efficient than adding more parameters and
going to higher order. Local approximation makes it possible to use a given functional
representation efficiently. The key is to choose the local neighborhood size properly,
so that each neighborhood has just enough points to make the local parameter fits
stable, so that adding more points would not make significant improvements.

We will define an M point neighborhood of z as a collection of M points {y;}
which are in some sense close to z. Although this is perhaps a slightly unusual way
to use the word “neighborhood”, it is convenient in the discussion that follows. Note
that although we use the language of dynamics in the following discussion, most of
our remarks apply to any situation in which we wish to make a map from one set of
values to another.

Although local approximation is more trouble to implement than global approxi-
mation, it is often well worth the effort, particularly for large data sets. To use local
approximation in the vicinity of a point z, there are three basic steps:

Figure 2: Local approzimation. The current state z(t) and its unknown future value
z(t + T) are represented by open circles. The black dots inside the dashed circle are
”%o. neighbors of z(t). To make a prediction we fit a local chart with the neighbors
in its domain, and the states they evolve into a time T later in its range. To make a
prediction we evaluate the chart at z(t)

the disadvantage that there is no overlap between the neighborhoods, and therefore
no continuity between charts. A point near the boundary of its neighborhood may be
poorly approximated. This is particularly true for representations such as polynomials
that do a poor job of extrapolating outside their domain of validity.

.Obo way to cope with this problem is to enforce matching conditions between
adjacent neighborhoods. For many interpolation schemes, for example, this is an es-
sential element in achieving accuracy. Unfortunately, this becomes a &mmniﬁ problem
for mwﬂw In more than two dimensions, which is precisely the situation that we are
most interested in here.

An alternative that is more accurate than disjoint partitions and more convenient
than enforcing matching conditions is to overlap the neighborhoods, so that each
or.wl is constructed from a good set of neighbors. Let {y;} be the :u points of the
b@m.rvow&ooa. We want to choose {y;} so that the predictions are as good as possible.
A ma.%wo criterion is nearness: For a given metric | I| and a given n we will say that
{y:} is the nearest neighborhood of z if it minimizes 2illz — yil|. This criterion is
.noﬂr~ optimal, as can be seen by considering linear interpolation in two dimensions:
wm the triangle defined by the three nearest neighbors does not enclose z, then gm
interpolation may be poor. In practice we find that choosing good :Qmwvogoo%
makes a big difference in the quality of our predictions.

Owom we have chosen neighborhoods, the next step is to fit charts to them. To
do this we must pick a representation. While we anticipate that dividing the domain

i. Pick a local representation.
2. Assign neighborhoods.

3. Find a local chart that maps the points in each neighborhood into their future
values. To make a prediction we evaluate the chart at z.

The basic idea is illustrated in Figure (2).
A simple way to assign neighborhoods is to partition the domain into disjoint sets.
For example, we could use a rectangular grid. This approach is convenient, but it has

290 s

into neighborhoods reduces the dependence on representation, it m.m nonetheless the
case that some representations are better than others. We are again forced to make
an ad hoc decision and evaluate the results empirically based on performance.

To measure the accuracy of forecasts we use the normalized root-mean square

error, or the prediction error

Finding the best compromise between these two effects is a central problem in local
approximation.

A trivial example of local approximation is first order, or nearest neighbor ap-
proximation. This amounts to simply looking through the data set for the nearest
neighbor, and predicting that the current state will do what the neighbor did a time

. t4+T))) T later. We approximate z(t + T) by &(¢,T) = z(t' + T), where z(t') is the nearest
(@¢,T) —=(t+T)) (15) . : >
() = =07 ; neighbor of z(t). For example, to predict tomorrow’s weather we would search the
(1) —

historical record and find the weather pattern most similar to that of today, and
Thus E = 0 for perfect forecasts, and E = 1 for forecasts made using £(t,T) = (z(t)). predict that tomorrow’s weather pattern will be the same as the neighboring pattern
- ’ - - - ‘v
Usually we compute this by averaging over time. In some of the scaling derivations it

one day later.® First order approximation can sometimes be improved by finding
is also convenient to use the average absolute error instead of the root-mean-square more neighbors and averaging their predictions, for example, by weighting according
18 also to distance from the current state.
An approach that is usually superior is local linear or second order approximation.
For the neighborhood {z(#')} we simply fit a linear polynomial to the pairs (z(¢'), z{t'+
T)). When the number of nearest neighbors M = d + 1 and the simplex formed by
the neighbors encloses z(t) this is equivalent to linear interpolation. If the data is
noisy, the chart may be more stable when the number of neighbors is greater than the
minimum value. Again, this procedure can be improved somewhat by weighting the
contributions of the neighboring points according to their distance from the current
state. Linear approximation has the nice property that the number of free parameters
E~N-%, (16) and consequently the neighborhood size grows slowly with the embedding dimension.
Since the accuracy increases with the order of approximation, it is obviously de-
sirable to make the order of approximation as large as possible. Any nonlinear repre-
sentation is a candidate for higher order approximation. The criteria, for a good local
representation are somewhat different from those for a good global representation.
On one hand, getting a good fit within a local neighborhood is easier, because the
variations are less extreme. Wild variations or discontinuities can be accommodated
by assigning neighborhoods properly. On the other hand, a local neighborhood nec-
essarily has less data in it, so the representation must make efficient ‘use of data.
The order of approximation actually achieved may depend on other factors, such
as the choice of neighborhoods, the dimension, or peculiarities of the data set. For
reasonably low dimensional problems we have found that we usually achieve third
D|log E| () order approximation, for example using quadratic polynomials. In low dimensions
T (two or less) it is sometimes possible to do better. ! In higher dimensions we often
find that we cannot do any better than second order approximation with our current
techniques.
Another interesting alternative is to compute charts for each data point, and then
view the parameters of these charts as new states. By fitting charts to them we can

E’=(EY) =

error. . . L
Local approximation schemes can be classified according to the order of the deriva-

tives that the errors depend on. For example, suppose our charts are polynomials .0».
degree m. Suppose we want to approximate a function f that is not itself a @ow%wog.p&
of degree m. In the ideal case the error depends on f(™+1)(z), the m + 1 mmddﬁﬁ.?m
of f. This implies that the errors are proportional to m:i.Lu s&m.wm € is ;.m spacing
between data points. The average mwpmmbm between N points uniformly .%mi.%ﬁmm
over a D dimensional space is € & N™T5. Calling ¢ the order of epprorimation, we
find®

where in this case ¢ = m + 1.) .

Achieving the ideal case where ¢ = m + 1 is difficult moﬂr\ﬁm.m q, since in mmbmw&
fitting a polynomial of degree m does not produce a fit that is accurate to order
m+1. For example, suppose the number of data points is equal ﬂ.o the E:H.%mw of free
parameters. The approximation may go through each point wwmﬁ.m&%,.w:ﬁ in between
it may oscillate wildly, producing an extremely inaccurate approximation. Even when
we use more neighbors this may limit the accuracy.

To avoid this confusion we will use Equation (16) to define the o&.mw of .Hon& ap-
proximation, taking the limit as N — oo, and letting D be the information dimension
of the underlying measure of the data points.

7= N T N

In general ¢ may depend on D, f, the way in which we choose the neighborhoods,
and other factors.® . .
Moving to representations of higher degree involves a tradeoff — Emrmn.mmmwmm
representations potentially promise more accuracy, but also require larger .bmwmwwom..
hoods. A larger neighborhood usually implies that the complexity of f increases.

OThis was attempted by E.N. Lorenz, who examined roughly 4000 weather maps [52]. The results
were not very successful because it was difficult to find good nearest neighbors, apparently because
of the high dimensionality of weather.

1 Casdagli has independently reached the same conclusions [12]. In two dimensions he apparently
achieves sizth order approximation in some cases using global radial basis functions, but this does
not seem to carry over in more dimensions.

3We will use the symbol “~” to mean “scales as”, i.e. z ~ y(z) implies z = Cy(z), where C
includes all dependencies on variables other than .)) -
9Note that the order of approximation as we have defined it here is one larger than the definition
we gave in references [23,27]. We have changed our definition to correspond to common usage:

292 293

make metacharts. For example, we could use local linear approximation both for
fitting charts to past states and for interpolating between them to find a good chart
for the current state. This process can obviously be continued ad infinitum, at least
in principle. Metacharts may be smoother than charts, resulting in a more compact
or more accurate description. We intend to investigate this further.?

Some people find local approximation objectionable because it does not result in
a “closed form” model. We do not consider this a problem. The most informative
diagnostic information comes from knowing statistical properties such as the Lya-
punov exponents or fractal dimension. While the coeficients of a global polynomial
expansion might give some extra insight, if this results in a significantly less accurate
model, we may get estimates of statistical properties that are incorrect in even quali-
tative terms. We feel that accuracy should be the most important criterion for model
selection.

a periodic function of time can be included to cope with seasonality or other periodic
behavior.

2.2.5 Discontinuities

The problems caused by discontinuities can be minimized by choosing neighborhoods
properly, so that their boundaries follow and do not cross discontinuities. The worst
situation occurs when the points in a neighborhood are on different sides of a discon-
tinuity — a smooth chart will inevitably produce a poor approximation.

In order to detect the presence of a discontinuity it is necessary to examine the
range as well as the domain of the transformation. Two points on opposite sides of
a discontinuity may be nearby in the domain. However, by extending the metric to
include the range as well as the domain, singularities become evident, since points on
opposite sides of a discontinuity are far apart. By definition the future value of the
current state is unknown, so we cannot use it for neighborhood relations that involve
both past and future values, but this is not true for the rest of the database. By
extending the metric to include the range values, we can make sure that neighborhoods
are chosen so that they do not cross the discontinuity. This guarantees that each chart
is fit with a consistent set of points. As long as we place the current state in the correct
neighborhood, on the proper side of any discontinuities, the predictions will be good.
At least we win some of the time, rather than losing all the time. This procedure
also makes it possible to deal with multiple valued behavior, since points on the same
branch can be distinguished from those on different branches.

2.2.3 Trajectory segmenting

For continuous time series the strategy for finding a good neighborhood is not quite
the same as it is for discrete maps. In particular, the sampling time At becomes
an important parameter, and if it is small this must be taken into account. Local
neighborhoods chop a continuous trajectory into segments. We say that the sampled
values of a time series lie on the same trajectory segment if they can be sorted so
that they are contiguous in time. For example, the local neighborhood in Figure (2)
contains four trajectory segments. If the sampling rate At is small, finding a fixed
number of neighboring data points may be very different than finding a given number
of trajectory segments. For example, if At is really small, all the neighbors of a given
point will lie on the same trajectory segment. As a result they are nearly co-linear,
which results in a highly singular chart. We can attempt to compensate by increasing
the number of nearest neighbors, but due to nonuniformities some regions may behave
differently than others. A more reliable approach is to choose neighborhoods so that
they include a given number of trajectory segments, rather than a given number of
points. This gives much better control over the quality of the fits.

2.2.6 Implementing local approximation on computers

Finding neighbors in a multidimensional data set is time consuming when done by
brute force. The most straightforward approach is to compute the distance to each
point, which takes roughly N steps for N points. This can be reduced to roughly
log N steps by organizing the data with a decision tree, such as the k-d tree [6,5]. The
basic principle is illustrated in Figure (3).

The data set is partitioned one coordinate at a time. Any criterion can be used for
the partitions; for example, for the results reported here we find the coordinate with
the largest range, and partition it at its median value. The values corresponding to
each partition are stored in the tree as keys. A given query point can be located quickly
by comparing its coordinates to the keys. If we want to find the nearest neighbors
this makes it possible to eliminate many points from consideration without actually
computing their distance. The k-d tree has the nice property that it flexibly partitions
only the parts of the space that actually contain data, adding partitions only where
they are needed. Providing the k-d tree is used to find nearest neighbors, the principal
speed limitation for local approximation comes from fitting the parameters of the
charts.

The best approach for a given application depends on whether it is constrained
by speed, computer memory, or the availability of data. At one extreme, the most

2.2.4 Nonstationarity

Most of the results in this paper assume that we are dealing with stationary data.
The assumption that the trajectory is on an attractor guarantees this, as long as
the parameters are held constant. Variations of parameters, however, can result in
nonstationary behavior. The most straightforward way to deal with this is to extend
the state space to include time. It can be included in the metric, so that the search
for nearest neighbors favors recent data. With time as a coordinate, charts can be
constructed that take into account trends and other time dependent effects. Similarly,

12y C. Lee, who has independently suggested this approach, makes the intriguing observation that
the local approximants can be used to “re-embed” the data. If f has low complexity, this might
reduce the size of the data base.

294 29

f is relatively smooth only need to be covered sparsely. A simple criterion is to insert
states that result in bad predictions, and compensate by removing states that result
in good predictions. Aspects of this are discussed by Omohundro [58].

In our numerical work here, for convenience we simply use the first part of the data
set to build a data base, and use the second part to make predictions. Of course, for
a nonstationary process, it would be important to continually update the data base
instead.

Although local approximation is certainly more trouble than global approxima-
tion, with the k-d tree it is quite fast. The k-d tree is easy to implement, as long
as one avoids caveman computer languages such as FORTRAN. Local approximation
does not require massive amounts of computer power. The computations for this
paper were made with a SUN-3 microcomputer.

2.2.7 An historical note

At the time we wrote the paper of reference [23] we were unaware of other work using
local approximation for forecasting. Now we are more informed, and a few historical
comments are in order. The use of nearest neighbor (first order} approximation goes
at least as far back as the work of Lorenz [52] in 1969. Linear approximation with
fixed disjoint partitions was introduced by Tong and Lim [75] in 1980. Priestley gave
a more general approach in the same year, and also suggested the possibility that
higher order approximation might be useful. In the dynamical systems literature in
1981 local linear approximation was independently proposed as a means of computing
dimension by Froehling et al. [31]. It was also propesed by Eckmann and Ruelle
[21,20] and Sano and Sawada [66] to compute Lyapunov exponents, except that they
omit the constant term.
More recently, several authors have independently suggested various forms of local
approximation {35,18,23,12]. Linear interpolation using nearest neighbors was sug-
gested by Peter Grassberger [35], who implemented it for the Hendn map. Crutchfield
and MacNamara [18] also suggested local linear approximation with disjoint neigh-
borhoods, which they refer to as an “atlas dynamical system”. In reference [23] we
suggested local approximation using nearest neighbors, demonstrated its effectiveness
on several experimental and numerical time series, and proposed the scaling laws that
make the advantages of higher order approximation clear. Stimulated by our work,
Lapedes and Farber [49] showed that neural nets could also be used for forecasting.
Casdagli suggested the use of radial basis functions [12].

The use of global polynomials goes back to the work of Gabor [33] and Wiener [76].
It was also recently suggested independently by Cremers and Hiibler [16], Crutchfield
and McNamara [18], us [23], and Lapedes and Farber [49]

Figure 3: The k-d iree. The data is partitioned one coordinate at a time. Each par
tition is assigned a node in the tree, as indicated by the dashed lines. The partitions
can be made on any coordinate, and the tree can have different depth in different re-
gions. The result is a flexible partition of the data space, with finer partitions where
there is more data. Use of the k-d tree speeds up the search for nearest neighbors,
decreasing the number of steps from N to log N.

accurate predictions come from finding optimal neighborhoods. This is much easier
to do once we know the state, which means that we must find neighbors and fit
charts as we go. At the other extreme, the fastest approach is to use fixed disjoint
neighborhoods, compute charts in advance, and store them in the tree. This approach
is extremely fast, requiring only the order of log N steps to locate the proper chart,
plus the time needed to evaluate the chart. Even though it requires more computer
memory, for real-time applications this may be the method of choice. Our numerical
experiments indicate, however, that the sacrifice in accuracy can be considerable,
especially in higher dimensions. Even in one dimension the difference between these
two approaches for quadratic polynomial approximation can be almost an order of
magnitude, as shown in Figure (4). A compromise between these two extremes is to
compute charts for all the points in the data base, find the nearest neighbor of the
current state, and borrow its chart to make a forecast. This procedure is fast, but
consumes even more computer memory than fixed disjoint partitions.

If an application is limited by data, it may be important to update the tree after
each prediction, to make use of each new data point in the next prediction. At the
opposite extreme, if an unlimited supply of data is available and computer memory is
at a premium, it may be desirable to find an optimal data set by selectively inserting
new points where the approximation is bad and removing old points where it is already
good. Regions where f changes rapidly should be covered densely, while regions where

2.3 Comparison to statistically motivated methods

In this section we compare the methods discussed here, which are motivated by de-
terministic dynamics, to previous nonlinear forecasting methods that are based on

