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Abstract

This article explores an alternative state space representation for ARIMA mod-
els to that usually advocated. The alternative representation has minimal state
order. More importantly, it has more convenient Kalman filter convergence prop-
erties. This convergence reveals the concrete connection between classical infinite
sample representations based on lag polynomials and the recursive Kalman filter
construction.

KEYWORDS: Filter convergence; Kalman filter smoother; State space model;
Time series.

1 Introduction

State space forms are used for prediction, smoothing and likelihood evaluation (Schweppe
1965; Anderson and Moore 1979; Harvey and Phillips 1979). There are several practical
state space forms for an ARMA or ARIMA process. The corresponding Kalman filter
recursion converges provided the model is invertible. We advocate the use of a represen-
tation with simple and transparent convergence properties. The converged quantities
makes obvious the relationship between filtering and the classical ARMA approach
of conditioning on presample values. The nature of smoothing algorithm quantities
also becomes apparent and the approach establishes the finite sample generalisation of
methods for dealing with explanatory variables.

The results mentioned above can be derived using any practical state space represen-
tation of an ARMA process. However, using the approach advocated in this paper is
particularly straightforward, making for a worthwhile tool and illustrating the useful-
ness of the correlated form of the state space model and the judicious labelling of state
space disturbances.

2 The ARIMA model and the state space form

The ARMA(p, q) model is

yt = φ1yt−1 + . . .+ φpyt−p + εt + θ1εt−1 + . . .+ θqεt−q,

written in the usual lag operator notation as φ(B)yt = θ(B)εt where εt ∼ (0, σ2). The
possibility that φ(B) has roots inside or on the unit circle, and hence that the model
is nonstationary (ARIMA) is not excluded.
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The general state space form is

yt = Ztαt +Gtεt, (1)

αt+1 = Ttαt +Htεt, t = 1, . . . , n, (2)

where εt ∼ (0, σ2I), α1 ∼ (a1, σ
2P1) and the εt and α1 are mutually uncorrelated. The

system matrices Zt, Tt, Gt andHt are nonrandom, typically depend on hyperparameters
and, as the notation indicates, may vary over time. For a univariate model with an
s× 1 state vector αt and m× 1 vector of errors εt, the matrices Zt, Tt, Gt and Ht are
1× s, s× s, 1×m and s×m respectively.

Pearlman (1980) puts forward the following ARMA state space representation as well
known; for t = 1, · · · , n, Zt = Z = (1, 0, . . . , 0), Gt = G = 1,

Tt = T =



φ1 1 0 · · · 0

φ2 0 1
. . .

...
...

...
. . . . . . 0

... 0 · · · 0 1
φm 0 · · · · · · 0


, Ht = H =


θ1 + φ1

θ2 + φ2
...
...

θm + φm

 .

where m = max(p, q). However, Pearlman gives no references for this form and it does
not appear to be dealt with in the literature. We shall refer to it as the max(p, q)
representation. In this representation εt in (1) and (2) is the same as εt in the original
ARMA model. Note GtH ′t 6= 0 implying correlated measurement and state noise.

In the literature (Brockwell and Davis 1987; Harvey 1989; Box, Jenkins, and Reinsel
1994; Hamilton 1994) the max(p, q) representation has been overlooked in favour of one
in which the state vector is of length m = max(p, q + 1). In this version, Z and T are
as above but G = 0 and H = (1, θ1, . . . , θm−1)′. The prevalence of this form may be
explained by the fact that the measurement and state noise are uncorrelated - there
is no measurement noise. Uncorrelated measurement and state noise fits in with the
more usual state space form where GtH ′t = 0 (Anderson and Moore 1979, p. 14).

Using the Kalman filter the observations yt are transformed to innovations vt. In
general, for t = 1, . . . , n,

vt = yt − Ztat, Ft = ZtPtZ
′
t +GtG

′
t,

Kt = (TtPtZ ′t +HtG
′
t)F
−1
t ,

at+1 = Ttat +Ktvt, Pt+1 = TtPtL
′
t +HtJ

′
t, (3)

where Lt = Tt−KtZt and Jt = Ht−KtGt. The slight simplification of (3) made possible
by the max(p, q + 1) representation must be balanced against desirable features of the
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max(p, q) form. It is our contention that the arguments in favour of the max(p, q)
version are compelling. First, when q ≥ p the state vector is shorter providing a
slight computational advantage. Second, the converged quantities in the max(p, q)
representation take on convenient and readily interpretable forms.

3 Convergence properties for filtering

Convergence of the Kalman filtering is established using the properties of the underlying
ARMA model. Put Yt,−∞ = [yt, yt−1, . . . , y1, y0, . . .], the linear space spanned by the
entire past of the series. If the series is a pure AR(p) then, for minimum mean square
error linear prediction, Yt,−∞ can be replaced by Yt = [yt, . . . , y1] whenever t > p. By
appropriate choice of c, an invertible ARMA(p, q) model can be approximated, to any
degree of accuracy, by an AR(c) process. Thus with an invertible ARMA(p, q), we can
find c so that, for purposes of prediction, Yt,−∞ can be replaced by Yt whenever t > c.
The size of c depends on how close the roots of the MA polynomial θ(B) are to the
unit disc, that is the closeness of the model to noninvertibility.

Consider the max(p, q) representation. Let αj,t denote component j of αt for j =
1, . . . ,m. From (1), α1,t = yt − εt. Using the state equation (2), for j = 1, . . . ,m,

αj,t+1 = φj(yt − εt) + αj+1,t + (θj + φj)εt
= φjyt + αj+1,t + θjεt

= φjyt + · · ·+ φmyt−m+j + θjεt + · · ·+ θmεt−m+j , (4)

provided the linear combination in (4) does not extend back to the presample period,
that is, provided t ≥ m. Thus, if the model is invertible, αt+1 ∈ Yt,−∞ for t > m and
so, for t ≥ c, we can assume αt+1 ∈ Yt. By definition of the filter at+1 = E(αt+1|Yt)
so, for t > c we have at = αt. This implies that, once the filter has converged,
Pt = σ−2var(αt − at) = 0 and hence Ft = 1, Kt = H, Jt = 0 and Lt has the same form
as T but with θj ’s replacing the φj ’s. Thus, for t > c, the Kalman filter collapses to
the prediction error computation

vt = yt − φ1yt−1 − · · · − φmyt−m − θ1εt−1 − · · · − θmεt−m =
φ(B)
θ(B)

yt = εt,

which is conceptually and computationally convenient. Kalman filtering implicitly
inverts the moving average polynomial and this inversion is achieved recursively without
assumptions about presample values.
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With the max(p, q + 1) representation yt = α1,t and φ(B)yt = θ(B)εt−1. Hence εt ∈
Yt+1,−∞ − Yt,−∞ and, for t > c, aj,t+1 = αj,t+1 − θj−1εt. Thus for t > c, Pt = HH ′,
Ft = 1, Kt = (φ1, . . . , φm)′, Lt is the same as T except for the top left entry where
it is 0, Jt = H while vt = εt−1 and at = αt − Hεt−1. Thus, with the max(p, q + 1)
representation, the state estimate does not converge to the state and the interpretation
of filtered quantities is awkward.

4 Convergence properties for smoothing

Smoothing quantities under the max(p, q) representation also converge to convenient
and readily interpretable constructs. The smoothing filter (De Jong 1988; Kohn and
Ansley 1989) corresponding to the general state space representation takes the following
form. Put rn = 0, Nn = 0 and for t = n, . . . , 1,

ut = F−1
t vt −K ′trt, Mt = F−1

t +K ′tNtKt,

rt−1 = Z ′tut + T ′trt, Nt−1 = Z ′tF
−1
t Zt + L′tNtLt,

The smoothations ut contain information about departures from the model (De Jong
and Penzer 1998) and have the interpolation characterization

ut = {var(yt|Y t
n)}−1{yt − E(yt|Y t

n)},

where Y t
n = [yn, . . . , yt+1, yt−1, . . . , y1], the punctured space.

An appealing expression for the smoothations is readily derived using the max(p, q)
representation. First note that αt ∈ Yt−1,−∞ ⊂ Yn,−∞ and hence for t = c + 1, . . . , n,
αt = E(αt|Yn). Similarly, εt ∈ Yt,−∞ ⊂ Yn,−∞ implying for t = c+ 1, . . . , n,

εt = E(εt|Yn) = G′tut +H ′trt = ut +H ′rt.

where the second equality follows from De Jong (1988) and Koopman (1993). Thus,
ut = εt −H ′rt and iterating this identity using rt−1 = Z ′ut + T ′rt yields

ut = εt − φ1εt+1 − · · · − φmεt+m − θ1ut+1 − · · · − θmut+m

or, in the lag polynomial notation, for t = c+ 1, . . . , n

ut =
φ(B−1)
θ(B−1)

εt =
φ(B−1)φ(B)
θ(B−1)θ(B)

yt (5)
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where εt and yt are interpreted as zero if t > n. This expression is exact provided that
the Kalman filter has converged so the result only requires invertibility. The expres-
sion (5) mirrors the infinite sample Wiener-Kolmogorov interpolation formula (Whittle
1984). The KFS computes exact finite sample interpolation errors. Provided Kalman
filter convergence, these interpolation errors coincide with the infinite sample interpo-
lation errors for t ≤ n −m. There is no requirement for smoothing filter convergence
or stationarity.

5 Other advantages of the max(p, q) representation

The max(p, q) representation can be used to clarify a number of related areas.

5.1 Maximum likelihood estimation

ARMA model parameters are often estimated using normal based maximum likelihood.
With the max(p, q) representation the log-likelihood takes the form, ignoring constants,

−1
2

n log σ2 +
c∑
t=1

{
logFt +

v2
t

σ2Ft

}
+

n∑
t=c+1

v2
t

σ2

 ,
where vt = εt = {φ(B)/θ(B)}yt for t > c. Initial conditions are handled exactly and
there is no need for such tools as backcasting (Box, Jenkins, and Reinsel 1994, p. 289).

Maximizing the log-likelihood with respect to σ2 yields

σ̂2 =
1
n

 c∑
t=1

v2
t

Ft
+

n∑
t=c+1

ε2
t

 .
Substituting back gives the concentrated log-likelihood which is maximized by mini-
mizing

n log σ̂2 +
c∑
t=1

logFt,

with respect to the remaining parameters. This is least squares provided that we can
ignore the determinental term

∑c
t=1 logFt. Kalman filtering is required only for the

initial c observations. These expressions are the similar to those for the max(p, q + 1)
representation, except that in the max(p, q + 1) parametrization the computation of
the converged quantities is less convenient.
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5.2 Vector ARMA models

No new issues arise for this case. The φj , θj and ψj are now square matrices and
1’s in the state space representation are replaced by identity matrices. Also εt in the
measurement equation is replaced by θ0εt where the square matrix θ0 models the con-
temporaneous correlation amongst the components of yt. A corresponding adjustment
is made to the definition of θ(B). In the vector case, upon convergence, vt = θ0εt and
Ft = θ0θ

′
0.

5.3 Regression with ARMA(p, q) errors

This model can be written as yt = x′tβ + z′αt + εt where xt is a vector of regression
variables and z′αt + εt is the ARMA(p, q) error as given in the max(p, q) state space
representation. Initially suppose disturbances z′αt + εt are AR(p). Then the Cochran-
Orcutt procedure (Johnston 1984) can be used to perform generalized least squares
supposing the AR coefficients are known. In particular yt is transformed to y∗t = φ(B)yt
and xt to x∗t = φ(B)xt and y∗t is regressed on x∗t . This reduces the problem of efficiently
estimating β to one of weighted ordinary least squares provided the initial data (yt, xt),
t = 1, . . . , p are handled appropriately. In particular, the generalized least squares
estimate is

β̂ =

 p∑
t=1

x∗tx
∗
t
′

Ft
+

n∑
t=p+1

x∗tx
∗
t
′

−1 p∑
t=1

x∗t y
∗
t

Ft
+

n∑
t=p+1

x∗t y
∗
t


provided the y∗t , x

∗
t and Ft are appropriately defined for t = 1, . . . , p. With an AR(1),

y∗1 = y1, x∗1 = x1 and F1 = 1− φ2
1. In the general ARMA(p, q) case the expression for

β̂ is as above but with p replaced by c.

With the max(p, q) representation, the computation of the x∗t and y∗t can be stated in
terms of augmented or diffuse Kalman filtering (Rosenberg 1973; Wecker and Ansley
1983; De Jong 1991). The basic Kalman filter equations are augmented with extra
recursions relating to the presence of the regression variables xt. Define, for t = 1, . . . , n,

x∗t
′ = x′t − z′At , At+1 = TAt +Ktx

∗
t
′ (6)

where A1 = 0. For t = c+ 1, . . . , n, using the same argument as in §2, this transforma-
tion can be written as

x∗t = xt − φ1xt−1 − · · · − φmxt−m − θ1x
∗
t−1 − · · · − θmx∗t−m =

φ(B)
θ(B)

xt
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which is the generalized Cochran-Orcutt transformation. The remaining issue relates
to the initial portion of the data t = 1, . . . , c, before convergence. It can be shown that
(6) performs the appropriate transformation.

5.4 Transfer function modelling

The max(p, q) representation and augmented Kalman filtering can also be used with
transfer function models. A transfer function model is yt = ψ(B)xt + εt where both
yt and xt are observed and εt is a white noise disturbance. The aim is to estimate the
transfer function ψ(B). In general, xt is assumed to be an ARMA process φ(B)xt =
θ(B)ηt. One proposal (Box, Jenkins, and Reinsel 1994, p. 417) is to use prewhitening,
that is, apply the linear filter φ(B)/θ(B) to both xt and yt yielding

vt =
φ(B)
θ(B)

yt = ψ(B)ηt +
φ(B)
θ(B)

εt

Preliminary estimates of the coefficients in ψ(B) are then calculated using the cross
correlation function between the vt and ηt. With the max(p, q) representation, the
transformation φ(B)/θ(B) can be applied to yt using the Kalman filter. Further ap-
plying the augmented Kalman filter under this setup yields ηt = x∗t = {φ(B)/θ(B)}xt
where x∗t is defined as in §5.3. For t > c, the KF calculates the prewhitened series
vt and x∗t = ηt exactly. For t ≤ c the vt and x∗t are uncorrelated but heteroskedastic
and hence for these initial observations the cross product terms of the form vtηt−k in
the cross covariance estimate have to be appropriately standardized. The appropriate
standardization for ηt is based on Ft.

6 Conclusion

This paper has dealt with a particular state space form for ARIMA models that has
been overlooked in the time series literature. The form has both computational and
conceptual advantages. With this form, the Kalman filter collapses, after the processing
of an initial stretch of the data, to computing the exact moving average errors εt =
{φ(B)/θ(B)}yt. Collapsing is analogous to augmented Kalman filtering reducing to
ordinary Kalman filtering in the nonstationary case and emphasizes that uncollapsed
forms deal with the tedium of exact initialization. The advocated state space form
clarifies smoothing, maximum likelihood estimation, and transformation issues for time
series regression models.
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