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Abstract

This essay compares the performance of two types of correlation measures in triggering trades in a
pairs trading application in the presence of high-frequency stock prices. One correlation measure
is the commonly-used Pearson correlation and the other is a robust correlation measure called
Maronna correlation. These correlation measures are used to define three methods of initiating
trades – called trigger mechanisms – and the characteristics of these mechanisms. We test the
relative performance of trading strategies using three types of triggering mechanisms on historical
data and perform statistical tests based on these results. We find that trading strategies based on
trigger mechanisms which employ robust measures of correlation yield consistently lower returns
but more favorable risk characteristics.
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Chapter 1

Introduction

Pairs trading is a popular quantitative method of statistical arbitrage that has been widely used
in the financial industry for over twenty years [5]. The essence of pairs trading is to exploit pairs
of stocks whose movements are related to each other. When the co-movement deteriorates, the
strategy is to long the under-performer and short the over-performer, anticipating that the co-
movement will recover and gains can be made. If the co-movement does recover, the positions are
reversed yielding arbitrage profits from the spread of the two stock prices. Pairs trading algorithms
identify which pairs from all stocks in the market to trade, when to enter a position on those
stocks and in what proportion, and when to reverse the position to (hopefully) realize profits.
Many pairs trading algorithms, and in particular the one discussed in this essay, use correlation
as a fundamental ingredient. One challenge that has recently presented itself in modern trading
applications is effective computation and use of correlation in the presence of high-frequency data.
The trading industry has seen an explosive growth in the use of high performance computation and
real-time tracking of transactions in the market. Only in the last few years have researchers taken
a keen interest in high-frequency analysis [2, 8]. One reason for this new trend is the availability
of such data, for example in the form of the Trade and Quote (TAQ) database product offered by
the New York Stock Exchange (NYSE). A major challenge in working with high-frequency data
is its sheer volume - a single day’s worth of TAQ data typically consume over 50 Gigabytes of
disk space! While research using high-frequency data appears to be gaining momentum, studying
market-wide intra-day correlation has yet to be explored in depth. The reason is that generating
massive amounts of correlation data is computationally expensive and would take an unreasonable
amount of time using traditional statistical software. The company I conducted this research with,
Scalable Analytics Inc., has addressed this problem by developing a computational engine based
on high-performance parallel computation for rapidly generating correlation matrices for tens of
thousands of variables. The technology underlying this engine was developed at the Computer
Science department at UBC [10], and the inventors, both Associate Professors in the department,
are key technical advisors to the company. An overview of the engine, called MarketMiner, can be
found in an appendix.

Computing correlation in the high-frequency domain can be a difficult undertaking not just
because of the volume of data. In addition, raw price data are filled with numerous bad data
points. The traditional definition of correlation by Pearson is very sensitive to these outliers [1],
and thus in theory it should not be directly applied to raw high-frequency data. Several papers have
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shown that robust correlation measures can be used to improve performance in popular financial
applications when compared to using Pearson’s traditional measure, including portfolio allocation
and Value-at-Risk [12, 11].

One class of robust measures of correlation is called M-estimators of correlation [9]. One of
the core products of Scalable Analytics Inc. is a computational engine which produces a robust
M-estimator of correlation which we call Maronna correlation. It can do so in real time. The main
work of this essay is to test the relative effectiveness of using alternate measures of traditional and
robust correlation in pairs trading applications. In particular, we ask whether strategies that use
Maronna correlation to enter a trade are significantly more profitable and/or less risky than trades
using Pearson correlation. The added dimension of interest here is that this numerical analysis and
comparison occurs in a high-frequency data environment.

The precise definition of the correlation measures we consider can be found in Chapter 2 which
contains some basic background material. Details of how to generate correlation data from TAQ
data, as well as some basic comparisons between different measures, are contained in Chapter 3.
In that chapter we describe the data used in our study: historical TAQ data on 61 commonly
traded stocks during March, 2008. The correlation time series that we generate are the input for
a canonical pairs trading strategy which we define in Chapter 4. Based on correlations we define
alternate trigger mechanisms which indicate when to initiate a trade between two pairs of stocks.
One trigger mechanism is based solely on Pearson correlation, another on Maronna correlation. A
third trigger mechanism called “Combined” is based on a combination of Pearson and Maronna.

To test the effectiveness of different measures of correlation and trigger mechanisms in pairs
trading we test our trading algorithms on our set of historical data. The procedure of testing a
trading strategy on historical data is called “backtesting” and is a standard activity in the trading
industry. Since we are backtesting a strategy based on correlation, we want to compare various
correlation measures to determine which one performs better and under what circumstances. To
eliminate the potential bias of selecting specific pairs, we take a brute-force approach by backtesting
over as many pairs as possible, in this case all pairs from our 61 stocks, to determine the relative
performance of the strategy under different correlation measures. Chapter 5 elaborates on how we
conducted backtesting in a MATLAB implementation and the challenges we encountered.

Our pairs trading algorithm produces a multitude of “returns data” – data points for each pair
trade transaction. To statistically test which pairs trading algorithm performs better we process
these raw “returns data” into overall performance measures of profitability and risk characteristics.
These performance measures include cumulative monthly returns and more sophisticated measures
like maximum drawdown. Precise definitions of these measures as well as details of how to generate
them can be found at the end of Chapter 5.

In Chapter 6 we statistically analyze the performance measure data which was generated
through backtesting. We perform statistical tests on the means of returns and the risk charac-
teristics of strategies. The results of this study are discussed at the end of Chapter 6. We found
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that Pearson-based trading strategies (with a data filter described below) lead to high returns, while
Maronna-based trading strategies yielded lower returns and also slightly higher risk comparing with
Pearson. Pairs trading algorithms using the Combined trigger mechanism had more attractive risk
characteristics than both pure Maronna-based and Pearson-based trading strategies. Implications
for pairs trading practice are further discussed in Chapter 7.

In the course of conducting this study, we made some simplifying assumptions that take away
somewhat from the realism of our conclusions and lead to some outstanding issues. These are dis-
cussed, along with some interesting research questions that might improve our results, in Chapter 8.
Finally, we make some concluding remarks in Chapter 9.
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Chapter 2

Background on Robust Correlation

“Correlation” measures the degree of linear relationship between two random variables. If the
correlation of two random variables is close to 1, then their realizations are tightly positively
linearly related. That is, if one variable has a “high” realization the other variable will, with high
probability, also have a “high” realization. If the correlation between two random variables is close
to 0, then it means their realizations have no linear relationship. A change of one variable has
little effect on the other variable. Finally, a correlation close to −1 indicates a tight negative linear
relationship. The concept of correlation is the major point of intest driving the results of our study.
We give some background on correlation for completeness.

Let X = (X1, . . . , Xm) be an m-vector of random variables, µ the m-vector of their expectations,
and Σ its m by m covariance matrix. The covariance matrix is symmetric and has entries σi,j , the
covariance of random variables Xi and Xj defined as follows:

σi,j = cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)].

From the information in the covariance matrix we can compute an m by m correlation matrix.
Each entry ρi,j is the correlation of two random variables Xi and Xj and is defined as

ρi,j = corr(Xi, Xj) =
σi,j√

σi,i
√

σj,j
.

The value σi,i is simply the variance of random variable Xi.
A traditional and widely-used estimate of correlation is due to Pearson. It can be defined as

follows: given n independent and random samples x1, . . . ,xn of the random vector X, we can
define sample estimates of expectation and covariance. Pearson uses the mean x̄i as an estimate of
expectation µi defined as follows:

x̄i =
∑n

k=1 xik

n
,

where xik is the kth realization of random variable Xi in the kth random sample. The sample
covariance Si,j of two random variables Xi and Xj is based on the mean and can be defined as
follows:

Si,j =
∑n

k=1(xik − x̄i)(xjk − x̄j)
n− 1

.
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Pearson’s measure of correlation is then simply:

CPSN
i,j =

Sij√
Si,i

√
Sj,j

,

where Si,i is the sample variance of Xi. Note that Pearson’s measure is sensitive to outliers, just
as the sample mean is sensitive to outliers when estimating expectation. In the case of estimating
the expectation, a more robust measure is the median, which is defined as the 50th percentile of
independent random sample data drawn on a random variable. This measure is not as sensitive
to outliers as the mean. Indeed, the 50th percentile of a set of data will change little if there is a
single very large or very small observation added to the sample, whereas the sample mean might
change significantly. Rather informally, we call an estimator robust if its value is not significantly
effected by the presence of outliers. Using this terminology we can say that Pearson’s estimate of
correlation is not robust. We now define a class of robust estimators that will be used in our study.

A common robust measure of mean and covariance is first introduced by Maronna in 1976 [9],
which is defined as follows: given n independent and random samples x1, . . . ,xn of the random
vector X, Maronna denotes sample estimates of expectation and covariance as t and V, respectively.
Each entry in the covariance matrix V, vi,j , is the covariance estimate of the random variables Xi

and Xj . Then Maronna’s estimates of expectation and covariance are solutions (t,V) of systems
of equations ∑n

k=1(u1[{(xk − t)′V−1(xk − t)} 1
2 ](xk − t))

n
= 0, (2.1)

∑n
k=1(u2[{(xk − t)′V−1(xk − t)}](xk − t))

n
= V, (2.2)

where u1 and u2 are functions satisfying a set of general technical assumptions which are quite
involved and will not be stated here. Further details can be found in [9]. Maronna’s measure of
correlation is defined as

CMRN
i,j =

vij√
vi,i
√

vj,j
.

Maronna’s measures of mean and covariance belong to a general class of estimates known as M-
estimators. The origin of M-estimators is from the basic statistical technique of maximum likelihood
estimation. In such a procedure, we are given a set of observations and then attempt to minimize
a function representing the likelihood of the given data to arise from the probability distribution
we are attempting to fit. The optimization is over the choice of some parameters or moments of
that probability distribution.

Upon taking first-order conditions for this minimization, we define a system of equalities in-
volving the parameters and partial derivatives of the likelihood function. General M-estimator can
be defined by optimizing different functions, besides the likelihood function. Each yields alternate
equality systems by which to decide estimates of parameters. An example of this is Equations 2.1
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and 2.1.
In the case of Maronna’s M-estimator, it can be seen as a generalization of maximum-likelihood

estimation that provides both robustness and an attractive condition called affine equivariance,
which essentially requires that the computed moments are consistent under affine transformations
of the data [7]. Maronna [9] discovered one of the first affine equivariant robust estimators of
correlation and his estimator is widely used in practical applications [1, 12].
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Chapter 3

Description of Data and Generating

Correlation Time Series

This chapter describes our approach to turning raw bid and ask quote data for prices of stocks into
correlation time series describing the correlation of a pair of stocks over time. We then proceed
with some basic exploration of the differences between Pearson and Maronna correlation time
series, providing some insights for later sections. Quote data are much higher in frequency and
volume than trade data, which makes processing and analyzing more challenging. A small sample
of intra-day quote data are shown in Table 3.1.

Timestamp Symbol Bid Price Ask Price Bid Size Ask Size

09:30:04 NVDA 16.38 20.1 3 3
09:30:04 NVDA 18.23 18.26 3 3
09:30:04 NVDA 18.24 18.26 1 4
09:30:04 ORCL 19.56 19.59 2 104
09:30:04 ORCL 19.58 19.62 1 1
09:30:04 SLB 82.81 83.11 1 1
09:30:04 TWX 14.01 14.2 18 5
09:30:04 TWX 14.01 14.65 2 6
09:30:04 BK 41.11 42.1 41 1
09:30:04 BK 41.13 41.5 1 1
09:30:04 BK 41.11 42.1 38 1
09:30:04 BK 41.13 41.5 3 1

Table 3.1: Sample data from the NYSE TAQ dataset.

In our high-frequency analysis we use the bid-ask midpoint (BAM) as an approximation to the
stock prices, and then calculate the 1-period returns. The bid price is the highest price someone is
willing to pay for a stock, and the ask price is the lowest price someone is willing to sell a stock.
We choose to use the BAM instead of just the trade price, at which the stock is trading on the
open market, as it allows for a closer approximation to the real price level between trades, which
is generally not the trade price in inefficient markets. Also, using BAM is especially useful in the
analysis for stocks which trade infrequently.
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3.1 Correlation Time Series

We let φi(s) denote the true stock price of stock i at time 0 ≤ s ≤ smax, where s = 0 and s = smax

are the start and end of the trading day respectively, measured in ∆-length time intervals. In our
study we take ∆ = 30 seconds. For example, s = 10 corresponds to five minutes after the start of
the trading day. We denote by pi(s) the BAM of stock i at time s, which is an estimate of φi(s).
As is common practice in financial applications, we do not directly consider stock price but instead
focus on log-returns. The one-period return of stock i at time s is the ratio ri(s) = pi(s)

pi(s−1) and the
log-return at time s is xi(s) = log ri(s). Note that xi(s) is an estimate based on BAM data of the
true log-return Xi(s) = log( φi(s)

φi(s−1)) based on true prices. The reason for using log-returns instead
of the raw prices is twofold: taking the difference of the returns yields a stationary process, while
taking the log of the differences results in a distribution that is more approximately normal; both
results are necessary in order to utilize statistical tests which assume stationarity and normality.

Our goal is to estimate the true correlation ρi,j(s) between pairs of stocks i and j at each time
s throughout the day. The true correlation time series for stock i and j, denoted by {ρi,j(s) : 0 ≤
s ≤ smax} is the time series of random variables ρi,j = corr(Xi(s), Xj(s)). It is important to note
that this time series is not known and must be estimated. In particular, the log-returns will be
estimated by the BAM and the true correlation estimated by sample measures of correlation.

For a pair of stocks i and j we compute the sample correlation of log-returns at each time step
s to produce a sample correlation time series as time progresses. The sample correlation at a given
time s is based on a sliding window of the M most recent time intervals. To be precise, the input
to each pair-wise correlation calculation at time s are two vectors xi(s) and xj(s), containing the
last M log-returns, taken in ∆-length second time intervals for stocks i and j respectively; that is,
the vector of log-returns xi(s) = (xi(s−M + 1), . . . , xi(s− t), . . . , xi(s− 1), xi(s)).

Now, we define the Pearson correlation measure at time s, CPSN
i,j (s), as the sample correlation

of data vectors xi(s) and xj(s) as defined in Chapter 2. Similarly we let CMRN
i,j denote the Maronna

estimate of correlation at time s. These two measures of correlation define two sample correlation
time series {CPSN

i,j (s) : M ≤ s ≤ smax} and {CMRN
i,j (s) : M ≤ s ≤ smax} henceforth referred to

as Pearson and Maronna correlation time series respectively. Note the correlation time series start
at time M because the first correlation calculation is based on log-returns from M previous time
intervals, and thus cannot be computed before time M .

3.2 Comparing Pearson and Maronna Time Series

We now discuss some basic differences between these two time series–Pearson and Maronna – to
get a sense of how these differences might impact trading algorithms using these different measures.

We begin by visually comparing Pearson and Maronna correlation time series based on our
sample data of 30-second BAM stock prices using a time window of M = 100 time steps. The
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data is collected from market-wide TAQ data from the S&P 500 for the one trading day (March
3rd, 2008). Figure 3.1 shows a comparison for raw stock prices for two stocks from the oil and gas
sector, Chevron (CVX) and Exxon (XOM).
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Figure 3.1: Raw Stock Price of CVX and XON and the Two Types of Correlation Measure.
From the plot of the two stock prices, one can see that despite the spikes on the CVX prices, the two stock
prices are highly correlated. However, the Pearson measure of correlation is occasionally quite low, with
some sudden jumps around time step 520 and 620, whereas Maronna correlation measure stays smoothly at
a high level throughout the day.

From the top plot in Figure 3.1, we see that CVX and XOM seem to be highly correlated,
but Pearson correlations in the lower plot are relatively low and unstable. The sudden jumps of
Pearson correlation – for example, at around time step 510 and 620 – correspond with the outliers
in the price time series at time step around 450 and 490. On the other hand, Maronna correlation
remains smooth over the entire day. This can partially be explained by the presence of outliers,
which we discuss now.
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Significant amounts of outliers and noise in real-time high-frequency financial price data impose
challenges to calculating accurately the ‘real’ correlation between prices in different stocks. On
one hand, we want to eliminate the effects of outliers and noise, something which is achieved with
robust and smooth correlation measures. On the other hand, an effective correlation measure
cannot “over damp” the data so that the true information is lost, obscuring the true relationships
between the stocks. This tension is quite relevant to our comparison of Pearson and Maronna
correlation measures for high-frequency stock price data.

Raw tick TAQ data contains every raw quote, not just the best offer, so there can be many spu-
rious ticks originating from various sources, some human typing errors but mainly from electronic
trading systems generating test quotes (e.g., when testing a new feature) or far-out limit orders
which have little probability of getting filled. Raw data, whether from a database or a live stream,
needs to be cleaned before being analyzed and used in a financial model or strategy.

There are many techniques used in practice to clean high frequency data [6, 4], each having
its own advantages and disadvantages. The exact method of cleaning will vary depending on
the particular task at hand, and trade-offs between the quality of cleaning and delay need to be
managed; i.e., in a real-time environment cleaning process needs to be fast and efficient. Our
approach is to use a very simple but effective filter to eliminate prices that are more than a few
standard deviations from their corresponding moving average and deviation.1

Analogous to how we defined the log-returns vectors xi(s) we define a vector pi(s) of prices for
stock i with entries pi(t) for 0 ≤ t ≤ s. In other words, pi(s) is a vector of prices from the start
of the trading day until time s. Let p̄i(s) denote the average price of stock i up to time s, which
corresponds to the average of the entries in the vector pi(s).

The filter works as follows: at each time s+1, we update the price moving average and standard
deviation based on a weighted average of historical average and standard deviation and new average
and standard deviation based on new price data. To update the mean at time s + 1 we use the
following rule: if the historical average is m̄old, and the new stock price pi(s+1), then the updated
average is

m̄ = w1m̄old + w2pi(s + 1),

where w1 and w2 are weights (which sum to 1) of historical average and new updated average.
In our setting, the weights of historical data and new data depends whether the new stock price

is considered to be an outlier. At each time s + 1, if the price pi(s + 1) is more than k standard
deviations away from the current average p̄i(s), we treat pi(s + 1) as an outlier, and upgrade the
weight of the new average and standard deviation. If the price is within k standard deviations
away from the current average p̄i(s), the average and standard deviation are updated with the
pre-defined weights.

The choice of weights is crucial to the performance of a filter, and involves tradeoffs between
1The details of this filter were contributed by personal communication with Alpha Lake Financial Analytics.
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being too conservative, thus over-damping the prices, and too aggressive, which would fail to filter
out outliers. The weights used in our study are not provided here due to proprietary reasons.

After implementing this basic filtering strategy we consider a comparison of Pearson correlation
time series derived from filtered price data with Maronna correlation time series derived from
unfiltered price data, and find that the Maronna correlation time series is still “smoother” (i.e. less
jumps) than the Pearson correlation time series, as shown in Figure 3.2 for our chosen stock pair
CVX and XOM. Note, however, that the filtered data does yield a Pearson series that is “closer”
to the Maronna series, but the price suddenly changes at around time step 520 and 690, which the
filter failed to clean, still cause sudden jumps in the Pearson correlation time series as shown in the
lower plot of Figure 3.2.

Filters can result in very different Pearson correlations depending on the choice of weights, as
can be seen in Figure 3.3. From Figure 3.3, we see the Pearson correlation time series is very
different from the previous one in Figure 3.2 with the only difference being putting more weight
on new prices. Therefore, we predict that choosing different filters potentially introduces bias on
Pearson correlation calculations, a potentially unattractive feature for pairs trading strategies based
on Pearson correlation.

A thorough investigation of other pairs of stocks revealed similar qualitative results. In each
case we observed, Maronna correlation time series was always smoother than Pearson. We did
not venture further into more quantitative investigations of this phenomenon, in part because
the qualitative evidence was so clear. There are clear differences between traditional and robust
correlations, something we will see clearly when designing trading strategies based on these alternate
correlation measures.
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Figure 3.2: Filtered Stock Prices of CVX and XON and the Two Types of Correlation Measure.
From the upper plot, one can see most of the spikes in stock prices of CVX are filtered out, except one
outlier at around time step 690 due to the pitfall of the filter. From the lower plot, the Pearson correlation
converges to Maronna correlation from time step 250 to 500, and the correlation time series becomes
unstable due to the outliers at around time step 520 and 690 that were not filtered.
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Figure 3.3: Filtered Stock Price of CVX and XON and the Pearson Correlation Measure Using an
Alternative Filter.
The Pearson correlation time series shown here is quite different from the previous one in Figure 3.2.
This is because of the different filtered prices using different weights in the filters. Therefore, we predict
that choosing different filters potentially introduces bias on Pearson correlation calculations, a potentially
unattractive feature for pairs trading strategies based on Pearson correlation.
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Chapter 4

A Canonical Pairs Trading Strategy

Pairs trading can be broadly categorized into three forms: fundamental, risk, and statistical. A
fundamental pair is a pair that has been highly correlated over a historical period, usually a few
years or more, and often belong to the same industry or sector. A few well-known fundamental
pairs are Chevron/Exxon, UPS/Fedex and Wal-Mart/Target. A risk pair occurs when a company
is about to merge with or acquire another one, and thus the two securities will become highly
correlated in anticipation of the adjusted price levels. A statistical pair refers to a pair that may
or may not be fundamentally linked, but instead have been found to be highly correlated over a
given (usually short) period, with a high degree of statistical certainty. Intra-day statistical pairs
trading is a high-turnover strategy that uses only very recent data to determine correlations (e.g.,
the last few hours or days at most). This means that the strategy makes no assumptions that a
pair will remain correlated next year or month, but has a certain level of confidence that the pair
will remain correlated for the next few hours or days. Generally speaking, we would expect the
correlations to remain stable for approximately the same amount of time used in the correlation
calculation.

The usual routine for a fundamental pair trader is to first identify a number of candidate pairs.
Each pair is then backtested over a given set of data and parameter sets before being promoted to a
live trading environment. The exact method used to identify and backtest pairs differs from trader
to trader. Some traders may employ a rigorous statistical analysis, while others simply “eye-ball”
two charts to determine the degree of correlation. In live trading, the number of pairs monitored
per trader can range from a few to a thousand or more; once the number of pairs exceeds what a
human can watch, software for monitoring the pairs must be utilized.

A downside to fundamental pairs trading is that often the pairs are well known and widely
exploited in the market, implying that mis-pricing is less common, causing arbitrage opportunities
to diminish. The upside however is that because the pairs are fundamentally correlated over a long
historical period there is a higher degree of certainty that their spread (difference in prices) will
revert to its long-run trend.

As we shall see in the pairs trading algorithm below, we define a way to trigger a trade based on
the divergence of the correlation of log-returns of stocks away from its historical average. We get al-
ternate trigger mechanisms depending on which correlation estimate we use to identify a divergence.
Details are found in steps 1. and 2. of the canonical pairs trading algorithm defined below. In the
case of a Pearson trigger mechanism the algorithems takes as input the Pearson correlation time
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series {CPSN
i,j (s) : M ≤ s ≤ smax}. A Maronna trigger mechanism uses the Maronna correlation

time series to track divergences. For Combined trigger mechanisms, both correlation time series
are taken as input. The motivation for designing Combined trigger mechanisms was to use both of
the correlation measures to combine their theoretical strengths of into a single trigger. We observe
from Chapter 3 that Pearson correlation is more sensitive to changes in returns, whereas Maronna
is smoother and less sensitive to short term deviations. Intuitively, having a sensitive measure
like Pearson is beneficial because it would hopefully indicate sooner when a pair’s co-movement
deteriorates. On the other hand, such a measure may be misled by outliers in the data to open a
trade when it is not beneficial to do so, whereas a smoother measure like Maronna could avoid this
mistake. Combined can be seen as an attempt to balance these considerations. The details of its
precise definition are proprietary property of Scalable Analytics, Inc.

Table 4.1 describes the strategy parameters and typical values we use within our experimental
framework, where these values are chosen based on consultation with professional pairs traders.2

As before, all time-based parameters are in time units, defined by the time window ∆ and indexed
by s = {0, . . . , smax}, where smax defines the end of the trading day measured in ∆-length intervals.
Our algorithm has several parameters which define the specifics of it implications. We let K denote
the collection of parameter sets under consideration, and use k to index a particular parameter set.
Thus, for instance {∆ = 30, Ttype = Pearson,A = 0.1,M = 100,W = 60, Y = 10, d = 0.01, ` =
2/3, RT = 60,HP = 30, ST = 20} is one element of the collection K. Each unique combination of
parameters yields different returns, and the difference can be quite significant. We can also backtest
a trading strategy for each pair (i, j) ∈ Φ, with Φ denoting the set of all pairs under consideration,
and for each parameter vector k ∈ K over the given time period.

The following pseudo-code outlines a canonical statistical pairs trading strategy, defined for a
particular pair of stocks (i, j) ∈ Φ and parameter set k ∈ K over a given trading day t. If more
than one pair in Φ is being tracked this algorithm can be run in parallel for each pair.

1. At time s, calculate the average correlation over the last W time intervals as

C̄i,j(s) =
∑s

u=s−W+1 Ci,j(u)
W

,

where Ci,j(u) is the correlation coefficient calculated using log-returns. Note that Ci,j(s) was
defined for both Pearson and Maronna correlations in Chapter 2.

2. Check to see if C̄i,j(s) is greater than some threshold A, and if the current correlation co-
efficient at time s has diverged more than d% from C̄i,j(s) within the last Y time intervals.
We refer to d as the divergence threshold. Note that typical divergence levels for pair traders
with longer time horizons tend to be larger, due to the fact that the volatility of prices will

2We would like to thank Darren Clifford from PairCo for his valuable feedback and suggestions on our work.
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Parameter Description Values
∆s Time window 30 sec

Tmech Trigger mechanism Pearson Maronna Combined
A Minimum correlation for trading 0.1
M Time window for correlation calculation 50 100 200
W Time window of average correlation calcu-

lation
60 120

Y Time window over which divergences from
the correlation average are considered

10 20 40

d Divergence level from correlation average
required to trigger a trade

0.01% 0.02% 0.03% 0.04% 0.05% 0.10%

` Retracement level for determining when to
reverse a position

1/3

RT Time window for measuring the spread
level (used in calculating retracement
level)

60

HP Maximum holding period for any position 30
ST Minimum time before market close re-

quired to open a new position
20

Table 4.1: Strategy parameter descriptions and values

also be greater. With our intra-day strategy we use a smaller divergence level to account for
lower volatility.

3. If no divergence is detected or if C̄i,j(s) ≤ A, move on to the next pair. If a divergence is
detected, trigger a pair trade. Go long on the stock that has “under-performed” and short
the one which has “over-performed”. The over-performer is simply the one which has a higher
W -period return relative to the other.

4. To choose a long/short ratio, we choose a ratio that keeps us as close to cash-neutral as
possible, but just slightly on the long side. For example, if we are buying MSFT at $30 and
selling IBM at $130, a ratio of 5:1 would give us an allocation of $150 long and $130 short.
To be more specific, suppose we have two prices Pi > Pj , and we want to long stock i and
short j, then we want the ratio of long/short shares for stocks i and j to be 1:y, where

y = bPi
Pj
c

Similarly, if we short i, and long j, then

y = dPi
Pj
e

5. The next step is to decide when to reverse the positions. We reverse the position when we
have reached a retracement level L, or if a given amount of time has elapsed since we entered
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the position. The retracement level is as follows. Let Sl, Sh and S̄ be the high, low and
average of the spread during the last M time intervals, and Ss be the spread of the two stock
prices at the time we opened the position. If Ss ≤ S̄, then

L = Sl + `(Sh − Sl),

and if So ≥ S̄, then

L = Sh − `(Sh − Sl)

where 0 < ` < 1 is known as the retracement parameter. For example, if the high of a
MSFT-IBM spread is $100, and the low $80, and we opened the position when the spread
was around $80, and ` = 1

3 , then we reverse when the spread has reached the retracement
level

L = $80 + 1
3($100− $80) = $80 + 1

3$20 = $86.67.

Similarly, if we opened the position when the spread was around $100, then

L = $100− 1
3($100− $80) = $100− 1

3$20 = $93.40

and we will reverse the position when the spread is lower than L. We also need to add a time-
based reversal trigger in case the retracement level is never reached. Therefore, we choose not
to hold a position longer than HP time periods. Thus after HP time periods the position is
reversed, regardless of the situation. Finally, we should reverse all positions at the end of the
trading day. We note here that the key to a good strategy is to mitigate losses and control
risk. Thus, we point out, but do not implement, several other reversal conditions. The first is
an absolute stop-loss: If the spread continues to drop rapidly, we want to exit and minimize
our loss. The second is correlation reversion: If the correlation returns within the average
range (i.e., [C̄(1 − d), C̄), then we reverse the positions. The reasoning behind correlation
reversion is that the prices may have adjusted to new levels and watching for spread reversion
may not give us this information.

6. Once the position is reversed, we calculate the return Ri,j for pair of stocks over both the
long and short positions, with

Ri,j = πi,j

PiNi+PjNj

where πi,j is the profit/loss of the trade (in dollars), Pi and Pj are the prices and Ni and Nj the
number of shares held for stock i and j respectively. For example, suppose a trade was to long
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MSFT at $30 and short IBM at $130 with the ratio of MSFT to IBM 5:1. If we reverse the po-
sition when MSFT is $29 and IBM is $120, then we profit ($29−$30)5+($120−$130(−1)) = $5
from this trade. The total cost, not including transaction costs, is 5($30) + 1($130) = $280,
and thus the return is $5/$180 = 2.8%.

As discussed above, the input to the pairs trading algorithm is the correlation time series
{Ci,j(s) : M ≤ s ≤ smax} of a pair of stocks (i, j) ∈ Φ. The output is a set of returns Ri,j of trades
that were opened and closed between times 0 and smax. Thus, Ri,j is a set of numbers, one for
each trade that opened and closed during the trading day. It is not to be confused with the returns
data ri(s) of a particular stock defined in the previous chapter, here the return is of a particular
trade on a particular pair of stocks.

We would like to choose Φ as the full set of stocks which may potentially be chosen for back-
testing, so as to optimize the strategy to perform well under that set of stocks. If there are n stocks
then |Φ| = n(n−1)

2 . If our goal was to backtest over all US stocks, of which there are approximately
8000, this would require our strategy to support backtesting on over 32 million pairs! While many
stocks are not liquid enough (too few trades) to be considered in our style of pairs trading, the
number of potential pairs is still so large that a parallel algorithm like those which can be imple-
mented in MarketMiner would be essential for real-time trading. This current study does not test
on this many pairs, instead it focuses on our list of 61 commonly traded stocks and focuses on the
differences in trading algorithms arising from one key parameter: trigger mechanism.
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Chapter 5

Backtesting of Trading Strategies

5.1 The General Backtesting Process

A natural question is to ask which configuration of parameters results in the best performance.
One way to compare them is to test on historical data and measure the performance of each. This
procedure is called backtesting. Backtesting a pairs trading strategy on a particular pair of stocks
involves choosing a suitable set of historical data H, running the strategy on H and noting wins and
losses of each trade and computing some measure of performance, such as cumulative returns. For
comparison, one can do backtesting on alternative configurations of a given pairs trading strategy
on the same data H and compare the relative performance results. This basic procedure can be
done across a variety of strategies, pairs, sets of historical data and performance measures to help
identify the best overall trading strategy. In our experiments we focused on testing the performance
of trading strategies where the major difference was in the type of trigger mechanism.

The raw data used in the experiments are the TAQ BAM data for the 61 highly liquid US
stocks frequently traded by professional pair traders, as described in Chapter 3. Since we examine
all pairs for a given set of stocks, the results presented here are based on

(
61
2

)
= 1830 pairs. Our

strategy works on high-frequency time frames, and thus the total dataset we consider here is limited
to one month (March 2008) which consists of 20 trading days. While designing our market-wide
pairs trading strategy we performed some preliminary experiments using MATLAB to get a feel for
the different parameters and range of values they would take. These values are given in Table 4.1.
As mentioned in Chapter 2, Maronna correlation time series are computationally expensive to
produce, and this causes some complexity in our experiment. We tried three different approaches,
and each exhibited some trade-off among efficiency, accuracy and feasibility of implementation. In
this experiment, we used MATLAB to produce correlation time series, and used them in our pair
trading strategies. The caveat here is that calculating the Maronna correlation coefficients pair-
wise no longer assures the resulting correlation matrix is positive semi-definite (PSD), an important
theoretical property of correlation matrices. While this approach worked reasonably well for a small
dataset of 61 stocks, we are also aware that this solution will not scale. Nonetheless, using MATLAB
to generate our correlations directly proved to be more efficient and feasible for this small data set.
How we might use an approach more integrated with MarketMiner is discussed in Chapter 8.
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5.2 Evaluating a Trading Strategy

The approach in which an intra-day strategy is evaluated differs from strategies which make trades
only occasionally (e.g., every few days or even just once a month, in the case of a pension or
mutual fund). Since we have many trades each day, we not only want to evaluate how the strategy
performs over multiple days through a given period of time, but also within each day. To do so,
we adapt some of the trading model evaluation measurements from the high frequency finance
literature [2]. In a given trading day t, for each for pair p and parameter vector k, a set Rt,k

p of
returns is generated using our trading algorithm in the previous chapter. Therefore the total set of
returns for the trading periods is just the union of each days returns:

Rk
p =

T⋃

t=1

Rt,k
p , (5.1)

where T is the total number of trading days under consideration. The following analysis considers
three key performance metrics to assess the performance of a trading strategy: cumulative returns,
maximum draw-down and win-loss ratio. These performance measures can be defined either over a
given pair p and parameter set k, or summarized over all pairs or over all parameter sets. Each of
the three variants provides a different view of the results. For example, summarizing the results over
all pairs for a given parameter set indicates which parameters are most effective, while summarizing
over all parameter sets for a given pair indicates that the pair may be a particular good candidate
for pairs trading and less sensitive to choice of parameters. The formulas for each of the three
performance measures are given below.

1. Cumulative Returns: Cumulative returns measures the equity growth of a particular strategy.
This measure is appropriate when we assume that the strategy always reinvests the total
available capital at the start of each period. The daily cumulative return for pair p and
parameter vector k on day t is defined as

rt,k
p =

|Rt,k
p |∏

q=1

(rt,k
p,q + 1) (5.2)

where rt,k
p,q is the qth return on day t, and |Rt,k

p | denotes the number of trades in the set Rt,k
p .

The total cumulative return rk
p over the entire trading period, again for pair p and parameter

set k, is calculated as

rk
p =

T∏

t=1

(rt,k
p ). (5.3)

Both the daily and total cumulative returns can be further summarized by aggregating the
returns over all pairs using a given parameter set, or over all parameter sets but for a particular
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pair. These measures can be used to test the effects of pairs choice and parameter choice on
returns of trading strategies, and thus help with refining trading strategies. For example, the
total cumulative return over all pairs on day t using parameter set k is

rt,k =
∏

p∈Φ

(rt,k
p ) (5.4)

and similarly, the total cumulative return for pair p on day t over all parameter sets is

rt
p =

∏

k∈K

(rt,k
p ). (5.5)

The same summary calculations can be applied to daily cumulative returns.

2. Maximum Drawdown: Maximum drawdown is a measure of the riskiness of a trading strategy.
It is the maximum compounded, not annualized, loss that the strategy ever incurs at some
intermediate point in time during the life of the investment strategy. It can also be seen as
the “worst peak to valley drop” of the compounded return over the investment period, for
the pair p:

MDDp = max
k∈K

(
rk
p,qa

− rk
p,qb

rk
p,qa

: qa, qb ∈ Rk
p , qa ≤ qb

)
, (5.6)

where rk
p,qa

and rk
p,qb

are the cumulative returns for pair p using parameter set k from trade
number 1 to qa and qb, respectively. Note that we could also define maximum drawdown
MDDk for a given parameter set k. Moreover, we can define the two variants of maximum
drawdown on a daily basis for pair p and parameter set k, which is:

MDDk
p = max

(
rk
p,ta − rk

p,tb

rk
p,ta

: ta, tb ∈ T, ta ≤ tb

)
. (5.7)

3. Win-Loss Ratio: The win-over-loss trades ratio provides additional information on the ef-
fectiveness of strategies, essentially indicating the relative frequency of “wins” throughout a
trading period. Its definition is

W k
p

Lk
p

=
|{rk

p,q : rk
p,q > 0, q ∈ Rk

p}|
|{rk

p,q : rk
p,q < 0, q ∈ Rk

p}|
, (5.8)

where {rk
p,q : rk

p,q > 0)} is a set of trades with positive returns, and {rk
p,q : rk

p,q < 0)} is the set
of trades with negative returns. If we are interested in the difference of the performance of
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the strategies with different parameters values, we can use

W k

Lk
=
|{rk

p,q : rk
p,q > 0, p ∈ Φ, q ∈ Rk

p}|
|{rk

p,q : rk
p,q < 0, p ∈ Φ, q ∈ Rk

p}|
, (5.9)

where again Φ denotes the set of all pairs under consideration.

After a series of tests, in the end we chose performance measures for pairs of stocks averaged
over all parameters except for the trigger mechanism over the entire trading period of one month
(March, 2008) because our goal is to compare the results over general choices of parameters except
for trigger mechanism. This way we can focus on the effects of trigger mechanism and average
out impacts coming from other parameter choices. The next chapter presents more details on
our approach. Our evaluation procedure takes as input the returns data generated from our pairs
trading algorithms and output three types of performance measures for each pair of stocks. These
performance data are the raw data for the statistical analysis of the following chapter.
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Chapter 6

Statistical Analysis

The results presented here focus on some preliminary performance data from trading 61 stocks
generated by our MATLAB implementation. Further, some of the intuition and implications of
these results, including impact on actual pairs trading practice, will be discussed in more detail
in the following chapter. Here we primarily present the results of our analysis and describe the
statistical tests we used to derive the results.

Performance comparisons of two different trading strategies can be done across several dimen-
sions: the trigger mechanism used, the choices of parameters and pairs, etc. We focus attention on
differences in performance arising from different choices of trigger mechanism. With a large set of
returns data and their corresponding performance measures we may ask whether this information
can help to shed some light on which strategies are more effective - those using Pearson, Maronna
or Combined trigger mechanisms. We analyze three performance measures - cumulative monthly
return (5.3), maximum daily drawdown (5.7), and the win-loss ratio (5.9). We aggregate the data
by taking an average over all parameter sets considered.

Here are the specific details for our analysis. We may consider Pearson, Maronna and Combined
trigger mechanisms as our treatments, which are applied to 1830 pairs of stocks, with other factors
(not considered part of our treatment) consisting of the remaining elements in our parameter sets:
{∆s, A,M,W, Y, d, `, RT, HP, ST}. We run the experiments on different levels of these factors to
account for bias of choosing any one level. Each pair of stocks receives each treatment at each level
of the remaining factors.

The response from each treatment is one of our three performance measures - cumulative
monthly return, maximum daily draw down, and win-loss ratio. We discuss in detail the case
of cumulative monthly returns, but the other cases are similar. Recall our notation that rk

p is
the total cumulative return of pair p using parameter vector k over the period of one month. To
highlight the fact that there are three treatments we let rTmech,k′

p denote the return with a specified
trigger mechanism Tmech with k′ ∈ K ′ representing the 14 different parameter vectors of the form
{∆s, M, W, d, `, RT, HP, ST, Y }. Thus there are 14 levels of non-treatment factors, and each pair
has a response rTmech,k′

p for each of these levels. Our approach is to average these responses over the
different factor levels to get a single estimate of the performance of pair p using trigger mechanism
Tmech. Thus, the sample observations from our populations are average cumulative returns over
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the month:

r̄Tmech
p =

∑
k′∈K′ r

Tmech,k′
p

|K ′|
where the average is over the set of alternate parameter vectors K ′. We define average maximum
daily drawdown and win-loss ratio for each pair of stocks and each correlation measure analogously,
again where the average is over the 14 different levels of the non-treatment factors. For simplicity,
we will call any trading strategies using trigger mechanism Tmech a Tmech strategy.

6.1 Descriptive Statistics

Tables 6.1, 6.2 and 6.3 contain descriptive statistics for each performance measure with respect to
the different trigger mechanisms. The tables include mean, median, standard deviation, skewness
and kurtosis. Mean and median give estimates of the central location of the data, and standard
deviation describes the spread of the data. Also included are measures of skewness and kurtosis,
which are the third and fourth moments of a distribution, respectively. Generally speaking, skew-
ness measures the lack of symmetry of a distribution around its mean, and kurtosis measures the
degree to which a distribution is more or less “peaked” than a normal distribution. A higher degree
of skew to the right (large positive skewness statistic) is more attractive for a trading strategy since
it means there are higher proportion of samples that are greater than the mean than those less
than the mean. A greater kurtosis means there is a relatively greater probability of an observed
value being either close to the mean or far from the mean.

From Table 6.1, we can see that Pearson has the highest average cumulative monthly return
both in terms of mean and median. The “best” value for each measurement is shown in bold. For
the mean, Pearson is 1.1521, around 3.67% more than that of Combined which has the smallest
returns. For the median, Pearson has a value of 1.1278, around 2.65% more than that of Combined.
The difference between Pearson and Maronna is around 0.4%, much smaller than the difference
between Pearson and Combined. We also notice that although Combined has lowest returns, it also
has the loweset standard deviation, which is a measure of risk. Combined has a standard deviation
of 0.0747, following by Pearson 0.1085, and the highest one is Maronna with a value of 0.1235. This
means the value of the monthly returns of the Combined are less spread than both Maronna and
Pearson, which indicates less risk. These two observations of the means and standard deviation
confirms the intuition that high returns often associate with high risk, and low returns with low
risk. To balance the consideration of risk and reward, Table 6.1 also shows the Sharpe ratio, which
is a measure of risk-adjusted return and defined as

SR = r̄√
s2

where r̄ is the average return and s2 is the sample variance of the return around its mean. A higher
Sharpe ratio corresponds to more attractive risk-to-reward characteristics. In particular, a risk
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averse trader would tend to favor trading strategies with high Sharpe ratios. Combined has the
highest Sharpe ratio (14.8568), and Maronna has the lowest (9.2899). This implies that although
Combined has smallest returns, its advantage in terms of risk make it the most attractive trigger
mechanism for balancing risk of reward at least according to the Sharpe ratio.

From the skewness and kurtosis of monthly returns, we find that the cumulative returns of
Maronna trading strategies have a skewness of 2.8484 and kurtosis of 16.6541. Compared to the
skewness and kurtosis of Pearson (1.9281 and 9.4091 respectively) and those of the Combined
(1.4871 and 7.1706 respectively), Maronna is much more skewed to the right and has fatter tails
than the others, which suggests more trades yield unusually high returns. Therefore, although the
location estimate and standard deviation shows Maronna does not yield the highest return, and
potentially have high risk, these skewness and kurtosis statistics suggest that Maronna strategies
yield very high returns for select pairs.

Table 6.2 gives another aspect of risk in terms of the maximum drawdown. Notice the skewness
of all the three is relatively high with values above 3, so we should look at the median as our
estimate of the central location measure. Pearson has the lowest median maximum daily dawn
down (1.1533%). This means if we use Pearson trigger mechanism in the pair trading strategy,
on average there will be at most 1.1533% drop on the compounded returns from the last peak
during March of 2008. It also shows that Maronna has the highest maximum drawdown (1.2446%)
and thus Maronna mechanisms may introduce very high losses on average. Combined is close to
Pearson with slightly worse performance.

Turning to our statistics for the win-loss ratio, we note that if the win loss ratio of a strategy
is about 1 or lower than 1, then it may be considered ineffective since it loses more often than
it wins. If the strategy has a value greatly higher than 1, it may indicate the strategy has high
predictive power of the relative prices of the stocks. That is, if a strategy has a high win-loss ratio,
this indicates that it is effectively anticipating the price movements of the pairs in order to make a
positive return on trades.

From Table 6.3, we see that all trigger mechanisms have a win-loss ratio greater than 1 and
that the mean and median of Pearson and Combined are very similar in value, while Combined has
slightly higher values, 1.2787 and 1.2689. The standard deviation of Combined also is the highest
overall, which means the win-loss ratio may vary a lot depending on the pair of stocks. Nonetheless,
the values of all the three trigger mechanisms of win-loss ratios are relatively close, and thus the
difference of these point estimates may not be significant. We test this claim later in the chapter.

In addition to these tables, box plots are included to give a qualitative appreciation of the data
(see Figures 6.1 to 6.3). On each box, the central mark is the median of the distribution, the edges
of the box are the 25th and 75th percentiles (or first and third quartiles), the whiskers extend to
the most extreme data points not considered outliers, and outliers are plotted individually. From
Figure 6.1, we see that Maronna has the highest spread, and some extreme high values for some
pairs plotted as outliers. High spread suggests high risk, and some extreme high values may need
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Trigger mechanism: Tmech

Maronna Pearson Combined
Mean 1.1473 1.1521 1.1098
Median 1.1204 1.1278 1.0979
Standard Deviation 0.1235 0.1085 0.0747
Sharpe Ratio 9.2899 10.6184 14.8568
Skewness 2.8484 1.9281 1.4871
Kurtosis 16.6541 9.4091 7.1706

Table 6.1: Average cumulative monthly returns

Trigger mechanism: Tmech

Maronna Pearson Combined
Mean 1.6662% 1.5433% 1.5666%
Median 1.2446% 1.1533% 1.1702%
Standard Deviation 1.5481 1.4606 1.4668
Skewness 3.4443 3.5005 3.889
Kurtosis 21.5922 21.5295 27.3131

Table 6.2: Average maximum daily drawdown

Trigger mechanism: Tmech

Maronna Pearson Combined
Mean 1.2697 1.2724 1.2787
Median 1.2652 1.2688 1.2689
Standard Deviation 0.1263 0.1269 0.1356
Skewness 0.2897 0.2521 0.3002
Kurtosis 3.0781 3.0665 3.0991

Table 6.3: Average win-loss ratio

some investigation on of which pairs and why Maronna makes extreme high profit. Pearson has
the highest median, and less spread than Maronna. This suggests on average Pearson is better
than Maronna in term of both rewards and risks, which makes Pearson preferable to Maronna.
Combined has a lower median, fewer outliers, and smaller spread. This confirms with previous
observations that Combined is most preferable in terms of risk. Figure 6.2 shows the performance
in term of maximum drawdown of the three trigger mechanisms are similar, but Pearson seems
to have less outliers than the others. This indicates that Pearson trigger mechanism generate
smoother cumulative returns over the test period, which may be attractive for some traders. From
Figure 6.3, we see that the performance of win loss ratio of Maronna and Pearson are very similar.
However, Combined seems to have higher spread and more outliers with extreme values on the
positive side. This, again, is worthy of further investigation into which pairs and why Combined
has high predictive power in these cases.
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Figure 6.1: Box plot for average cumulative monthly returns
The central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted individually. From the
plot, we can see that Maronna have the highest spread, and some extreme high values for some pairs as
plotted as outliers. Pearson have the highest median, and less spread than Maronna. Combined has lower
median, but also has a lot less outliers, and smaller spread.
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Figure 6.2: Box plot for average maximum daily drawdown
The performance of the three trigger mechanisms are similar, but Pearson seems to have less outliers than
the others.

6.2 Some Tests of Significance

It is important to stress that all of these simple comparisons between values in the tables above
need to be examined on a more rigorous standard of statistical significance in order to be truly
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Figure 6.3: Box plot for average win-loss ratio
The performance of win loss ratio of Maronna and Pearson are very similar. However, Combined seems to
have higher spread and more outliers with extreme values.

meaningful. To do so we consider a few simple statistical tests. We discuss the ideas of a basic
scheme for designing tests on cumulative monthly returns as one example of the type of analysis we
are interested in, and the other performance measures can be analyzed in a similar fashion. To be
clear about the underlying statistical model on which we are basing our analysis we can consider
our tests with respect to three populations. One population is cumulative monthly returns of
pairs averaged over the 14 different parameter sets using the Pearson trigger mechanism in the
trading strategy amongst all ‘highly’ correlated pairs in the market. The other populations are
similarly defined, where instead we use Maronna and Combined trigger mechanisms. The averaged
cumulative monthly returns of the 1830 pairs yields 1830 sample data points per population.

We conduct hypothesis tests related to whether trading under the three types of trigger mech-
anisms differ significantly in terms of their means. Combining information on variance, skewness
and kurtosis would give a more complete measure of risk, but unfortunately there are no common
statistical inference tests of skewness and kurtosis and the standard tests of variance require an
assumption of normality which was not justified in most of our data sets. Thus, we focus solely on
testing difference of means.

Assume the pairs arising from our 61 stocks are random draws from the three populations. It
is unlikely that these populations are independent, due to the simple observation that if a pair
has profitable trades in one correlation measure it is likely to have profitable trades with another
correlation measure.

To deal with dependent populations, we use a paired t-test to compare the the difference in
means of two populations at a time. In the paired t-test we consider differences of sample obser-
vations. In the case where we compare the Pearson and Maronna populations define the vector of
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differences:
Dp = rPSN

p − rMRN
p , p ∈ Φ. (6.1)

If we can verify the assumption that the differences Dp represent independent observations form
an N(δ, σ2

d), then we can test the null hypothesis H0:

H0 : δ = 0

versus
Ha : δ 6= 0,

using the paired t-test procedure, a common method in statistics analysis [13]. Note that we
may safely assume normality here, since the sample size for this test n = 1830 is substantial and
thus by the Central Limit Theorem the mean is approximately normally distributed. Besides this
two-sided test, the two alternate one-sided tests can be conducted to decide which mean is larger,
if significantly different. For clarity, let δPSN,MRN denote the population mean for the difference
between trading strategies using Pearson and Maronna (as in (6.1)). Similarly define δPSN,COM

and δPSN,MRN. Table 6.4 is a summary of results of the paired t-tests for making inferences on the
differences of means for cumulative monthly returns:

H0 Ha t-statistic Reject H0 (Y/N)
δPSN, MRN ≤ 0 δPSN, MRN > 0 5.6352 Yes
δPSN, COM ≤ 0 δPSN, COM > 0 47.5728 Yes
δMRN, COM ≤ 0 δMRN, COM > 0 28.8835 Yes

Table 6.4: Paired t-test for average cumulative returns (all tests at 5% significance level)

We conclude with high statistical significance that the mean of cumulative monthly returns is
highest for Pearson, next highest for Maronna and lowest for Combined.

Similar tests were conducted for average maximum drawdown and win-loss ratio for each of
Pearson, Maronna, and Combined trading strategies on our 1830 pairs. The tests are set up
analogously to those above and we can conclude the following with high statistical significance:
the average maximum-draw-down over 14 parameter vectors is smallest for Combined, and there is
no significant difference between Pearson and Maronna. As for win-loss ratio, Combined performs
better than Pearson which in turn performs better than Maronna. Tables 6.5 and 6.6 give details
for these conclusions.

The results in these tables are interpreted in the following chapter.
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H0 Ha t-statistic Reject H0 (Y/N)
δPSN, COM = 0 δPSN, COM 6= 0 0.51123 No
δMRN, PSN ≤ 0 δMRN, PSN > 0 34.9392 Yes
δMRN, COM ≤ 0 δMRN, COM > 0 30.4685 Yes

Table 6.5: Paired t-test for average maximum-draw-down (all tests at 5% significance level)

H0 Ha t-statistic Reject H0 (Y/N)
δPSN, MRN = 0 δPSN, MRN > 0 1.8015 No
δPSN, COM ≥ 0 δPSN, COM < 0 4.8359 Yes
δMRN, COM ≥ 0 δMRN, COM < 0 6.3008 Yes

Table 6.6: Paired t-test for average win-loss ratio (all tests at 5% significance level)
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Chapter 7

Discussion of Results and

Implications for Traders

In this chapter we take some time to discuss some of the implications of the statistical analysis from
the previous chapter for the practice of pairs trading. Although more backtesting with more pairs,
more sets of historical data and different parameter sets would be needed to have a more complete
picture of the effectiveness of our pairs trading strategy under alternate trading mechanisms, we
can make some preliminary remarks and provide general insights based on the data that we have
collected.

We begin with a summary of our findings. Combining Table 6.2 to Table 6.6, the ranks in terms
of the performance measures of the three different trigger mechanisms are given in Table 7.1. A tie
indicates that the statistical test comparing their performances was inconclusive.

Trigger mechanism: Tmech

Maronna Pearson Combined
Cumulative Return 2 1 3
Maximum Drawdown 2 1 1
Win Loss Ratio 2 2 1

Table 7.1: Ranks in performance measure

We were actually quite surprised that on average Pearson generates significantly higher cumula-
tive returns than Maronna. Theoretically, Maronna correlation, as a robust measure of correlation,
should give a better estimate of the true correlation of highly volatile set of data. Therefore, we ex-
pect that trigger mechanisms based on Maronna correlation to detect break-downs of co-movement
more accurately, and thus brings higher returns with less risk. Nonetheless, this turns out not to
the case in practice. One possible explanation of this is the phenomenon in our observation that
Maronna lags in identifying divergence in correlation when compared to Pearson. Careful inspec-
tion of Figure 3.2, for instance, demonstrates the phenomenon. Our intuition is that although
Pearson is more sensitive to outliers, it also seems to be “quicker” to respond to price changes and
thus on average enter trades at more favorable times. In comparison, Maronna enters a position
at a lagged time, even though it might have a more accurate measure of the true correlation than
Pearson according to theory. Thus, this observation that Maronna is less responsive than Pearson
seems to outweigh the downside of calculating true correlation less accurately or over-reacting to
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outlying data, which are criticisms of Pearson’s measure.
These observations, however, are based on our algorithms using filtered data. It stands to

reason that the less clean the data, the higher is the cost of being sensitive to outliers and thus the
diminished performance of Pearson compared to Maronna. Some preliminary results we undertook
on unfiltered data confirms this intuition. The trading industry’s use of filters as opposed to robust
correlation computational engines to deal with highly volatile and “dirty” data, seems to be partially
justified by our analysis. Indeed, filters are simple and direct ways to “clean” data, whereas robust
correlation measures like Maronna are more complex to implement. However, this also underscores
the importance of having effective data filters in trading applications, and we propose that having
a robust correlation measure like Maronna might be used as some benchmark or reference point
when comparing the effectiveness of data filters.

It should also be noted that the above discussion refers to average cumulative returns over
all sets of parameters we considered in our study. Interestingly, as can be seen from Figure 6.1
the distribution of monthly returns for Maronna trading strategy are more skewed to the right
than Pearson. This is also reflected in the skewness value of Maronna trading strategies. In
other words, there were more pairs that performed exceptionally well under a Maronna strategy
than with Pearson. An important implication is that if a trader could identify something about the
characteristics of pairs that perform well with Maronna strategies, this would provide a competitive
advantage over other traders who only consider Pearson strategies.

On the other hand, we find that trading strategies with Maronna trigger mechanisms perform
worse in terms of maximum drawdown, which was also surprising. This contradicts our basic
intuition that Maronna correlation is a more “conservative” measure of correlation, since in theory
it is less sensitive to short term trends in prices that may result in poorly-timed trades or large
losses. One possible explanation of this counter-intuitive finding is the observation made earlier
that Maronna lags in identifying deterioration in correlation. This lag may lead Maronna strategies
triggering trades at inopportune times and thus become exposed to large losses. As intra-day
traders are well aware, small lags in computation can be detrimental to a trading strategy. This
phenomenon is a subject for further investigation.

Moving our focus away from direct comparisons between Maronna trigger mechanisms and Pear-
son trigger mechanisms, we observe that trading strategies using the Combined trading mechanism
has some interesting characteristics. As mentioned previously, Combined trigger mechanisms have
the largest Sharpe ratio (14.8568), which suggests that Combined strategies strike a good balance
between risk and reward. We do not pursue detailed explanations of why this might be the case, as
it would reveal too much information about the Combined trading mechanism which is proprietary.

Another observation that adds to the attractiveness of Combined strategies is due to the fact
that up until this point we have not considered transaction costs per trade. In a practical setting,
each trade made by a trader involves some cost. One indicator of how this might effect the various
strategies is by looking at the average number of trades made per day. We found that, on average,
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Combined strategies made around 30 trades per day, whereas Pearson and Maronna strategies
made closer to 40 trades per day. In other words, Combined strategies made their returns on fewer
trades and thus will be less adversely affected by transaction costs.

Trigger mechanism: Tmech

Maronna Pearson Combined
Average Number of Trades 38.8631 38.3598 29.7760
Standard Deviation of Number of Trades 5.3500 6.4708 5.1091

Table 7.2: Average number of trades per day for each trigger mechanisms

With these numbers in mind, another observation can be made regarding the effectiveness of
Combined strategies. From Table 7.1 we see that Combined outperforms Maronna and Pearson in
terms of win-loss ratio. Thus, although Combined strategies trigger fewer trades, a higher ratio of
these trades yield “wins”. This may be attractive for a trader who bears high commission costs
and prefers a strategy which enters fewer well-timed trades. Psychologically, traders may prefer
this scenario, as having a larger percentage of smaller “wins” may be less stressful and give more
confidence.
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Chapter 8

Some Outstanding Issues

Our analysis and findings are based on some important assumptions and choices in the design,
implementation and assessment of our trading strategies. Some of these assumptions and choices
raise some potential issues. We will discuss some of these issues and point to future research
directions that might be taken to rectify them.

8.1 Improved Integration with MarketMiner

As discussed in Section 5.1, we implemented the pairs trading algorithm, including the computation
of robust correlation, in MATLAB. Although this turned out to be the most efficient approach of
those that we tried, if larger experiments are to be undertaken, a more sophisticated approach
to computation should be considered that takes advantage of the efficiencies of the MarketMiner

platform.
Our MATLAB implementation does not use MarketMiner to compute correlation, but rather

re-created all correlation time series in MATLAB. We were able to produce a daily return vector
Rt,k

p for a given pair p, day t and parameter vector k in approximately 2 seconds, depending on
the specific pair and parameters, using an Open SUSE Linux PC with a dual core Intel Pentium
4 2.80 GHz processor. With the need to produce 1830 (number of pairs) · 20 (number of business
days in March, 2008) · 42 (number of parameter sets) daily return vectors to track returns over a
given month, a rough estimate for the computation time on a single computer is 854 hours. Using
this same scenario but backtesting over a year would take about 445 days, and even worse, scaling
up to 1000 pairs over just one month would take an estimated 19425 days, or 53 years! We were
able to reduce the computation time by creating scripts which sent out independent MATLAB jobs
to a Sun Grid Engine scheduler. However, even when distributing jobs the computations would
be prohibitively slow for large data sets. This solution still has problems, as the matrices are still
not positive semi-definite, and more importantly does not allow for a tight interaction between
independent pairs throughout the course of a trading day, which can be used to optimize certain
aspects of the strategy.

Given the challenging task of analyzing market-wide correlation matrices, it seems apparent
that a custom implementation integrated directly with the MarketMiner platform is necessary to
achieve the desired scale and timing objectives. The potential advantage of a tight integration with
MarketMiner is that the outputs from each strategy (trades decision) can be gathered by a master
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process to perform additional tasks such as risk management and liquidity provisioning. Also,
aggregating the results into a single basket, as opposed to many individual trade orders, allows the
trading system to utilize a sophisticated list-based algorithm to optimize the actual execution of
the trades. This approach was not pursued in this study but is the subject or further studies at
Scalable Analytics, Inc.

8.2 Implementation Shortfall

The gap between the decision price (price at which we want to buy/sell a stock) and the final trade
price (price that we actually pay for a stock) is referred to as “implementation shortfall”. There
are a number of components that contribute to implementation shortfall, including transactions
costs (commissions), “moving the market” and “lost opportunity”.

Transaction costs were briefly considered in Chapter 7 where we saw that this consideration
might have implications on the performance of strategies that trigger many or few trades. However,
our analysis was somewhat ad hoc, looking at the impact of transaction costs only after we ran our
trading algorithm. A future direction would be to consider the cost of a transaction even before
triggering a trade. This would require a modification of the canonical trading strategy we used in
this study.

The term “moving the market” refers to the possibility that large enough orders of stocks will
significantly affect the market price. It is common to assume that traders in financial markets as
“price takers”, in the sense that they can purchase as many stocks as they would like at the current
price being offered. This may be true if the trader is only purchasing a small number of stocks, but
may not be true for large purchases.

“Lost opportunity” is the possibility that a trader’s order size for a stock is sufficiently large
that there are not enough stocks willing to be sold at the given price to fill the order.

Our current analysis does not address these latter two issues. To include “moving the market”
and “lost opportunities” would require more sophisticated modeling of the stock market. This
would likely require a rethinking of our basic pairs trading algorithm.

8.3 Improvements to the Canonical Trading Strategy

The canonical pairs trading strategy in Chapter 4 is a simplified version of a strategy that may
be used by professional traders. Access to the precise details of a working strategy is hard to
come by because of proprietary concerns. An effective strategy can be quite lucrative for a trading
company, and giving away the details of their approach is therefore an unwise business decision.
Lack of access to detailed information on specific working strategies made it difficult to know exactly
how correlation is used to trigger and close trades in practice.
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Many practitioners in industry identify the pairs of stocks to trade by looking for historically
correlated and fundamentally related stocks, and exploit the arbitrage opportunities by only looking
at the spread of the two identified stocks. Profit is made by a basic buy-low-sell-high approach on
the spread. The näıve buy-low-sell-high approach can be efficient if the timing to enter and exit
trades is well chosen. However, choosing the ideal timing can be extremely difficult, and technical
traders use various criteria to define and detect trading opportunities, such as buy if the spread is
below x, and sell when the spread is above y. This problem of timing is magnified when traders
trade intra-daily because of volatility in high frequency stock prices. Highly volatile prices can
cause trading strategies to become overly sensitive and thus trigger poorly timed trades.

One of the primary issues with our pairs trading strategy relates to how we choose the entrance
and exit criteria of a trade. We define entrance in terms of correlation drop, and initiate a trade
when the correlation of the pair drops d% from its average. However, the exit criteria of the trade
has to do with retracement of the difference in prices of the stocks; that is, the spread. This
incongruence between entry (based on correlation) and exit (based on spread) criteria warrants
further investigation. The connection between correlation change and change in spread was not
explored deeply and we found in practice that there are occasions where our trading strategy
was effectively “waiting” to make a loss based on this exit criteria. There is scope for further
investigation as to why this situation occurs. One direction is to consider pairs trading strategies
that use correlation calculations in both entry and exit criteria.

8.4 Parameter Tuning

Experimentation on our trading strategies showed that performance greatly depends not only on
the correlation measure but also on the other parameters in our trading algorithm, such as the
percentage correlation drop d or correlation window M . We did all of our analysis in this study
based on an average over all parameter sets we considered, which is intended to give a measure
of overall performance. However, this procedure may lead to bias. If we can have an algorithm
to find a set of optimal parameter sets for each strategy and compare them under their optimal
parameter sets, the results will be less biased because of the parameter choice. The procedure
of finding these optimal parameters is termed “parameter tuning” and is important for many
financial applications. A next direction for this research would be to explore “parameter tuning” to
improve our conclusions when comparing trading strategies. One computational package for tuning
parameters we are considering implementing is ParamILS which is currently being developed at the
University of British Columbia [3].
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Chapter 9

Conclusions

In this essay, we first compared the traditional correlation measure, Pearson correlation, with
a robust correlation measure, Maronna correlation on high frequency financial data. We then
explored the use of traditional and robust correlation measures in designing pairs trading strategies.
Specifically, these correlation measures were used to design alternate trigger mechanisms which was
used to trigger trades in a canonical pairs trading strategy framework. The trading algorithm was
backtested on a set of historical data, and performance data was collected and analyzed statistically
to reveal information about the effectiveness of alternate trigger mechanisms.

In Chapter 3 we observed that preliminary plots of stock prices and correlations suggest that
there are some important differences between Pearson and Maronna correlation. Pearson correlation
of log returns data is unstable due to noise in raw price data, and using filters smoothed the
correlation efficiently, but may cause the Pearson measure to be sensitive to the choice of filter. On
the other hand, Maronna correlation is generally more stable and smooth as time evolves.

We then constructed a canonical pairs trading strategy that demonstrated how to use correlation
to trigger trades and also discussed how to decide on the position and criteria to exit trades. This
canonical pairs trading strategy was based on feedback and input from professionals traders, and
we hope accurately represents some aspects of the practice of pairs trading. However, as we also
saw in Chapter 8 there are some elements of realistic practice not faithfully represented in our
algorithm, which might be incorporated for more realism in later studies.

Using our canonical pairs trading strategy, we derived performance data by backtesting on
historical data on a set of 61 stocks. We discussed some of the computational issues associated
with backtesting, and advocated for a parallel method of computation to speed calculations and
test on a larger set of stocks. Backtesting yielded several performance measures, which we then
used to test the relative performance of our trigger mechanisms. We observed significant differences
between strategies which use Pearson correlation to trigger trades and those which use Maronna
correlation. Each has different strengths and weaknesses in terms of their risk versus return profiles.
In particular, on average Pearson yields the highest returns with the higher risk in terms of variance
and win-loss ratio. Combined performs the best in terms of Sharpe ratio and win-loss ratio, which
indicates that it has the lowest risk. The performance of Maronna is somewhat in between of the
the other two.

We were surprised by the significantly higher cumulative returns of Pearson trigger mechanisms
as compared to Maronna. This was because in theory, robust correlation should give a better
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estimate of the true correlation of highly volatile set of data. Therefore, we expect that trigger
mechanisms based on Maronna correlation to detect break-downs of co-movement more accurately
than Pearson, and thus brings higher returns with less risk. Nonetheless, this turns out not to
the case in practice. One possible explanation of this is the phenomenon we saw in practice that
Maronna lags in identifying divergence in correlation when compared to Pearson. Our intuition
is that although Pearson is more sensitive to outliers, it also seems to be “quicker” to respond
to price changes and thus on average enter trades at more favorable times. Thus, this observa-
tion that Maronna is less responsive than Pearson seems to outweigh the downside of calculating
true correlation less accurately or over-reacting to outlying data, which are criticisms of Pearson’s
measure.

The effect of filtering the data was also pronounced when we considered our results. Some
preliminary results we undertook on unfiltered data showed that Maronna faired better when
their was less aggressive filtering or smoothing of the data when compared to Pearson. Thus, the
trading industry’s use of filters as opposed to robust correlation computational engines to deal with
highly volatile and “dirty” data, seems to be partially justified by our analysis. Indeed, filters
are simple and direct ways to “clean” data, whereas robust correlation measures like Maronna are
more complex to implement. However, this also underscores the importance of having effective
data filters in trading applications, and we propose that having a robust correlation measure like
Maronna might be used as some benchmark or reference point when comparing the effectiveness of
data filters.

We should mention, however, that robust correlation did yield attractive risk characteristics
in terms of win-loss ratio and variance of returns when combined with Pearson correlation in our
Combined trigger mechanism. We believe this to be an interesting finding and suggests that robust
correlation has attractive features for risk averse traders. Overall, we believe that there is value for
traders to explore robust correlation when undertaking automated trading and we hope this study
can stimulate interest and point out promising directions for future research.
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Appendix A

The MarketMiner Platform

The explosive trend toward automated trading and the availability of tick data at sub-millisecond
rates introduces new demands and opportunities which require quick online analysis and decision
processing. MarketMiner is an ongoing research project that addresses this data analysis problem
by supporting the computational workload associated with performing market-wide backtesting of
trading strategies.

The original design of MarketMiner was a basic MPI-enabled pipeline for processing quote
data [10], and has since been extended to support arbitrary directed acyclic graph (DAG) stream
processing workflows. One of the strengths of MPI is that it is the de-facto standard for messaging-
passing parallel programming and there are a large number of high quality open-source numerical
libraries available. Certain analytics platforms such as MATLAB take advantage of these MPI
libraries to implement their distributed computation toolkit. Unlike MATLAB, we are able to use
these libraries in a far more tightly integrated fashion beyond the simple remote procedure call
which is the basis of their system.

Given the requirements of a pairs trading strategy, the enabling feature of MarketMiner is its
ability to handle a large amount of market-wide, high frequency “tick” data from a live feed or from
a historical database, and use this data to produce large correlation matrices in an online fashion.
The MarketMiner system also has the ability to compute Maronna correlation, which in general is
computationally expensive and thus not commonly implemented in statistical software packages,
especially those that operate on real-time data. The MarketMiner system overcomes this difficulty
by implementing a parallel algorithm for computing robust correlation matrices [1]. The original
work investigated its scalability as an offline algorithm, and more recently in an online setting [10].
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