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Preface

From ancient Greek times, music has been seen as a mathematical art.

Some of the physical, theoretical, cosmological, physiological,

acoustic, compositional, analytical and other implications of the rela­

tionship are explored in this book, which is suitable both for musical

mathematicians and for musicians interested in mathematics, as well as

for the general reader and listener.

In a collection of wide-ranging papers, with full use of illustrative

material, leading scholars join in demonstrating and analysing the con­

tinued vitality and vigour of the traditions arising from the ancient

beliefs that music and mathematics are fundamentally sister sciences.

This particular relationship is one that has long been of deep fascina­

tion to many people, and yet there has been no book addressing these

issues with the breadth and multi-focused approach offered here.

This volume is devoted to the memory of John Fauvel, Neil Bibby,

Charles Taylor and Robert Sherlaw Johnson, whose untimely deaths

occurred while this book was being completed.

February 2003
Raymond Flood

Robin Wilson
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And so they have handed down to us clear knowledge of the speed of the heavenly

bodies and their risings and settings, of geometry, numbers and, not least, of the

science of music. For these sciences seem to be related.

ARCHYTAS OF TARENTUM, EARLY FOURTH CENTURY BC

'We must maintain the principle we laid down when dealing with astronomy, that our

pupils must not leave their studies incomplete or stop short of the final objective. They

can do this just as much in harmonics as they could in astronomy, by wasting their

time on measuring audible concords and notes.'

'Lord, yes, and pretty silly they look', he said. 'They talk about "intervals" of

sound, and listen as cartjitlly as if they were trying to hear a conversation next door.

And some say they can distinguish a note between two others, which gives them a

minimum unit of measurement, while others maintain that there's no diffi:rence

between the notes in question. They are all using their ears instead of their minds.'

'You mean those people who torment catgut, and try to wring the truth out of it by

twisting it on pegs. '

PLATO, FOURTH CENTURY BC

The Pythagoreans considered all mathematical science to be divided into four parts;

one half they marked off as concerned with quantity, the other half with magnitude;

and each of these they posited as twofold. A quantity can be considered in regard to its

character by itself or in its relation to another quantity, magnitudes as either

stationary or in motion. Arithmetic, then, studies quantity as such, music the

relations between quantities, geometry magnitude at rest, spherics magnitude

inherently moving.

PROCLUS, FIFTH CENTURY

This science [mathematics] is the easiest. This is clearly proved by the fact that

mathematics is not beyond the intellectual grasp of anyone. For the people at large

and those wholly illiterate know how to draw figures and compute and sing, all of

which are mathematical operations.

ROGER BACON, c.1265

I do present you with a man of mine,

Cunning in music and in mathematics,

To instruct herfUlly in those sciences,

Whereof, I know, she is not ignorant.

WILLIAM SHAKESPEARE, 1594



May not Music be described as the Mathematic of Sense, Mathematic as the Music of

reason? The soul of each the same! Thus the musician feels Mathematic, the

mathematician thinks Music,-Music the dream, Mathematic the working life,-each

to receive its consummation from the other.

JAMES JOSEPH SYLVESTER, 1865

Mathematics and music, the most sharply contrasted fields of intellectual activity

which can be found, and yet related, supporting each other, as if to show forth the

secret connection which ties together all the activities of our mind . ..

H. VON HELMHOLTZ, 1884

Music is the arithmetic of sounds as optics is the geometry of light.

CLAUDE DEBUSSY, c.1900

Quite suddenly a young violinist appeared on a balcony above the courtyard. There

was a hush as, high above us, he struck up the first great D minor chords of Bach's

Chaconne. All at once, and with utter certainty, I had found my link with the centre . ..

The clear phrases of the Chaconne touched me like a cool wind, breaking through the

mist and revealing the towering structures beyond. There had always been a path to

the central order in the language of music, ... today no less than in Plato's day and in

Bach's. That I now knew from my own experience.

WALTER HEISENBERG, 1971

When Professor Spitta, the great expert on Bach, explained to [Ethel Voynich (Lily

Boole)] that in tuning, the third and fourth notes of the octave had to be just a little

off or otherwise the octave would not fit, she suddenly "began to hate God and to

despise the Almighty Creator of all things visible and invisible who couldn't make

even eight notes fit", and she remained devoutly atheistic for the rest of her days.

When Anne Freemantle told her many years later that Einstein had shown that it was

only in our space-time continuum that the octave does not fit, the ninety-six year old

Voynich replied reflectively, "Yes, perhaps I was a bit hasty."

DES MAcHALE, 1985





In the traditional arrangement of knowledge
and teaching in universities, music was one of
the seven liberal arts, along with the other
quadrivium subjects of arithmetic, geometry
and astronomy. This woodcut dates from 1504.

Music and mathematics: an
overVIew

Susan Wollenberg

Mathematics and music have traditionally been closely connected. The

seventeenth century has been seen by historians as a crucial turning-point,

when music was changingfrom science to art, and science was moving

from theoretical to practical. Many connections between science and music

can be traced for this period. In the nineteenth and twentieth centuries, the

development of the science of music and of mathematical approaches to

composition further extended the connections between the two fields.

Essentially, the essays in this book share the concern of commentators

throughout the ages with the investigation of the power of music.

Musicke I here call that Science, which of the Greeks is called Harmonie.
Musicke is a Mathematical Science, which teacheth, by sense and reason,
perfectly to judge, and order the diversities of soundes hye and low.

JOHN DEE (1570)

The invitation to write an introduction to this collection offered a welcome

opportunity to reflect on some of the historical, scientific, and artistic

approaches that have been developed in the linking of mathematics and

music. The two have traditionally been so closely connected that it is

their separation that elicits surprise. During the late sixteenth and early

seventeenth centuries when music began to be recognized more as an

art and to be treated pedagogically as language and analysed in expres­

sive terms, it might have been expected to lose thereby some of its sci­

entific connotations; yet in fact the science of music went on to develop

with renewed impetus.

This introduction sets out to explore, via a variety of texts, some of

the many historical and compositional manifestations of the links

between mathematics and music. (This endeavour cannot be other than

selective: the field is vast, ranging from ancient theory and early devel­

opments in structure such as those of the medieval motet, to the new

ideas of post-tonal music and experimental musical techniques

explored over the past century.) In what follows, the field is viewed

particularly from the perspective of a music historian with a special

interest in the history of music in its educational dimension.
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Aspects of notation and content

In contemplating the two disciplines, mathematics and music (and tak­

ing music here essentially to mean the Western 'Classical' tradition), it

is clear to the observer from the outset that they share some of their

most basic properties. Both are primarily (although not exclusively)

dependent on a specialized system of notation within which they are

first encoded by those who write them, and then decoded by those who

read (and, in the case of music, perform) them. Their notations are

both ancient and modern, rooted in many centuries of usage while at

the same time incorporating fresh developments and newly-contrived

systems to accommodate the changing patterns of mathematical and

musical thought.

Musical notation can be traced back to the ancient Greek alphabet

system. A series of significant stages came in the development of notations

within both the Western and Eastern churches during the medieval

period. In the eleventh to thirteenth centuries more precise schemes

were codified, including Guido d'Arezzo's new method of staff

notation and the incorporation of rhythmic indications. By the time of

the late sixteenth and the seventeenth centuries, most of the essential

features of musical notation as it is commonly understood today were

in place within a centrally established tradition. Subsequent additions

were mainly in the nature of surface detail, although of considerable

importance, as with the expanded range of performance instructions in

the nineteenth century. The twentieth century, with its emphasis on

experimental music, saw a precipitate rise in new forms of notation. In

a comparable way, mathematical notation has developed over a period

of at least 2500 years and, in doing so, has inevitably drawn from various

traditions and sources.

In music, the relationship between notation and the content it conveys

is sometimes more complex than might at first appear. Notation has not

invariably fulfllled the role merely of servant to content. While it is

generally true that notational schemes evolved in response to the

demands posed by new ideas and new ways of thinking, it is also possible

that experiments in notation may have been closely fused with the

development of such ideas, or may even have preceded-and inspired­

their creation. In mathematics, too, the relationship has subtle nuances.

Notation developed in one context could prove extremely useful in

another (seemingly quite different) context. (A well-known example of

this is the use of tensor notation in general relativity.) In one notable

case, notation formed part of the focus of a professional dispute, when

a prolonged feud developed between Newton and Leibniz as to which

of them invented the differential calculus, together with the different

notation used by each.



Music and mathematics: an overview

In the course of their history, mathematics and music have been

brought together in some curious ways. The Fantasy Machine demon­

strated in 1753 by the German mathematician Johann Friedrich Unger

to the Berlin Academy of Sciences, under Leonhard Euler's presidency,

was designed to preserve musical improvisations; in the words of an

English inventor, the Revd John Creed, on whose behalf a similar idea

was presented to the Royal Society in London in 1747, with this device

the 'most transient Graces' could be 'mathematically delineated'. Unger

claimed to have had the idea as early as 1745, although Charles Burney

(in his essay 'A machine for recording music') attributed priority of

invention to Creed. Although it aroused considerable interest and

support among the intelligentsia, and 'was tried out by several well­

known musicians' in the mid-eighteenth century, the machine was

ultimately not a success.

Music as science: the historical dimension

Throughout the history of mathematical science, mathematicians have

felt the lure of music as a subject of scientific investigation; an intricate

network of speculative and experimental ideas has resulted. Taking a

historical view, Penelope Gouk has voiced her concern that such terms

as 'mathematical sciences' are 'routinely used as essentially unproblem­

atical categories which are self-evidently distinct from the arts and

humanities ... Since music is today regarded as an art rather than a

science, it is hardly surprising that the topic should be disregarded by

historians of science'. Her book remedies this situation with resounding

success, inviting a reconsideration of the way joint histories are told.

Within the scope of a work based primarily on seventeenth-century

England, Gouk's references range from Pythagoras (in particular,

Pythagorean tuning and the doctrine of universal harmony that

'formed the basis of the mathematical sciences') to Rene Descartes ('the

arithmetical foundation of consonance') and beyond. Descartes'

Compendium (1618) was translated as Renatus Des-Cartes excellent

compendium of musick and animadversions of the author (1653) by the

English mathematician William Brouncker. Brouncker himself was 'the

first English mathematician to apply logarithms (invented c.1614) to

the musical division'. Thus he entered into a scientific dialogue with the

work of Descartes, contesting the latter's findings.

At the period when music was changing from science to art (retain­

ing a foot in both camps), science itself was moving from theoretical

to practical. The seventeenth century has been seen by historians as

a crucial turning-point, with the emergence of a 'recognizable scientific

community' and the institutionalization of science. The founding of the

Royal Society of London in 1660 formed a key point in the development

3
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University, including serious consideration given to the science of

music; for example, the set texts for the D.Mus. at Oxford included

Helmholtz (see Chapter 5), and others, on acoustics. The evidence

presented by Sir Frederick Ouseley (then Heather Professor) to the

University of Oxford Commission in 1877 included a 'Proposal for

establishing a Laboratory of Acoustics' (apparently this plan was never

realised); Ouseley envisaged that such a laboratory 'might work in with

the scientific side of a school of technical music' and would have 'more

direct relations with the school of physics in the University'.

Holders of music degrees from Oxford during this period (qualifica­

tions that were considerably coveted in the musical profession) did not

all follow primarily musical careers; William Pole FRS (b.1814, B.Mus.

1860, D.Mus. 1867) was Professor of Civil Engineering at University

College, London, as well as organist of St Mark's, North Audley Street.

Among those who took the B.Mus. at Oxford, in addition to the ordi­

nary BA, was J. Barclay Thompson of Christ Church (B. Mus. 1868),

who became University Reader in Anatomy. More recent scientist­

musicians have included the mathematically trained musicologist Roy

Howat, whose work on the golden section in Ravel's music, among

other topics, has attracted wide interest.

Mathematics and music: the compositional dimension

While music has fascinated mathematical scientists as a subject of

enquiry, musicians have been attracted by the possibilities of incorpor­

ating mathematical science into their efforts, most notably in the fields

of composition and analysis. The fundamental parameters of music­

pitch, rhythm, part-writing, and so on-and the external ordering of

musical units into a set, have lent themselves to systematic arrangement

reflecting mathematical planning. Much has been written about the

mathematical aspects of particular compositional techniques­

for example Schoenberg's method of serialism (see Chapter 8)­

and individual works have frequently been analysed in terms of their

mathematical properties, among other aspects.

The possibilities of mathematical relationships not only within a

single piece, but also between a number of pieces put together to form

a set, are well documented. These sorts of schemes may be expressed in

the findings of musical analysts, possibly by reconstructing notional

systems of composition, and, further, by examining both the known and

the speculative symbolic associations, as well as the mathematical rami­

fications, of such structural procedures. This is found most obviously in

the case of number symbolism, which may be perceived as governing

the musical relationships of an individual piece or a whole set of pieces.

Contrapuntal techniques in music have traditionally been treated

mathematically and identified with qualities of rigour. Among the
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prime examples in these latter two categories-the compositional set,

and rigorous counterpoint-must be counted the works of J. S. Bach,

with their mirror canons and fugues, their ordering by number (as with

the Goldberg variations), and their emphasis on combinatorial structures.

At a distance of over 200 years, Paul Hindemith's cycle of fugues and

interludes for piano, the Ludus tonalis, with its 'almost geometric

design', its pairs of pieces mirroring each other (see Chapter 6),

provides a modern echo of these contrapuntal ideas very much in the

Bach tradition, as well as building on techniques developed in

Hindemith's theoretical writings. It has been suggested, moreover, that

Hindemith 'identified ... closely with Kepler', whose life and work

formed the subject of Hindemith's last full-length opera, The harmony

of the world (1956-7).

'Scientific' music has not, however, always been appreciated by musical

scientists. Christiaan Huygens, for instance, expressed a wish that

composers 'would not seek what is the most artificial or the most diffi­

cult to invent, but what affects the ear most', professing not to care for

'accurately observed imitations called "fugues"', or for canons, and

claiming that the artists who 'delight in them' misjudge the aim of

music, 'which is to delight with sound that we perceive through the

ears, not with the contemplation of art'. Huygens here articulated the

tension between 'scientific' construction in musical composition, on

the one hand, and music's expressive effect, on the other. The balance

between these two aspects, and more widely between the scientific

basis of the art of music and its aesthetic applications, has been a source

of fascination for scholars, and indeed continues to be so, as the essays in

this book serve collectively to demonstrate. Their shared concern is

essentially the investigation of the power of music, which has preoccupied

commentators throughout the ages, from antiquity to our own time.

9
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Music and mathematics
through history
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Ancient harmonic discoveries are portrayed in
this woodcut from Franchino Gafurio's
Theorica musice (1492). Mathematical ratios
are emphasized in the experiments attributed
to Pythagoras.

CHAPTER I

Tuning and temperament: closing
the spiral

Neil Bibby

In Ancient Greek times it was recognized that consonant musical sounds

relate to simple number ratios. Nevertheless, in using this insight to construct

a scale ofnotes for tuning an instrument, problems arise. These problems are

especially noticeable when transposing tunes so that they can be played in

different keys. A solution adopted in European music over the last few

centuries has been to draw upon mathematics in a different way, and to

devise an 'equally-tempered' scale.

Each musical note has a basic frequency (essentially, the number of

times the sound pulsates in a given period of time): thus the note '!\,

which you may hear the oboe play while an orchestra is tuning up, has

a frequency of 440 Hz (cycles per second). Frequency enables us to talk

about relationships between musical sounds. However, for purposes of

comparing two notes, the actual frequency is less important than the

ratio of their frequencies.

The structure of a musical scale is determined by the frequency

ratios of the notes that form the scale. The choice of these ratios is ultim­

ately governed by the degree of consonance between the notes.

Consonance is both a psychological and a physical criterion: two notes

are consonant if they sound 'pleasing' when played together. In physical

terms this seems to occur when the frequency ratio of the two notes is

a ratio of low integers: the simpler the ratio, the more consonant are

the two notes.

Apart from the trivial case of a unison, for which the frequency ratio

is 1 : 1, the simplest case is the frequency ratio 2: 1. When two notes

have this frequency ratio the interval between them is an octave: thus,

for the oboe A, the next higher A has frequency 880 Hz. The origins of

this interval may lie in pre-history, when the earliest attempts at group

singing or chanting would have been in unison, or in octaves for mixed

groups of adults, or men and children: the different vocal ranges of the

participants would thus force the harmonic use of the octave instead of

the unison. As a melodic interval the octave is not common, but three

13
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CHAPTER I I Tuning and temperament: closing the spiral

it by simple whole-number ratios, in the confidence that on Pythagorean

principles the resultant notes will sound consonant. The structure

of such a scale is ultimately based on the simple frequency ratios of Z : 1

and 3: 1.

In the case of a plucked or bowed string, different notes may be

produced depending on how the string vibrates, and this too seems to

follow the Pythagorean observation. Consider a vibrating string sounding

a note of frequency t.

- ==
The same string can also vibrate at twice the original frequency, sound­

ing the note of frequency Zt. The interval between the new and original

notes is given by the ratio of the frequencies, Zt: t or Z : 1, an octave.

If the string were to vibrate with three times the original frequency, it

would sound a note of frequency 3t.

The interval between the notes of frequencies 3t and Zt is 3: Z,

or ~. Equivalently, the note an octave below 3t is ~t, and the interval

between the note with frequency t and this note is therefore ~.

We now have a three-note scale {t, k Zt}. If we regard the note with

frequency t as the note C, for example, with C' an octave higher, then

this scale is

C G C'
~t 2t

This procedure has not only created a new note (G), but also a further

new interval. Our previous interval, between C and G, is called a peifeet
fifth and the new interval between G and C' is called a pnfeetfourth. The

ratio corresponding to the perfect fifth is t as we have seen, while the

perfect fourth has ratio Zt :h, or ~.

We now have a method for generating yet more notes. If we lower

the note C' by a perfect fifth, by dividing its frequency by t we obtain

I5
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the note F of frequency k It lies between C and G, and the resulting

scale is

C F G C'
2t

The process by which the scale is generated is thus essentially iterative:

each new note yields a new interval with its nearest neighbour, and this

interval can then be used to generate further new notes.

By continuing in this way, we obtain the interval between F and G.

This is called the major second, or whole tone, and has ratio h: ~t,

or ~. This new interval in turn gives rise to a new note by simultane­

ously lowering both F and G by a perfect fourth: the new note, a whole

tone above C, is D. We can now use the whole tone interval to fill in the

gaps in the scale:

name of note C D E F G A B C'
frequency

, 9 8' 4 I 27 24' 2
1 t "t Mt ,t 'it i6 t 128 t 1 t

interval 9 9 256 9 9 9 256
8 8 243 8 8 8 243

Each of the resulting 'narrow' intervals E to F and B to C is a minor sec­

ond, or semitone, and has a ratio of ~: B, which is ~::. In addition, sev­

eral other new intervals appear, including the major third C to E, with

ratio B, the major sixth C to A, with ratio~, and the major seventh C

to B, with ratio ~~~. We thus arrive at the Pythagorean scale, and we

denote the resulting set of notes by P.

An alternative view is to regard the scale as being formed by a suc­

cession of perfect fifths, starting from C. In this view, we form the five

notes that are successive fifths above C, and the note that is a perfect

fifth below C. We then reassemble these into a single octave.

D-n

tJ ;' ::
f 0

--
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The result of this process is equivalent to our earlier one. In the

resulting scale, successive notes are separated by an interval of a tone,

with ratio L or a semitone, with ratio ~:~. The semitone is actually

smaller than its name would suggest, because (~:~i is less than ~-so it

is not a 'semi'-tone in any accurate sense! We shall see later that this

leads to serious problems: for example, on a modern keyboard it seems

as though twelve perfect fifths are equivalent to seven octaves. However,

if the tuning is Pythagorean, this cannot possibly be the case, as we shall

see later.
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More generally, if we stick to octaves and perfect fifths, then only the

numbers 2 and 3 (and their powers) can be involved in these ratio

calculations. Thus, each note in the Pythagorean scale can be written

simply as 2P·3Q, where p and q are integers: here, and from now on, we

omit the factor t. The scale P can thus be represented as follows:

C D E F G A B C'

I 3'/2' 3'/26 2'/3 312 3'/2' 3'/2' 2

Exploring further the way that the notes of the Pythagorean scale

combine, however, we run into a problem. Suppose that we wish to find

the note a major seventh above A (33/24): this note is 33/24 X 35 /27 =
38/2 11 . Lowering this by an octave, we get 38/2 12, which must lie some­

where between G and A (since 3/2<38/212<33/24). This leads us to

realize that the Pythagorean scale is not 'closed' under transposition,

but the rules under which we have constructed the scale will lead to an

indefinite number of new notes. This leads to problems if we want to

construct a scale (in particular, a physically embodied scale such as a

keyboard) that allows transposition of keys.

Transposition in the Pythagorean scale

We constructed the Pythagorean scale P by a succession of transposi­

tions of the basic key note C: in each case we transposed up a fifth (mul­

tiplying its frequency by f) and where necessary took the resulting

note down an octave (halving its frequency). A good way of seeing what

is going on in the problematic issue which has just arisen, of an appar­

ently indefinite number of new notes being produced, is to consider the

effect of the same transpositions on the entire scale P. Does this lead to

another Pythagorean scale, and are the same notes involved?

Let us build a new scale on the note G. To do this, we transpose

the original Pythagorean scale P up by a fifth, and transpose down

an octave when necessary. The resulting scale pI includes most of the

notes of P itself, as a result of the partial regularity of the distribution

of the intervals between the original notes:

[tone-tone-semitone}tone-[tone-tone-semitone].

However, there is a 'new' element, the note 36 /29
: this note

lies between the two existing notes P and G, since 22/3 < 36 /29 < 3/2.

This new note is the familiar P sharp, written pi, and is required

when we transpose from the scale of C to the scale of G. It does not lie

17
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Spiral of Pythagorean fifths.
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is important to note that musical intervals until the early renaissance

were essentially melodic intervals: they would be perceived as relation­

ships between successive notes, rather than as relationships between

notes sounded simultaneously.

By the time of the early renaissance, polyphonic music had started to

develop, and in addition to the harmonic use of octaves, fifths and

fourths (hitherto, the only harmonic intervals generally employed),

there was a gradual adoption of thirds and sixths. The use of these

intervals involved a modification of the Pythagorean tuning under

which the third (~) became slightly flattened to ¥., or~, and the sixth

also became slightly flattened, from ~ to H, or ~.

During the sixteenth century, various attempts were made to modifY

the Pythagorean scale to incorporate these more consonant thirds and

sixths. The most notable of the reformers was Giuseppe Zarlino, choir­

master at St Mark's in Venice. In 1558 he published Institutioni har­

moniche in which he proposed an alternative mathematical basis for the

major scale. He retained the Pythagorean relationships for the octave,

fifth and tonic (4: 3 : 2), but formalized the earlier ad hoc modification of

the Pythagorean tuning by adopting the simpler relationships of 6 : 5 : 4

for the perfect fifth, major third and tonic-that is, ~ for the major third

and ~ for the minor third. The scale he arrived at, known as the scale of
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just intonation, was as follows:

note C D E F G A B C'

frequency I 9 4 3 15 2

I 8 3 2 8 I

interval
9 10 16 9 10 9 16

8 9 15 8 9 8 15

The frequencies of the notes of this scale can all be represented in the

form ZP·3Q·Sr
, where p, q and r are integers, and can be written as follows:

c A

5/3

B

(3'5)/2'

c'
2

We shall refer to this set of notes as J. Several new intervals are

produced by this scale. For instance, while there are Pythagorean whole

tones a) for C-D, F-G and A-B, ('major tones'), there are also narrower

whole tones ('minor tones') for D-E and G-A of '/f. The ratio of these

two intervals, ~ : '/f, the extent to which they are different tones, is called

the syntonic comma: ~ = 34/(Z4· S) = 1.01ZS, exactly.

The frequency ratios of the just intonation scale occur naturally in

the 'harmonic series', and form the basis for playing certain wind instru­

ments. Indeed, in the case of the horn, the technique of playing

through using natural harmonics continued until valves were devel­

oped during the early nineteenth century. On the natural horn (without

valves) the harmonics produce the following written notes.

* * ~* ¥ f* f41, j r'l J J I\. r r r r r r
>

I- 4 5 6 7 8 9 10 11 12 13 14 15 16

In this sequence the Znd, 4th and 8th harmonics correspond to the

octave of the scale (that is, they are all the note C), and the 3rd, 6th and

lZth harmonics sound G, the perfect fifth. The 9th harmonic sounds

the major tone (*), which is the same in either Pythagorean or just into­

nation, whereas the Sth and 10th harmonics produce not the

Pythagorean major third (~), but the just major third d). Thus far,

the natural harmonics are the same as just intonation. However, the

7th/14th, lith and 13th harmonics (indicated with asterisks) produce

notes of~, ¥and ¥, which are wildly out of tune on either Pythagorean

or just intonation. Players were expected to coax these notes into tune,

the eleventh harmonic being flattened to F (i) and the seventh har­

monic being sharpened up to B' (';). The English composer Benjamin

Britten made extraordinary use of these notes in the solo horn pro­

logue of his Serenade for tenor, horn and strings, which is scored for natu­

ral horn, or for an orchestral horn where the player does not use the

valves; the harmonics are indicated in the figure overleaf.

Within a single scale, just intonation formed a reasonably satisfactory

solution to problems thrown up by Pythagorean tuning, but the

compromise breaks down when one wants to play in another key.

21
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CHAPTER I I Tuning and temperament: closing the spiral

syntonic comma higher than the F sharp of X16. The following dia­

gram summarizes the relationship of these keys:

.......... x 16/15 T
....XI6x 81/80

x 10/9

x 9/8
XIS

///~ (
/

/~.X14
D5_EIO······· .. FI3"

//~) //" ) )
CI_ D4 __ E9 .......... F12

---.--

Sol La

,
__ .. __ 1 __

Y :
-+-----l+-4-l...4-l+-Y.l._+_

Red
Indigo

Newton's spectrum scale.

It is interesting to note that such keyboards were actually built: Handel,

for example, played a 31-note organ in the Netherlands.

This multiplicity of keys is necessary because successive transposi­

tions of the scale of just intonation generate even more notes between

those of the basic setJ than they did for the set P. In this case each trans­

position produces a new 'black' note, as in the Pythagorean case, but an

extra new note is produced, a syntonic comma sharper for upward

transpositions and flatter for downward. This arises, as we have seen,

because one of the fifth intervals in the just scale is narrow-the inter­

val D-A has ratio f : ~ or~, which is less than %. In musical terminology,

the old submediant is too flat to serve as the new supertonic.

The more transpositions take place, the worse the problems get. The

effect of successive upward and downward transpositions of the basic

just scale J is summarized overleaf.

In practice, modulations into remote keys were not usual at this time

(partly, no doubt, for this reason): however, even to use the keys near to

C in just intonation required two extra notes per modulation. The sys­

tems discussed so far imply infinitely many keys, with the spiral of fifths

continuing infinitely, both outwards and inwards: the Pythagorean sys­

tem P*, with notes generated by octaves and perfect fifths, and the just

system J*, with notes generated by octaves, perfect fifths and major

thirds, both yield infinite sets. So far as the construction of keyboard

instruments was concerned, this was not an encouraging state of

affairs.

Many attempts were made to develop tuning systems that overcame

the difficulties of Zarlino's just system. Amongst these, Francesco

Salinas (1530-90) proposed a system called mean-tone, in which the two

whole tones of Zarlino's system (~ and -¥') were replaced by their geo­

metric mean, thus giving a whole tone interval of L5. The interval of

the third remained a pure consonance of %, while the fifth had a ratio of

\5, which is approximately 1.4953: this is a little less than t giving a

rather flat fifth. Isaac Newton also spent much time trying to select the

best ratios. Believing that seven notes in the octave and seven colours in

the spectrum were too much of a coincidence, he even produced a

23
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key sounding more in tune than any of the others, it was necessary to

divide the octave so that each note was generated by some basic inter­

val: we call this a scale of equal temperament. Such ideas had been pro­

pounded long before this (in medieval China, for instance). More

recently, Galileo Galilei's father Vincenso Galilei had proposed in

Dialogo della musica anUca e modana (1581) that the scale be constructed

from equal semitones with a frequency ratio of +%. It is easy to check

that (+%)12 is about 1.9855 ... , a little less than 2, and that (+%f is about

1.4919 ... , a little less than t Such a scheme would therefore give rather

flat octaves and flat fifths, hardly desirable features for the fundamental

interval of any scale.

From this proposal it is but a short step to that of Simon Stevin

(1548-1620), who suggested making the semitone interval equal to

21/12, thereby preserving the octave's frequency ratio of 2. Since 27/ 12 =
1.4983 ... , this choice of semitone still gives slightly flat fifths, but

better than those of Vincenso GalileL 21/ 12 is an irrational number,

inexpressible as a fraction p / q and in addition, all of its powers up to the

eleventh are also irrational. From a mathematical point of view this is

ironical, given that we started out with a criterion for consonance

essentially based on the notion of rationality. Of course, 27
/

12 is an

extraordinarily good approximation to t so good that the difference is

virtually imperceptible: herein lies the justification for its use. In the fol­

lowing table the frequency ratios for the major scale are compared in

Pythagorean, just intonation and equal temperament:

Pythagorean just intonation equal temperament

C

D 1.125 1.125 1.122462 ...

E 1.265625 1.25 1.259921 ...

F 1.333333 ... 1.333333 ... 1.334839 ...

G 1.5 1.5 1.498307 ...

A 1.6875 1.666666 ... 1.681792 ...

B 1.8984375 1.875 1.887748 ...

C' 2 2 2

For ears accustomed to just intonation, the major third of almost 1.26

is noticeably sharp, and thus the extreme consonance of the just major

chord (6: 5: 4) is lost in equal temperament.

Under transposition, we can analyze the behaviour of the equal tem­

perament scale in the same way as we did with the Pythagorean and

just scales. The equally tempered major scale has the following notes:

C D E F G A B C'

1 22/12 24/ 12 25/12 27112 29/12 21J /l2 2
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The adoption of equal temperament was a lengthy process. Already

in the late Elizabethan period (late sixteenth century) there is evidence

that English virginal composers (notablyJohn Bull) were modulating so

far away from C that a form of equal temperament must have been in

use, but as recently as the mid-nineteenth century it was by no means

universal, especially in Britain: not one of the British organs at the Great

Exhibition of 1851 was equally tempered. However, it is clear that dur­

ing the early eighteenth century the system was increasingly being

exploited. Fischer's Ariadne musica (1702), for instance, is a set of minia­

tures that go through nineteen of the twenty-four major or minor keys.

The most famous work to exploit all twenty-four keys is J. S. Bach's Well­

tempered clavier (1722 and 1738-44). Whether 'well-tempered' meant

equally tempered in the modern sense is disputed, but the work includes

a prelude and fugue for each major and minor key-hence the usual

appellation of 'The 48 preludes and fugues'. Meanwhile a variety of

compromise systems co-existed, including for instance the 'Kirnberger

III system' which had four just tones, three mean tones, an equal­

tempered fifth, nine different semitones and only four major seconds!

The fact that 2 19 is nearly 312
, and that 27

/
1Z is more-or-Iess L is at the

root of the equal temperament idea. The question naturally arises as to

whether the approximate equation 2P = 3q has any other integer solu­

tions, which might form the basis for an equally tempered scale that

gives even better approximations to the just frequency ratios. There are

infinitely many solutions, each corresponding to a rational approxima­

tion p/q of logz3. A good example is 284 = 353
, which leads to 231

/
53 =

1.49994 ... , an excellent approximation to 1.5. This suggests that a

structure of 53 notes to the octave (rather than 12) might be better for

temperament purposes. In the nineteenth century R. Bosanquet actu­

ally made a harmonium with such a subdivision of the octave (see

Chapter 5), and the twentieth century saw further exploration of this

possibility. Of course, the development of electronic note production in

the late twentieth century enabled completely accurate equally tem­

pered systems with any number of notes, as we see in Chapter 9.

The idea of consonance is ultimately grounded in the notion of

commensurability, an essential concept in Greek mathematics. We

recognise consonance when we perceive a certain number of vibrations

of one frequency exactly matching a certain number of another

frequency. The Greeks accorded incommensurables a very different

ontological status, and it thus remains a powerful irony that irrational

numbers should come to the rescue-courtesy of the tolerance of the

human ear and cultural conditioning-of the essentially rationally

based system that they originally described for constructing a musical

scale.
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Planetary orbs and regular polyhedra, a
fold-out plate from Johannes Kepler's
Mysterium cosmographkum (Tiibingen, 1596),
Chapter II; the plate itself carries the date 1597.

CHAPTER 2

Musical cosmology: Kepler and
his readers

J. V Field

In its more developed form, the mathematical cosmology ofJohannes Kepler

(1571-1630) presents musical harmony, itself determined by geometry, as a

factor in explaining the structure of the Universe. However, his two most

influential readers, Marin Mersenne and Athanasius Kircher, recognized the

inadequacies of current music theory. Mersenne turns away from the idea of

celestial music, but Kircher accepts it, though music itself is perceived not as

determined by mathematics but rather as a property built into the Cosmos by

its Creator.

In the opening lines of his Songfor Saint Cecilia's Day John Dryden
wrote

From Harmony, from heavenly Harmony
This universal frame began: ...

The poem was first published in 1687-making it an exact contempor­

ary of Isaac Newton's Mathematical principles of natural philosophy-but

is now probably best remembered in the magnificent musical setting by

Handel, which was given its first performance on Saint Cecilia's Day

(22 November, New Style) in 1738. By then, and indeed at the time Dryden

wrote, the reference to celestial music was no more than a literary

device. The main body of the poem is concerned with other matters,

but cosmology reappears in the final 'Grand Chorus':

As from the power of sacred lays
The spheres began to move,

And sung the great Creator's praise
To all the blest above;

So when the last and dreadful hour
This crumbling pageant shall devour
The trumpet shall be heard on high,
The dead shall live, the living die,
And Music shall untune the sky.

As any good Dictionary of Saints will reveal, it is a case of least said

soonest mended about the probable connections of the historical Cecilia

29
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with music. The connection of music with the origin and structure of

the cosmos has a much greater historical credibility. Music theory had

been a recognized part of mathematics since Ancient times. Its origins

were traced back to the shadowy figure of Pythagoras who, if he was

indeed a real person, may have lived in the sixth century Be. Thus, in

Ancient, medieval and Renaissance times, to claim that the order of the

universe was 'musical' was to claim that it was expressible in terms of

mathematics.

We still believe this now. Indeed, mathematical cosmology has

proved so powerful that it is perhaps difficult to take a sufficiently cold

hard look at the metaphysical basis on which it rests. On the other hand,

the explicitly musical cosmologies derived more directly from the

Ancient tradition seem sufficiently fantastic to invite instant questioning

of their underlying metaphysics-except, of course, in a poetic context

such as that provided by Dryden. In his day, those inclined to be unpoet­

ical about cosmology could turn to Isaac Newton for a mathematical

explanation of a kind more acceptable in natural philosophy.

Curiously enough, the only natural philosopher to have left a fully

worked out mathematical cosmology that uses music theory was the

astronomer who supplied the laws from which Newton derived his

mathematical theory of gravitation, namely Johannes Kepler. Since

Kepler had a high opinion of his cosmological work, it is rather ironic

that his own astronomical work did so much to put it out of date. In any

case, Kepler saw his cosmological ideas as drawn from an Ancient tra­

dition, essentially from the work of Plato, particularly his dialogue

Tima:us, and from the Harmonica of the Alexandrian astronomer

Claudius Ptolemy. Ptolemy's treatise is mainly about the theory of

music, but it does also contain a sketch of a musical cosmology­

geocentric and much simpler than Kepler's fully worked-out heliocentric

one. It is, however, the only surviving Ancient text to give a coherent

account of what is often called the music of the spheres.

Recent research has shown that the complicated combinations of

spheres used to explain planetary motion in medieval astronomical

texts can in fact be traced back to Ptolemy, and it seems possible that he

did believe in solid spheres. Kepler did not. In his first cosmological

work, the Secret of the Universe (Mysterium cosmographicum), he refers to

such spheres as 'absurd and monstrous', and he later asks to be shown

the shackles that bind the Earth to the sphere that causes its motion.

(Since Kepler was a Copernican, he believed that the Earth was one of

the planets.) From the point of view of the historian, Kepler is

conveniently given to laying his opinions on the line. One is never in

doubt, from his first work onwards, that he was a profoundly religious

Christian, a totally convinced Copernican, and a devout believer that

the Universe is mathematical and to be explained in terms of mathemat­

ics. To Kepler, the natural world expresses the nature of its Creator, who
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is a Geometer, and Man, being made in the image of God, is capable of

understanding it in mathematical terms. Indeed, it is his Christian duty

to do so.

The first sign of Kepler's interest in music theory is found in connec­

tion with cosmology, and it seems likely that this was in fact how it arose.

He had presumably become familiar in his youth with the music used in

the Lutheran liturgy, but it is difficult to decide what music he might

have heard in his later life at the court of the Holy Roman Emperor

Rudolf II in Prague. Rudolf had an established taste for all things Italian

and italianate, which seems to have extended to music, but the little spe­

cific evidence known to historians suggests that while the performers

and composers whom he employed were indeed Italian, their music was

up to date without being notably avant garde. Since in our own time it is

precisely the music of the avant garde-in particular, that of Claudio

Monteverdi-that seems important, one is left with the impression that

Kepler may not actually have heard any of the music that, with today's

brand of hindsight, can be seen as pointing the way forward.

Kepler's music theory is certainly entirely conventional in its emphasis

upon consonance as the sole foundation for music. His earliest refer­

ences, in the Secret of the Universe, are indeed merely to the simple ratios

of small whole numbers that define the string lengths corresponding to

the standard consonances. Here, Music very clearly takes second place

to Geometry, which provides the explicit basis of the cosmological

model by which the work is now best known, the system of nested poly­

hedra and planetary orbs (Kepler defines the orbs as spherical shells that

exactly contain the path of the planet). This model is shown at the

beginning of this chapter.

None the less, with the characteristic Renaissance faith in the wisdom

of the Ancients, Kepler expresses the hope that he will be able to

improve his rather clumsy theory of the connection between planetary

motion and music once he has read Ptolemy's Harmonica. He was

apparently unaware that the work was already available in a Latin ver­

sion by Antonio Gogava, published in Venice in 1562. However, when

he did come across this edition, Kepler decided that it was based on a

corrupt text-in which today's scholars agree with him. He eventually

obtained a Greek manuscript of the work.

Kepler had hoped that his astronomical calculations of more accurate

planetary orbits, using the observations made by Tycho Brahe, would

confirm the correctness of the polyhedral cosmology described in his

Secret of the Universe. In the event, the new more accurate orbits did not

agree more closely with the theory, which Kepler had in any case

already begun to modifY. The result was his Five books of the harmony of

the world (Harmonices mundi libri V), published in Linz in 1619.

In this work, everything starts from geometry. The first two books

are concerned to establish hierarchies of regular polygons, the rank of a
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Figure 1. Musical consonances and
astrological 'aspects' (angles between
heavenly bodies that were believed to modifY
their degree of influence), from Claudius
Ptolemy, Harmonica, translated by Antonio
Gogava, Venice, 1592, p. 144.
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particular figure being established, in the first book, by how many oper­

ations--each using only straightedge and compasses-are required to

inscribe its side in a circle of given radius. In the second book, rank is

established by the polygon's capacity to participate in forming tiling

patterns or polyhedra. There are numerous echoes of Plato's Timt:eUs

and Ptolemy'S Harmonica.

However, Kepler has departed from Ptolemy'S simple linking of

consonances with astrological 'aspects' (see Figure 1). It is the ranking

of polygons in the second book that determines their importance in

astrology (as explained in Book IV), whereas in the third book the ranking

of the first book is applied to music theory, the higher-rank polygons

dividing the circle (in the manner shown in Figure 1) to give the more

perfect consonances among the ratios of the parts. The result is a ranking

of consonances that corresponds to that given by Gioseffo Zarlino in

his Institutions of harmony (Istitutioni harmoniche, Venice, 1558), where

they are derived from pure numbers. However, Kepler correctly recog­

nizes that this system corresponds with that of Ptolemy, so Ptolemy

gets the credit for it and the name of Zarlino is mentioned only once.

Having devised his own geometry-based version of the system, Kepler

proceeded, in his fifth book, to apply it to his-that is God's-heliocentric

planetary system.
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Figure 2. A table of daily planetary motions
in arc. seen from the sun, from Johannes
Kepler, Harmonices mundi, libri V. Linz, 1619.
Book V. Chapter IV

Kepler looked for, and failed to find, musical proportions in various

quantities in the Solar system, for instance, in the periods of the

planets-a case in which his lack of success is displayed in the form of

two tables. He found the ratios he was looking for in the extreme

speeds of the planets, that is their speeds when they are nearest to the

Sun (perihelion) and furthest from it (aphelion). He uses both the ratios

of extreme speeds for each individual planet and the ratios of extreme

speeds of pairs of neighbouring planets. The results are displayed in a

table, which is reproduced in our Figure 2.

The speeds are expressed as motions in are, that is angular motions

as seen from the Sun-which means that to a Copernican they

represent actual motions in space (the Sun being assumed at rest). The

second column (headed Apparentes diurni, that is apparent daily

motions) gives the angular motions, in minutes and seconds of are,

starting with the extreme values for Saturn and then working inwards

through the planets of the system. Each speed is given a letter of the

alphabet, to identify it when it is used elsewhere in the table. The third

column gives the ratios obtained for individual planets, and notes their

correspondences with particular musical intervals. The first column

gives the ratios obtained from extreme speeds of neighbouring pairs,

starting with Saturn and Jupiter, the first ratio being the 'diverse' ratio,

of the aphelion (minimum) speed of Saturn to the perihelion (maximum)

speed of Jupiter, and the second being the 'converse' ratio, that of the

maximum speed of Saturn to the minimum speed of Jupiter.

From these ratios, that is from the intervals they defme, and setting an

arbitrary note as starting point, Kepler constructs two musical scales,

shown in our Figure 3, one in cantus durus (which does not quite corre­

spond to the modern diatonic major scale) and one in cantus mollis (which
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Figure 3. Scales in cantu.< duru.< and cantu.<
mollis, from Harmonices mundi, libri V, Linz,
1619, Book V, Chapter V The symbol resem­
bling the modern sign for a double sharp rep­
resents a sharp; that resembling the
modern sign for a flat represents a flat.
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does not quite correspond to the modern diatonic minor scale). Kepler

has written 'free' (Vacat) beside one note in each scale. These pitches are

covered later, when he gives a complete compass of notes for each

planet (see Figure 4).

In the scales shown in Figure 3, some notes are markedftre, which

means 'approximately'. None the less, closer inspection shows that

the approximations are very good ones, by any reasonable standards.

Unlikely as it may seem, the numerical relationships which Kepler has

found, and which he has chosen to express in musical form, are in very

good agreement with the values deduced from Tycho's observations.

In fact, twentieth-century observational values of the velocities con­

cerned also yield 'musical' ratios (the modern definition of a musical

ratio being, for astronomical purposes, that it involves small whole

numbers, 'small' being deemed to go up to about 7). This in effect

merely confirms what we in any case know: that Kepler's planetary

orbits are in good agreement with modern ones, the agreement being

so good, in fact, that in assessing it one has to allow for long-term

(secular) changes since the late sixteenth century (when Tycho's obser­

vations were made). The real puzzle, for today's experts on celestial

mechanics, is how the Solar system came by these ratios, which are now

usually called resonances. A particularly spectacular set are observed

among the periods of the moons of Jupiter.

Kepler's astronomy was, as we should say today, state of the art. So

too, but much less satisfactorily, was his music theory. At this time,

theoreticians of music simply could not cope with the way in which

composers made increasing and systematic use of dissonance for

expressive or dramatic purposes. Nor had adequate theoretical

solutions been found to the problems associated with tuning a number

of different instruments to play different lines of music together.
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Performers worked with their own practical approximate methods, but

music was still claimed as one of the mathematical sciences, Intellectual

coherence between theory and practice was not to be achieved until the

eighteenth century, in the musical treatises of Jean-Philippe Rameau.

Kepler tried fairly hard to prevent his Harmony of the world being put

on the Index of Prohibited Books, even pointing out that his system of

harmonies would be equally real in the Tychonic model of the planet­

ary system, in which all bodies except the Earth moved round the Sun,

which itself moved round the Earth, carrying them with it. This protesta­

tion did not work. Indeed, the 1630 Index for Rome simply bans all

Kepler's books. So one might not expect to find loyal supporters of

Papal authority among Kepler's readers-and particularly not after the

condemnation of Galileo in 1633, But one would be mistaken, It is, of

course, impossible to know how many people actually read the

Harmony of the world, One can only consider those who chose to

mention the work in print. They were few. However, in the forty years

following the publication of Kepler's work there appeared two

extremely bulky treatises whose titles immediately suggest comparison

with it, namely the Harmonie universelle of Marin Mersenne, published

in Paris in 1636, and the Musurgia universalis of Athanasius Kircher,

published in Rome in 1650.

Mersenne's family were peasants. He was born in a small village near

the town of Le Mans, and his rather old-fashioned crabbed handwriting

is probably a relic of his education at the village school. He joined the

religious order known as the Minims, His working life was spent in

Paris, where he became the centre of what amounted to an informal

academy whose members exchanged news and information about

mathematics and natural philosophy, Its members and correspondents

included many distinguished mathematicians, such as Girard

Desargues, Rene Descartes and the young Blaise Pascal, who was

introduced by his father Etienne Pascal. That is, as a clearing house for

scientific information, Mersenne was extremely impressive.

It is rather more difficult to be sure about his personal intellectual

qualities. Most of his works are extremely long-upwards of two thou­

sand pages, folio-and they sometimes seem to be putting forward two

contradictory views almost simultaneously. For example, in a little book
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published as an introduction to his huge treatise on music, he takes

about fifteen pages (octavo) to give a detailed account of the horoscope

for a perfect musician, but on the final page devotes a few lines to

saying horoscopes are all nonsense. The historian may be grateful for

the information that the exemplar of the perfect musician is Orlande de

Lassus (c.1532-94)-though it should be pointed out that astrologers

regularly falsified dates in order to obtain more appropriate horoscopes,

so the date Mersenne gives is no help in guessing Lassus' actual date of

birth-but the blood surely runs cold as one contemplates the possibility

of similarly brief (and thus easily overlooked) contradictions of wordily

expressed opinions in the two thousand pages of the Harmonie

universelle. In the circumstances, it is perhaps lucky that the treatise

turns out to have surprisingly little to do with our present concerns.

What is universal about the work is not its concern with the cosmos but

rather its total scope. Celestial music is dealt with rather briefly.

It is clear that Mersenne not only understood and enjoyed music, but

was also very knowledgeable about the music of his day. His work is, in

fact, important for the number of musical pieces it preserves. It also con­

tains a huge array of illustrations of musical instruments. Reference to

the table des matieres (an index) yields several references to 'Galileo exam­

ined' but none explicitly to Kepler, although his name does occur within

some entries, for instance in 'Kepler's octave divided into twelve parts'

(under D, because it reads 'Diapason de Kepler ...'). Either Protestantism

was even hotter to handle than being 'vehemently suspected of heresy'

by the Inquisition (its sentence on Galileo) or Mersenne simply was not

interested in the musical cosmology of Kepler's Harmony of the world. He

certainly had read the work, since he makes several references to it, for

instance in Proposition X of his book 'On the usefulness of harmony'

(the penultimate item in the treatise, separately paginated). Here there is

an illustration-taken from Robert Fludd's An account of both worlds . ..

(Utriusque cosmi ... historia, Oppenheim, 2 vols., 1617, 1618), without

acknowledgement-to show very simple consonances among the

spheres of a Ptolemaic planet-ary system. When Kepler objected that no

astronomer could believe in this system any more and that Fludd was

concerned with a world of his own imagining, Fludd retorted that his

harmonies were in the Soul of the World, whereas Kepler's were merely

in its Body. So much for agreement with observation! Mersenne, who is

usually seen as a proponent of the new natural philosophy, is here appar­

ently putting forward something completely out of date. He has earlier

briefly dismissed Copernicanism, and referred to Kepler's ideas as

fanciful, so perhaps we should see his parading this ostentatiously old­

fashioned cosmology as a defence against a possible imputation of advo­

cating innovation in astronomy. One could, also, put Mersenne back on

the side of the angels by suggesting that he did not have much time for

such old-fashioned stuff as celestial music.
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Though one may wonder about the astronomy, the music theory in

Mersenne's treatise is certainly intended to be taken seriously. Indeed,

Mersenne even attempts to explain the emotive effects of music, with

reference to composers' use of dissonances. There was Ancient author­

ity for the belief that music could cause emotions, specific kinds of

music exciting specific emotions. The standard exemplar of this power

in action was Orpheus, who (according to the song in Shakespeare's

Henry VIII, of 1612)

... with his lute made trees
And the mountain tops that freeze,
Bow themselves when he did sing ....

Orpheus, 'taken from an Ancient marble', duly appears in the fron­

tispiece to Mersenne's treatise, although the quotation underneath is

from the Psalms (see Figure 5 overleaf).

Mersenne's explanations of the 'effects' of music are not very satis­

factory. They deal mainly with the rather gentle use of dissonance

found in contemporary French music-which was, of course, what

Mersenne knew. Like Kepler, Mersenne is essentially dealing with the

kind of dissonances habitually used in the later work of Lassus. Kepler

was almost certainly relying on a secondary source that specifically

referred to Lassus, and Lassus' reputation was high in France at the time

Mersenne wrote. In any case, in contrast to the mathematical nature of

the rest of his exposition, Mersenne's treatment of dissonances and

their 'effects' is qualitative and imprecise, and does not, it seems, cause

him to re-think the otherwise conventional theory of music that he puts

forward. However, one can see that a genuine love of the music of his

own time was having an effect. The same is true of the music theory of

Athanasius Kircher, but in his case the effect seems to have been much

more drastic.

Athanasius Kircher was aJesuit. He rose to high rank in the foremost

Jesuit College, the one in Rome. Like Mersenne he wrote a great deal,

and often at great length. His intellectual interests were multifariOUS,

and various passages from his works are usually cited as marking the

beginning of modern interest in, say, deciphering Egyptian hieroglyph­

ics, considering the origins of volcanoes, or setting up public museums.

In his own day Kircher was certainly taken very seriously, but in ours

short extracts, punctuated with some of his many elegant illustrations,

can easily give the impression that he was, to put it bluntly, a weirdo. As

we shall see, the final book of his treatise on music tends to lend weight

to this impression.

However, the work as a whole does not. Kircher's Musurgia universalis

is, like Mersenne's Harmonie universelle, a musical encyclopaedia,

designed to teach the reader about music, but it is also about the place

of music in Creation. Even more than Mersenne, Kircher quotes
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Figure 5, Frontispiece to Mersenne's
Harmome universelle, Paris, 1636, showing
Orpheus, 'from an ancient marble in the col­
lection of the most illustrious Marchese
Mattei, Rome', Mersenne's numbering of the
Psalm is taken !Tom the Vulgate; in the
Authorised Version, the passage is Psalm 71,
verse 22; '] will also praise thee with the
psaltery, even thy truth, 0 my God; unto thee
will I sing with the harp, 0 thou Holy One of
Israe!.'
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complete musical compositions, usually absolutely modern, and with

the highest praise for their excellence, One of the interesting things

about these judgements is that several of the composers Kircher praises

were also admired, about fifty years later, by Johann Sebastian Bach,

Moreover, when it comes to dealing with the 'effects' of music, Kircher

cites recent (and not so recent) Italian examples, including, for 'pain'

(dolor), a passage from a madrigal by Carlo Gesualdo, a composer

whose music was famous for its dissonance, In fact, Kircher cites

Gesualdo several times, and also praises Monteverdi as the composer

most skilful in portraying emotion, Both compliments are the more

weighty when we remember that it was generally taken for granted

that newer music was better than older music. All in all, Kircher seems

prepared to accept a considerable degree of dissonance as a natural

component of music, But he cannot construct a mathematical theory

that explains how this works, and the tuning problem is not mentioned,

It seems likely that an awareness of these shortcomings in the math­

ematical theory played a part in determining the overall structure of

Musurgia universalis , Kircher begins with anatomy, that is, with the

anatomy of the parts of animals that make sounds (see Figure 6),

One animal is Singled out for a chapter all to itself: the three-toed

sloth (habitat South America), Kircher's informant is said to be a mis­

sionary by the name of Johannes Torus, The sloth is alleged to sing up

and then down a perfect musical scale (an 'ordinary scale', Kircher says,

thereby ducking a few questions). Now this, as one might guess, turns

out not to be quite as it seems. The singer is not the sloth but the

Common Potoo, which is a bird. The potoo usually sings at twilight,

flattened against its perch on a tree beside the river. The sounds are

eerily pure, and do indeed form a descending diatonic scale, The belief

that the sound is made by the sloth is a piece of local folklore: to this

day, local Indians, who know a great deal about the animals they hunt,

know little about the sloth and find it rather an eerie animal. The

National Sound Archive, who kindly told me about the potoo, and

played me the appropriate tapes, did something of a double-take on dis­

covering that the folklore story went back to the seventeenth century.

Actually, it goes back at least to the sixteenth. After the sloth, we have

chapters about bird song, complete with songs written out on staves

(see Figure 7).

After this, Kircher turns to mathematical music theory, with, as we

have seen, not completely satisfactory results. Like Mersenne, he also

considers musical instruments, and explains, for instance, which note

corresponds to each string of a particular kind of viol. He devotes a

whole book to the 'effects' of music and another one to anecdotal

evidence of its magical powers.

Undaunted by the inadequacy of his music theory to explain human

('artificial') music in mathematical terms, in his final book (Book X)
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Figure 8. Athanasius Kircher, Musurgta
universalis, Rome, 1650, Plate XXIII.
'Harmony of the World at its birth', Tomus II,
p. 266, beginning of Book X, illustration of
the Organ of the World. The planetary
system shown at the left is geocentric.

C H A PT E R 2 i Musical cosmology: Kepler and his reders

Kircher goes into some detail on the subject of celestial music, which

he links not only with the structure of the cosmos but also (like

Dryden) with its origin. There is, however, nothing mathematically

precise about this, as can be seen from the illustration of the Organ of

the World, shown in Figure 8.

One could clearly decide to take this on a high metaphorical level.

However, Kircher does not leave the matter there. He proceeds to dis­

cuss harmonies among the motions of the planets. He dismisses Kepler,

by name, as misguided, and then, without attribution, uses all Kepler's

numbers. There is no explicit dismissal of Copernicanism. In fact,

Kircher simply reprints the table we showed in our Figure 2, and more

than a page of the accompanying text is taken verbatim from the

Harmony of the World (which, being on the Index, was in principle

unavailable to Kircher's readers). Kircher was, of course, quite right to

guess that Kepler's numbers were the best then available, but his method

of using them leaves one wondering what is the Latin for chutzpah.

Kircher does actually state that music has the force of a mathemat­

ical organizing principle in Creation, but he does not go into details.

There is, however, a certain amount of rather crude astrology. The

work in fact ends in a decidedly messy way. However, it is not only in

that respect that we are far from the orderly mathematical cosmology

put forward by Kepler. If one looks at the structure of the works as a

whole, it seems that Kircher has recognized the inadequacy of the

mathematical theory of music, and has instead devised a theory that

makes music itself a natural property of the World, as created by God.

Human music has its counterpart, or even, he hints, its origin in the

sounds made by animals and birds. There is a suggestion that South

America may have been the site of the Garden of Eden (hence the song

of the sloth). That is, Kircher is involving the world of living things in

what was traditionally an area for abstract mathematical theorising.

The chief thrust of the Scientific Revolution of the seventeenth century

was to extend the domain of mathematics (it is no accident that

Newton called his work Mathematical Principles of Natural Philosophy), so

Kircher was certainly out on a limb in this respect. However, his wealth

of information about the natural world, and about music, fits in rather

well with another characteristic of the Revolution: the systematic accu­

mulation of observations.

Kepler's work is important as the first mathematical cosmology

(however bizarre it may look to his present-day heirs), and it is in good

agreement with astronomical observation. It is, however, in rather

bad-if, by then, standardly bad-agreement with musical observation

and practice. A recognition of this failure of the standard music theory

may account for Mersenne's apparent unwillingness to take cosmic

music seriously. However, Mersenne, in France in the 1630s, did not

have to face the inadequacy of music theory to explain practice in quite
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such a radical manner as Kircher did in Rome in the 1640s. Kircher is,

moreover, notable for having done nothing to try to make the problem

look less intractable. Instead he chose to go round another way, making

music seem less specially mathematical in the process. This did not

actually help very much. The solution was eventually to be found in

more complicated mathematics, and, as in so many other branches of

natural philosophy, by ruling out certain questions as beyond the range

of a reasonable theory. The problems that got thrown out here were

those of giving precise accounts of the 'effects' of music and of the

musical significance of dissonance. Moreover, within about a century of

Newton's work, it was clear to astronomers that one could no longer

equate the Solar system with the Cosmos. Thus, what was cosmology

to Kepler, Mersenne and Kircher became, for Newton's successors, no

more than a theory of the Solar system. All the same, since human ego­

centricity gives human thought a persistent tendency to geocentricity,

'the music of the spheres' seems destined to remain a part of poetic

vocabulary.
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Charles Taylor demonstrating an oboe to

some children.

CHAPTER 3

The science of musical sound

Charles Taylor

This chapter complements the others by describing practical demonstrations

and experiments. In recent years a good deal has been said about the

differences in experiments in an elementary physics laboratory, mathematical

theory, and real musical instruments. In fact there are no real diffrrences

except those arisingfrom too simplistic an approach.

Sound of any kind involves changes of pressure in the air around us;

for example, in ordinary speech the pressure just outside the mouth

increases and decreases by not more than a few parts in a million. But

to be detected by our ears and brains as sound, these changes have to

be made fairly rapidly. This can be demonstrated easily by inflating a

balloon and then gently squeezing it between thumb and finger. This

creates quite large pressure changes without any attendant sound; but

inserting a pin creates a change that can very readily be heard.

Scientists study the nature of the pressure changes using a cathode-ray

oscillograph that draws a graph of the pressure as a function of time. It

is interesting to look at the traces corresponding to a wide variety of

sounds and try to relate what is perceived by the ear-brain system with

what is simultaneously perceived by the eye-brain system. It proves to

be impossible to make any but the broadest generalizations about a

sound by observing only its oscillograph trace. As an example, it is not

easy to differentiate between the oscillograph traces of the end of the

first movement of Mendelssohn's Violin concerto, a symphony orchestra

'tuning up', and the chatter of an audience waiting for a lecture to begin

(see overleaf), although aurally they are completely different.

One of the most astonishing properties of the human brain is that of

recognizing sounds in a split second. For example, if a dozen subjects

are all asked to repeat the same word, an audience has no difficulty in

understanding what is being said. But for each one of the twelve, the

corresponding oscillograph traces is completely different and it is virtu­

ally impossible to find common features.

So here we have two different ways of presenting the same informa­

tion: the brain has little problem in interpreting the aural form, but the

visual form presents far greater difficulties.
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CHAPTER 3 I The science of musical sound

An interesting example of this learning process is as follows. A

recording of synthetic speech can be created by first imitating the raw

sound of the vocal chords by means of an interrupted buzz on one

note, adding chopped white noise to represent ss, sh and ch sounds, and

then introducing just one formant for each vowel. An audience is

unable to recognize the sentence that has been synthesized. However,

having been told what the sentence was, they have no difficulty in

recognizing it on a second hearing.

This ability of the brain, both to memorize sounds, and to identifY

similar sounds in the memory banks at great speed, is vital to our

existence, but is also a great nuisance in psycho-acoustic research. Its

importance lies in the way that we can rapidly identifY sounds that

indicate danger, in the way that we learn to speak as babies, and in the

way that we can adapt to very distorted sounds and in many other activ­

ities. Adaptation to distorted sounds is illustrated if one listens to mes­

sages being relayed over 'walkie-talkie' systems to the police, to pilots

in flying displays, and in other circumstances where those used to the

system have no difficulty in understanding the messages, but outsiders

find the speech hard to follow.

The problem in psycho-acoustic research arises because the very act

of performing the first experiment produces changes in the memory

banks of the subject. For example, consider an experiment on pitch

perception where a participant is asked to compare groups of sounds

and to say which is the highest in pitch. Once the first group of sounds

has been heard it is impossible for the subject to ignore those

sounds, and the response, at a latter stage, even to the same group of

sounds, is very rarely the same.

Another of the many remarkable properties of the brain that plays a

part in our aural perception is that of ignoring sounds which are of no

importance to us. If a series of sounds-such as a baby crying, a dog

barking or a fire engine's siren-were played while someone continued

to speak, then the listeners will continue to hear what is being said,

because they rapidly identifY the extra sounds as of no personal relevance.

Differences between music and noise

The above examples are of relatively complex sounds and it is difficult

to draw clear scientific distinctions between music and noise with

sounds of this complexity. The two simplest kinds of sounds that occur

in studies of sound are white noise and a pure tone. Musically useful

sounds consist of mixtures and modifications of these two basic kinds

of sound-pure tones and noise.

The oscillograph trace of white noise shows no element of regularity

at all. The only variable parameter is that of the amplitude, which
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Music and mathematics

Harmonics, overtones, and privileged frequencies

Although most objects have a natural vibration frequency, the real situ­

ation is much more complicated. An easy way to approach these com­

plications is to think of a child's swing. The oscillation can be kept going

by giving a slight push once in every cycle of the swing-but the timing

is all important and it is just as easy to bring the swing to a standstill if

the push is applied at the wrong moment. The right moment is just

after the swing has started to accelerate from one of the extreme posi­

tions and the push must obviously be in the same direction as the move­

ment of the swing. But the swing can also be kept going if a push is

given every second time the swing reaches the optimum position, or

every third time, and so on. Equally, if the person pushing gives a push

(some of which, of course, will not connect with the swing) at twice

the natural frequency of the swing, or at three times the natural fre­

quency, the pushes that connect with the swing will still be at the right

frequency to maintain the oscillation.

Consider the tube discussed earlier. The oscillation can be main­

tained if the hand is repeatedly slapped on the end of the tube at its

natural frequency f But, as with the swing, it could equally well be

excited at frequencies 2f, 3f, 4f, 5f, etc. and also at frequencies if, *f, ~ f,

etc. Indeed, it can also be excited at ~ f, ~ f, ~ f, and at many other pos­

sible frequencies.

The frequencies commonly discussed in connection with musical

instruments are f, 2f, 3f, 4f, etc., which are usually termed harmonics (see

Chapter 1). In practice, because of end effects, the effect of the diameter

of a pipe, and many other complications, a simple tube will not resonate

precisely at the harmonic frequencies-but in spite of this musicians still

tend to call them harmonics. Scientists know them as overtones.

The remaining frequencies of the type if, *f, or ~f, ~f, etc., are known

as privileged frequenCies (and strictly speaking, the harmonics are privi­

leged frequencies as well). The following table shows a list of the har­

monics and privileged frequencies for a tube open at both ends with a

basic natural frequency of 240 Hz: the numbers in bold type are the

true harmonics.

120 240 360 480 600 720 840 960 1080 1200

60 120 180 240 300 360 420 480 540 600

40 80 120 160 200 240 280 320 360 400

30 60 90 120 150 180 210 240 270 300

24 48 72 96 120 144 168 192 216 240

Notice that some of the privileged frequencies (such as 120 and 60)

occur more than once, and if the table were still further extended

others would occur. These frequencies are easier to excite than the ones

that occur only once.
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Traditional diagrams showing the graphs of
the displacements in open and closed pipes:
(a) open, frequencyf
(b) open, frequency 2f

(c) open, frequency 3f
(d) closed, frequencyf
(e) closed, frequency 3f
if) closed, frequency 5f (a) (b) (c)

(d) (e) (f)

Impedance view of the behaviour of tubes

In the elementary approach to the behaviour of vibrations in tubes, use

is made of the fact that a compression becomes an expansion on reflec­

tion at an open end, but stays a compression when reflected from the

end of a closed pipe (see above). This must obviously be so, as the

reflection at the end of an open tube must add to the outgoing wave to

produce no excess pressure, and must therefore be an expansion. For

the closed pipe there is obviously maximum pressure at the end.

Problems arise if the pipe is not precisely cylindrical for the whole of

its length and it is then no longer possible to draw convincing diagrams

based on the simple theory. Measurement of the input impedance of a

tube as a function of frequency leads to a more satisfactory argument,

The figure (a) overleaf shows such a diagram based on the work of

Arthur Benade. The difference in behaviour between edge-tone instru­

ments and reeds can be explained without assumptions about open or

closed ends. Edge tone excitation involves only small changes in pres­

sure, although the displacements are high. Thus it is a low impedance

device (analogous to a low-voltage high-current electrical device) and,

as can be seen from the diagram, this leads to a full series of harmon­

ics. A reed, on the other hand, involves relatively low air flow but high

pressure changes, and is thus a high impedance device, which can be

seen from the diagram to involve only the odd harmonics, but the fun­

damental is an octave lower than that for a low impedance instrument.

The input impedance curve for a pipe with a series of side holes (as in

most woodwind instruments) is shown in figure (b); the existence of a

cut-off frequency can be clearly seen. The input impedance curve for

a conical pipe is shown in figure (c). Notice that the peaks and troughs

occur together at almost exactly the same frequency; thus it no longer
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Trace for notes of frequencies 480 and
477 Hz, sounded simultaneously.

CHAPTER 3 I The science of musical sound

two recorders and then slightly covering the first open hole on one of

them to flatten its note slightly. If the two notes have frequencies of

480 Hz and 477 Hz, the beats occur 3 times per second.

1\1\1\/1flfvv--/V\fI 1\ f\ IIJI \111\1\/1 ,M\I'v--J'V'lfI/1 1\/11\ 1111/\ II flfVv--.I\f\1\ 1\1\AJlMANJIfV-JWVWJ\

In fact, because of non-linearities in the ear-brain system, a note cor­

responding in frequency to the difference of the two sounding notes can

be heard; this is known as the difference tone. The result can be very com­

plicated as there are also sum tones, and there are secondary sum and

difference tones between the primary sum and difference tones.

Diagram representing some of the results of
adding two pure tones. The horizontal thick
line represents a note of fixed frequency; the
sloping thick line represents a note whose
frequency commences from that of the fIxed
note and then glides smoothly upwards
through one octave. The frequency ratios
represented by the lower case letters are:
(a) I : I; (b) 15: 16; (e) 4: 5; (d) 2 : 3; (e) 20: 31;
(n 30:59; (g) 1:2.

(a) (b) (e)
I

(d) (e)
I

(0 (g)
I

The above diagram shows the result of performing Helmholtz's

hypothetical experiment of sounding one note continuously and bring­

ing a second note from being in tune with the steady note to a pitch an

octave higher. The thick lines represent the frequencies of the two
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(a)

(b)

(c)

(d)

(0)

(f)

(g)

Wave traces of two simultaneously sounded
pure tones; the frequency ratios correspond
to those listed in the previous caption. notes actually being sounded, and the thin lines represent all the

various possible sum and difference tones. It can be seen that when the

ratio of their frequencies is relatively simple, the number of tones

present becomes less. It has been suggested that these tones sound

pleasant because fewer notes are involved; also if the wave traces are

studied, the simpler ratios give less complicated wave forms. The

above diagram shows wave traces for pairs of notes with various

frequency ratios.

This looks as though it might begin to account for the phenomena of

consonance and dissonance. But there are further complications. The

ear-brain system is non-linear only for rather loud sounds, but the sum

and difference, and dissonance phenomena, occur even for very low

amplitudes.

Also, if three tones are sounded together-say, 400, 480 and 560 Hz­

a difference tone at 80 Hz can be heard quite clearly, even at low ampli­

tudes: 80 Hz is the fundamental of the series of which the sounding

notes are the 5th, 6th and 7th harmonics. Now, if the frequencies are all

raised by the same amount to 420, 500, 580 Hz, although the difference

is still 80 Hz, the perceived tone is found to go up by about 10 Hz. The

three notes are now the 21st, 25th and 29th harmonics of a fundamental

of 20 Hz, although this note cannot be heard. This odd phenomenon,
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sometimes called the residue effect, provides yet one more example of the

inadequacy of simple theories to explain musical phenomena. Nor is it

an inconsequential complication: the tone of the bassoon, for example,

can only be explained using these ideas. If a frequency analysis of bas­

soon tone is made, there is found to be relatively little energy at the fun­

damental of any given note. Most of the energy lies in the 5th, 6th and

7th harmonics and the ear-brain system 'manufactures' the fundamen­

tal using this residue phenomenon.

The bodies of stringed instruments

Earlier, we mentioned the coupled system incorporating the strings and

bodies in the string family. It turns out that the body of an instrument

like a violin or a guitar performs an extraordinarily complicated func­

tion in transforming the vibrations of the strings into radiated sound.

Stradivari, Guarneri, Amati and others obviously solved the problem of

making the right kinds of bodies in a purely empirical way and,

although physicists can lend assistance to instrument makers in arriving

more rapidly at an acceptable solution, the secret of the success of the

Cremona school and others is by no means understood. It is clear that

much work remains to be done on the science of musical sound.

Computer simulations for two different
low-frequency modes of the front plate
of a guitar.
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CHAPTER 4

Faggofs fretful fiasco

Ian Stewart

Musical instruments uSingfixed intervals, such as pianos and guitars, generally

use the equal-tempered scale, so that tunes can be played in different keys.

Deciding where to put the frets on a guitar depends, in effect, on finding an

approximate construction for the twelfth root of 2. In 1743 a Swedish crafts­

man, Daniel Strahle, found a surprisingly simple and good construction, which

unJOrtunately was dismissed by the mathematicianJacob Faggot owing to a

mathematical mistake which Faggot made in checking the calculation. The

mathematics underlying Strahle's construction is in fact very beautijUl and

revealing.

If you look at a guitar, mandolin, or lute-any stringed instrument with

frets-you'll see that the frets get closer and closer together as the note

gets higher. This is a nuisance for the player, because there's less room

to fit the fingers in and because the distances you move your finger to

get higher notes is not proportional to that for lower ones. But there's

a good reason why the frets have to be spaced the way they are: the

notes won't sound right otherwise. This is a consequence of the physicS

of vibrating strings. Today's Western music is based upon a scale of

notes, generally referred to by the letters A-G, together with symbols I

(sharp) and ~ (flat). Starting from C, for example, successive notes are

C
GI

G A
IV

AI

B
B~

The title page of Daniel Strahle's
paper on placing the frets of a stringed
instrument.

and then it all repeats with C, but one octave higher. On a piano the white

keys are C D E F GAB, and the black keys are the sharps and flats.

This is a very curious system: some notes seem to have two names, while

others, such as BI, are not represented at all. It is a compromise between

conflicting requirements, all of which trace back to the Pythagorean cult of

ancient Greece. As we saw in Chapter 1, the Pythagoreans discovered

that the intervals between harmonious musical notes can be represented

by whole number ratios. They demonstrated this experimentally using a

rather clumsy device known as a canon (Figure 1), a sort of one-string

guitar. The most basic such interval is the octave: on a piano it is a gap of

6r



Music and mathematics

(a) 0( 1 ~

~ZZZZZZZZZZZZZZZZZ~
(c) 0( ~_

~ZZZZZZZZZZZZ~

_1___
(b) 2

~ZZZZZZZ~ZZZZZZZ~
(d) _~_

~ZZZZZZZZZ~ZZZZZ~
Figure I. The canon, an experimental device used by the ancient Greeks to study
musical ratios: (a) full string sounds base note; (b) string l the length (ratio 2: 1) sounds
note an octave above base note; (c) string ~ the length (ratio 4: 3) sounds note a fourth
above base note; (d) string i the length (ratio 3:2) sounds note a fifth above base note.

eight white notes. On a canon, it is the interval between the note played

by a full string (Figure 1a) and that played by one of exactly half the

length (Figure 1b). Thus the ratio of the length of string that produces

a given note, to the length that produces its octave, is 2: 1. This is true

independently of the pitch of the original note. Other whole number

ratios produce harmonious intervals as well: the main ones are the

fourth, a ratio of 4 : 3 (Figure 1c), and the fifth, a ratio of 3 :2 (Figure 1d).

Starting at a base note of C these are

C
base
1

D

2

E

3

F
fourth

4

G
fifth

5

A

6

B

7

C
octave

8

62

and the numbers underneath show where the names came from. Other

intervals are formed by combining these building-blocks.

You can find these ratios on a guitar. Place your left forefinger very

lightly on the string, and move it slowly along while plucking the string

with the right hand. Do not depress the string so that it hits any frets. In

some positions you'll hear a much louder note. The easiest to find is the

octave: place your finger at the middle of the string. The other two

places are one third and one quarter along the string.

All guitarists recognise the basic intervals octave, fourth, and fifth. In

combination with the fundamental they form the common major chord.

A standard 12-bar blues, in the key of C, employs the chord sequence

CII! CII! CII! CII! Fill Fill elil CII! Gill Fill C/// Gill

or a near variant (often with seventh chords instead of major ones in

the fourth and final bars). Like this, perhaps:

I got those inhar- monious, Pythagorean blues. I got those

G CI I I C I I I CI I I C7 I I I

inhar- monious, Pythagorean blues Got no

FI I I F I I I CI I I CI I I

har and no mony, an' my guitar's blown a fUse . ..

G I I I F I I I C II I G7 II I .

A more traditional song, which comes close, is Frankie andJohnny.
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It is thought that, in order to create a harmonious scale, the

Pythagoreans began at a base note and ascended in fifths. This yields a

series of notes played by strings whose lengths have the ratios

3 9 27 81 243
2 4 8 16 32 .

Figure 2. Scale formed purely from fifths
and octaves approximates the white notes on
a piano.

Most of these notes lie outside a single octave, that is, the ratios are

greater than ~. But we can descend from them in octaves (dividing suc­

cessively by 2) until the ratios lie between +and ~. Then we rearrange

the ratios in numerical order, to get

9 81 3 27 243
8 64 2 16 128·

On a piano, these correspond approximately to the notes

C DEGAB.

As the notation suggests, something is missing! The gap between ~ and

&sounds 'bigger' than the others. We can plug the gap neatly by adding

in the fourth, a ratio of t which is F on the piano. In fact, we could have

incorporated it from the start if we had descended from the base note by

a fifth, adding the ratio ~ to the front of the sequence, and then

ascended by an octave to get 2 .(~) = G).

C D E F G A B C
9 81 4 3 27 243
"8 64 "3 2 16 128

VVVVVVV
9 9 256 9 9 9 256
"8 "8 243 "8 "8 "8 ill

The resulting scale corresponds approximately to the white notes on

the piano, shown in Figure 2. The last line shows the intervals between

successive notes, also expressed as ratios. There are exactly two differ­

ent ratios: the tone ~ and the semitone ~:~. An interval of two semitones

is (~:~)Z, or ~~~~~, which is approximately 1.11. A tone is a ratio of

~ = 1.125. These are not quite the same, but nevertheless two semitones

pretty much make a tone. Thus there are gaps in the scale: each tone

must be divided up into two intervals, each close to a semitone.

There are various schemes for doing this. The chromatic scale starts

with the fractions at for n = -6, - 5, ... , 5, 6. It reduces them to the

same octave by repeatedly multiplying or dividing by 2, and then places

them in order: the result is shown in Figure 3. Each sharp bears a ratio

~~:: to the note below it, and from which it takes its name; each flat

bears a ratio ~~=~ to the note above. There's a glitch in the middle: two

notes, FI and 0, are trying to occupy the same slot, but differ very

slightly from each other.
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vvvvvvvvvv
256 2187 256 2187 256
243 2048 243 2048 243

256 2187 256 2187 256
243 2048 243 2048 243

B' B C
16 243
"9 T28

P; A

ill 12
81 16

256 2187
243 2048

F j;" 1024 \ G
729

4 3
"3 '2

\ ~;i j
2187 256
2048 243

E' E

32 81
27 64

c 0' D
256 9
243 "8

Figure 3. Chromatic scale of twelve notes,
incorporating the black notes (sharps and
flats); F I and G', are trying to occupy the
same slot.

There are many other schemes, also leading to distinctions between

sharps and flats, but they all involve a 12-note scale that is very close to

that formed by the white and black notes of the piano.

The reason for the glitch in the chromatic scale, and the reason that

there are many different schemes for building scales, is that no 'perfect'

12-note scale can be based on the Pythagorean ratios of ~ and ~.

A perfect scale is one where the ratios are all the same, so we get

for a fIxed number r. The Pythagorean ratios involve only the primes 2

and 3; every ratio is of the form 2a3b for various integers a and b; for
instance, ~~; = 2- 735. Suppose that r = 2 a3 b and rl2 = 2. Then 212a312b =

2, so 2lza
-

1 = 3- 12b. But an integer power of 2 cannot equal an integer

power of 3, by uniqueness of prime factorization. Similar arguments

show that no fIxed integer ratio can work.

This mathematical fact puts paid to any musical scale based on

Pythagorean principles of the harmony of whole numbers; but it doesn't

mean we can't find a suitable number r. The equation rl2 = 2 has a

unique positive solution-namely:

r = 12~2 = 1.059463094 ....

The resulting scale is said to be equally tempered, or equitempered.

If you start playing a Pythagorean scale somewhere in the middle­

a change of key-then the sequence of intervals changes slightly.

Equitempered scales don't have this problem, so they are useful if you

want to play the same instrument in different keys. Musical instruments

that must play fIxed intervals, such as pianos and guitars, generally use

the equitempered scale. The Pythagorean semitone interval is ~~~ =

1.05349 ... , which is close to 12J2, so the name 'semitone' is used for the

basic interval of the equitempered scale.

How does this lead to the positions of the frets on a guitar? Think

about the fIrst fret along, corresponding to an increase in pitch of one

semitone. The length of string that is allowed to vibrate has to be 1/ r

times the length of the complete string. So the distance to the fIrst fret

is 1 - (1 fr) times the length of the complete string. To get the next dis­

tance, you just observe that everything has shrunk by a factor of r, so

the spaces between successive frets are in the proportions

I/r I1r I/,J
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Figure 4. Distances between guitar frets
shrink for the higher notes.

and so on. Now r is bigger than 1, so 11r is less than 1, and that means

that the distances between successive frets are smaller (see Figure 4).

When the Greeks were faced with numbers such as 1Z~2 that cannot

be written as exact fractions-which they called irrational numbers­

they usually resorted to geometry. According to tradition, Greek geom­

etry placed considerable emphasis on those lengths that can be

constructed using only a ruler and a pair of compasses: for example,

squares and square roots can be so constructed (see Box A).

The ancient problem of 'duplicating the cube' asks for such a con­

struction for 3~2. This problem is traditionally grouped together with two

other problems: three left-overs from Greek geometry, which ask for con­

structions, using only an unmarked ruler and a pair of compasses, for:

(a) a square whose area is the same as that of a given circle;

(b) an angle one third the size of a given angle;

(c) the side of a cube that is twice the volume of a given cube.

They are known, respectively, as the problems of squaring the circle,

trisecting the angle, and duplicating the cube. The transcendence of 7T,

proved by Ferdinand Lindemann in 1882, proves that it is impossible to

Box A: Construction of squares and square roots

Constructing squares and square roots with ruler and compasses, given
a line of unit length.

Squares: Draw a right triangle AOB with OA = 1, OB = x. Find the mid­
point M of AB and draw MC perpendicular to AB to meet the extension
of AO at C. Draw a semicircle with centre C through A, to meet the
extension of AO at P. Then OP has length:x!'.

Square roots: Draw a line AOB with OA = 1, OB = x. Find the midpoint
M of AB and draw the semicircle centre M through Band A. Draw OP
perpendicular to AB to cut the semicircle at P. Then OP has length \x.

MB o A----x---.- 1-
cp o A

_---X2--_,~_ 1-
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between 3~ and 3~. David Fowler argues that Archimedes may have

been trying to evaluate the continued fraction of 7T, and that the Greeks

used continued fractions fairly systematically as a way of forming

hypotheses on the rationality or irrationality of particular numbers.

A continued fraction is an expression of the form
1

ao+-------
a

l
+ 1

a
2
+ __1_

a3 + ...

which we (mercifully) abbreviate to [ao; aI' aZ, a3, .••J. If Fowler is cor­

rect, Archimedes had got as far as [3; 7, something 2: 10]. Had he got as

far as [3; 7,15,1, something 2:200], he might well have begun to won­

der whether 7T might actually be rational, for such unusually large

terms normally appear in incomplete developments of rationals.

At any rate, the master mathematicians of classical Greece were per­

fectly happy using marked rulers and transcendental curves if they

needed them. Where, then, did the restriction to constructions with

unmarked ruler and compasses come from? It appears to be Eutocius, a

mere hack, who explicitly and not very politely criticised the great mathe­

maticians of earlier times for not respecting restrictions that he imposed

several centuries later. In short, the now notorious problems 'bequeathed

to us by the ancient Greeks' were not actually problems that the ancient

Greeks, the greats, the real mathematicians, ever worried about. It is not

unusual for the history of mathematics to be rewritten in this manner.

Be that as it may, later mathematicians took Eutocius's restrictions

seriously, and wondered whether constructions might exist that obeyed

them. Eventually they proved that there are none, by invoking algebraic

methods. Any geometric construction that obeys Eutocius's restrictions

can be broken down into elementary steps, and interpreted as a series

of solutions to linear or quadratic equations. Therefore any length that

can be constructed in the prescribed manner must solve a polynomial

equation-indeed, one of a fairly special kind. Duplicating the cube

amounts to solving the cubic equation K = 2, and this cannot be

reduced to a series of quadratics. It follows that there is no ruler­

and-compass construction for 12~2 either. For if there were a ruler-and­

compass construction for 12~2, then by squaring twice (using ruler and

compasses as in Box A) we could construct 3~2, which we know is

impossible. So there can be no ruler-and-compass construction for 12~2.

The equitempered scale is a compromise, an approximation. The

true fourth sounds more harmonious than the equitempered fourth,

and singers find it more natural. Since the equitempered scale is a com­

promise, we may ask whether there is some approximate geometrical

construction that tells you where to put the frets on a guitar. Not only

is there an approximate construction, but it has a very curious history.

The story illustrates the deep elegance of mathematics, but it is also a
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humbling tale: an outstanding triumph of a practical man nullified by a

professional mathematican's carelessness.

In the sixteenth and seventeenth centuries, fmding geometrical meth­

ods for placing frets upon musical instruments-lute and viol, rather than

guitar-was a serious practical question. In 1581 Vincenzo Galilei, the

father of the great Galileo Galilei, advocated the approximation

~ = 1.05882 ....

This led to a perfectly practical method, in common use for several cen­

turies. In 1636 Marin Mersenne, a monk better known for his prime

numbers of the form 2P- 1, approximated an interval of four semitones

by the ratio 2/ (3-~2). Taking square roots twice, he could then obtain

a better approximation to the interval for one semitone:

~~(2/ (3 - \2)) = 1.05973 ... ,

which is certainly close enough for practical purposes. The formula

involves only square roots, and thus can be constructed geometrically as

in Box A. However, it is difficult to implement this construction in prac­

tice, because errors tend to build up. Something more accurate than

Galilei's approximation, but easier to use than Mersenne's, was needed.

In 1743 Daniel Strahle, a craftsman with no mathematical training,

published an article in the Proceedings of the Swedish Academy presenting

a simple and practical construction. Let QR be 12 units long, divided into

12 equal intervals of length 1. Find 0 such that OQ = OR = 24. Join 0 to

the equally spaced points along QR. Let P lie on OQ with PQ 7 units long.

Draw RP and extend it to M so that PM = RP. If RM is the fundamental

pitch and PM its octave, then the points of intersection of RP with the 11

successive rays from 0 are successive semitones within the octave-that

is, the positions of the 11 frets between Rand M (see Figure 5).

For practical purposes, Strahle realised that (by similar triangles) a

single diagram could be employed with finger-boards of different

lengths (see Figure 6).

You might like to try it out, and compare with measurements from

an actual instrument. But how accurate is it? The geometer and econo­

mist Jacob Faggot performed a trigonometric calculation to find out,

and appended it to Strahle's article, concluding that the maximum error

is 1.7%. This is about five times more than a musician would consider

acceptable.

Faggot was a founder member of the Swedish Academy, served for

three years as its secretary, and published eighteen articles in its

Proceedings. In 1776 he was ranked as number four in the Academy: Carl

Linnaeus, the botanist who set up the basic principles for classifYing ani­

mals and plants into families and genera, was ahead of him in second

place. So when Faggot declared that Strahle's method was inaccurate,

that was that; for example, F. W Marpurg's Treatise on musical tempera­

ment of 1776 lists Faggot's conclusion without describing Strahle's



Figure 5. Strahle's construction.

CHAPTER 4 I Faggot's fretful fiasco

o

o

Figure 6, Strahle's illustration of the practi­
cal application of his method, Lay the finger­
board parallel to the line RPM and adjust to
length, with the midpoint on the line OW;

now mark the frets, x

K

L

M

v

69
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Figure 7. Faggot's fretful fiasco: the angle PRQ is not 40°14'.
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method. It was not until 1957 that J. M. Barbour of Michigan State

University discovered that Faggot had made a mistake.

Faggot began by finding the base angle OQR of the main triangle: it

is 75°31'. From this he could find the length RP and the angle PRQ. Each

of the eleven angles formed at the top of the main triangle by the rays

from the base could also be calculated without difficulty: it was then

simple enough to find the lengths cut off along the line RPM.

However (see Figure 7) Faggot had computed the angle PRQ as

40°14', when in fact it is 33°32'. This error, as Barbour puts it, 'was fatal,

since [the angle] PRQ was used in the solution of each of the other

triangles, and exerted its baleful influence impartially upon them all'.

The maximum error reduces from 1.7 to 0.15%, which is perfectly

acceptable. Thus far the story puts mathematicians, if not mathemat­

ics itself, in a bad light: if only Faggot had bothered to measure the

angle PRQ.

But Barbour went further, asking why Strahle's method is so accur­

ate. He found a beautiful illustration of the ability of mathematics to

lay bare the reasons behind apparent coincidences. There is no sugges­

tion that Strahle himself adopted a similar line of reasoning: as far as

anyone knows his method was based upon the intuition of the crafts­

man, rather than any specific mathematical principles.

The spacing of the nth fret along the line MPR can be represented on

a graph (see Figure 8). We take the x-axis of the graph to be the line QR

in Figure 6, with Q at the origin and R at 1. We move MPR so that it

forms the y-axis of the graph, with M at the origin, Pat 1, and R at 2. The

successive frets are placed along the y-axis at the points 1, r, r, ... ,rII
, r I2

= 2. (Note that this differs from the ratios 11 r, 11r, ... mentioned above,

because we are working from the opposite end of the string.)

R

p • •
••

•
•

•
•

•
•

•
•

R
M .................................--_.....

Q

Figure 8. Graph representing Strahle's
construction as a function.
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A mathematician would call Strahle's construction a projection with

centre 0 from a set of equally spaced points along QR to the desired

points along MPR. It can be shown that such a projection always has the

algebraic form

y = (ax + b) / (cx + d),

where a, b, c, d are constants: this is called a fractional linear jUnction.

For Strahle's method, you can check that the constants are a = 10, b = 24,

c = -7, d = 24, so the projection takes a given point x on QR to the point

y = (lOx + 24) / (-7x + 24)

on MPR. I'll call this formula Strahle's jUnction. Strahle didn't derive it:

it's just an algebraic version of his geometrical construction. However,

it is the key to the problem.

If the construction were exact, we would have y = 2x
. Then the thir­

teen equally spaced points x = n/ 12 on QR, where n = 0, 1, 2, ... , 12,

would be transformed to the points Zn/12 = (ZI/12)n =r" on MPR, as

desired for exact equal temperament. But it's not exact, even though

Barbour's calculations show that it's very accurate. Why? The clue is to

find the best possible approximation to 2x
, valid in the range °:s x:s 1,

and of the form (ax + b) / (cx + d).

One way to do this is to require the two expressions to agree when x =

0, Land 1 (see Figure 9). That gives three equations to solve for a, b, c, d;

namely,

b/d= 1; da+b) / dc+d)=21/Z
; (a+b) / (c+d)=2.

2

O.---------<t--------_
o

• x

Figure 9. To find the best fractional linear
approximation, fit it to the points x = 0, ;;: and 1.
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At first sight we seem to need one more equation to find four

unknowns, but really we only need the ratios bIa, eIa, and dIa, so three

equations are enough. We may fix the value of d to be anything non­

zero, and we decide to set d = ~2. Then the first equation implies that

b = ~2 as well, while the other two equations simplify to

(ia + ~2) I de + ~2) = ~2; (a + ~2) I (c + ~2) = 2.

Solving these gives a = 2 - ~2 and e = 1 - ~2. It follows that the best

possible approximation (in our chosen sense) to 2X by a fractional linear

function takes the form

(2 - Yz)x + VZ
Y=(I-V2)X+VZ'

That doesn't look much like Strahle's function, but now comes a

final bit of nifty footwork. Barbour estimated the error in terms of the

approximation ¥,' to ~2, and derived StraWe's formula that way; Isaac

Schoenberg did the same in 1982. If you just substitute ¥,' for ~2 in the

above formula, then you get

(24x + 58) I (-17x + 58),

which is different from Strahle's function.

Nevertheless, the most natural thing to do is change ~2 to some

approximation-but not ¥,'. Here's how. There is a sequence of rational

numbers that approximates ~2. One way to get it is to start from the

equation piq = ~2 and square it to get p2 = 2q2. Because ~2 is irrational,

you can't find integers p and q that satisfy this equation (or, more accu­

rately, because you can't find integers p and q that satisfy this equation,

~2 must be irrational). But you can come close by looking for integers

p and q such that p2 is close to 2q2. The best approximations are those

for which the error is smallest-that is, solutions of the equation p2 =
2q2 ± 1. For example, 32 = 2.22 + 1, and ~ = 1.5 is moderately close to

~2. The next case is 72 = 2.52
- 1, leading to ~ = 1.4, which is closer.

Next comes 172 = 2.122 + 1, yielding the approximation ~ = 1.4166 ... ,

closer still. You can go on forever: to see how, consider the continued

fraction for ~2. Start with the identity

V2= 1 +_1_
1 + V2

and then substitute the right-hand side into itself in place of \2 to get

a=l+ =1+ 1
1+1+_1- 2+_1_

1 + V2 1 + V2

Repeating the process, we see that ~2 = [1; 2, 2, 2, 2, ... ].

If we truncate the continued fraction at some finite position, we get

a rational approximation to ~2. The theory of continued fractions tells

us that this must be the best possible rational approximation (with a
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given size of denominator), and not surprisingly we get a rational ~

with pZ = 2qz ± 1. For example,

[1; 2] = t [1; 2, 2] =~, [1; 2, 2, 2] =~, [1; 2, 2, 2, 2] = *,
and so on. We recognise the first three approximations; and for the

fourth we find that 41 z = 2.29z - 1. Indeed, if we write

[1; 2, .. . (n copies) ... , 2] = Pn/qn'

then

2qn-l+ Pn-l

qn-l + Pn-l .

Comparing numerators and denominators, we obtain a pair of recur­

rence relations

For example, from P3 = 17, q3 = 12 we generate

P4=2'12+17=41; q4=12+17=29.

Continuing this process we get a table of approximations:

n

3

2

2

7

5

3

17

12

4

41

29

5

99

70

6 7

239 577

169 408

8

1393

985

9

3363

2378

10

8119

5741

74

Here, each successive qn is the sum of the two numbers in the previous

column; each Pn is twice the lower number plus the upper number in

the previous column. So we have a quick and efficient way to generate

rational approximations to ~2, and incidentally we have proved that the

Diophantine equation pZ = 2qz ± 1 has infinitely many integer solu­

tions. Pursuing these ideas leads to a beautiful theory of the so-called

Pel! equation pZ = kqz ± 1. In fact, it was Lord William Brouncker, and

not John Pell, who developed the theory: the ideas were erroneously

attributed to Pell by Leonhard Euler.

At any rate, we now have lots of approximations to ~2, among them

being~. Now back to Strahle's equation:

(2 - V2)x + V2

Y = (l - V2) x + V2 .

Divide the numerator and denominator by 2 and rewrite it as the equiv­

alent formula:

x + (1 - x)/VZ

ix + (1 - x)/VZ'



Figure 10. Errors in various constructions:
the size of the error is measured by taking
the logarithm of the ratio of the approximate
value to the true value.

Then replace ~2 by the approximation *, so that 1/ ~2 becomes ~: this

gives

x + ~ (l - x)

~x + ~ (l - x)'

This simplifies to give

lOx + 24
-7x + 24'

which is precisely Strahle's formula!

So Strahle's construction is very accurate because it effectively com­

bines two good approximations:

the best fractional linear approximation to 2x is

(2 - V2)x + V2

(1 - V2) x + V2 '

and Strahle's function is then obtained from this formula by replacing

~2 by the excellent approximation *'
.003

.002

.001

-.001

g-.002

~ -.003
o

....l -.004

-.005

-.006

-.007

-.008

C C· D Eb E F F' G G' A Bb B C

The errors corresponding to the various approximations discussed

above are compared in Figure 10: the biggest errors are Faggot's.

Thanks to the mathematico-historical detective work of Barbour, we

now know not only that Strahle's method is extremely accurate. We

also have a very good idea of why it's so accurate: it's related to basic

ideas in approximation theory and in number theory.

This leaves just one question unanswered-and, barring a miracle

or time travel, unanswerable. How on earth did Strahle think of his

construction to begin with?
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The keyboard of Bosanquet's enharmonic
harmonium, constructed around 1876, with
53 divisions to each octave, Its operation and
use are described in detail by Helmholtz in
his pioneering book On the sensations of tone,

CHAPTER 5

Helmholtz: combinational tones
and consonance

David Fowler

Not until the 19th century were scientists able to draw together evidence and

techniques from acoustics, phYSiology, physics, technology, psychology,

anatomy, and mathematics in order to begin to answer long-standing

questions about musical phenomena. Two such questions to which

Hermann von Helmholtz (1821-94) made a major contribution concerned

combinational tones (where two tones sounding together produce a third and

more) and the age-old .fUndamental Pythagorean insight into consonance.

A question that has teased the minds of musicians and listeners ever

since Greek times is: why is there an association between musical

sounds and simple whole number ratios? What explanation can there

be for the Pythagorean insight that consonances seem to relate to small

whole numbers and their ratios? Plato in the fourth century Be wrote of

the need to 'investigate which numbers are concordant and which are

not, and why each are so'. Despite the attention of some very distin­

guished mathematicians and musicians down the centuries-including

Kepler, Galileo, Stevin, Bacon, Descartes, Gassendi, Mersenne, Euler,

Tartini, d'Alembert, and others-this question did not receive a satis­

factory answer for more than two thousand years, when a plausible

account was given by the great German physiologist and physicist

Hermann von Helmholtz. This chapter is devoted to explaining some

of his ideas in this area.

Helmholtz's book On the sensations of tone as a physiological basis for the

theory of music, fIrst published in 1863, must surely be the single most

comprehensive, sustained and profound contribution to musical

acoustics. It is still in print, in the brilliant, quirky, opinionated English

translation by Alexander Ellis, who added to it many notes and appen­

dices of his own. The second edition of this translation (1885) gives a

panoramic view of the subject in the heyday of the mahogany, brass, and

glass era; one can scarcely imagine what advances Helmholtz, Ellis, and

their contemporaries might have been capable of had they had access to

microelectronics, linear microphones, oscilloscopes, and modern optics.
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Two of the many topics Helmholtz treats will convey the sweep and

power of his approach. We begin with a phenomenon first described in

the eighteenth century.

Combinational tones

Combinational tones are additional notes that you can sometimes hear

when two other notes are played together. The question is, why and

under what conditions does this happen? To understand the phenomenon

better, Helmholtz carried out experiments with sound generators.

The main sound generators of Helmholtz's time-that is, instru­

ments to produce tones for acoustical research, rather than for musical

listening-were tuning forks (for notes of fIxed pitch), harmoniums

(or, more accurately, reed organs), and the siren (convenient for

producing sounds of different pitch). Reed organs were used mainly for

demonstrations: Helmholtz's translator A. J. Ellis designed one for the

purpose, calling it a 'Harmonica!', of which there is a surviving example

at the Bate Collection in Oxford-it looks just like what it is, a small

harmonium-and Helmholtz's book includes a description of the

operation and use of Bosanquet's enharmonic harmonium.

Helmholtz's illustration of a double siren is annotated: 'constructed

by the mechanician Sauerwald in Berlin'. (Helmholtz was always

scrupulous in giving credit to the instrument workers whose skills

made his work possible, and also to King Maximilian of Bavaria and

other patrons who gave the money for particularly elaborate pieces of

apparatus.) There is a careful description of it in his book; there are two

sirens mounted on the same shaft, which can produce two tones of

variable pitch but fIxed relationship, such as unison, octave, fIfth, etc.

The cylinder of the top can be rotated independently by a handle; with

this, one can investigate beats (by rotating the handle at a constant

speed), or demonstrate that the ear cannot detect phase shift (by fIxing

the handle at different settings). We are no longer used to thinking of

sirens as scientifIc instruments, but some still exist as public fire alarms

where they are usually double. Next time you hear one, listen carefully:

along with the two or more loud tones of the siren itself, you will

clearly hear a lower tone, and you may also hear a higher tone. These

are combilUltional tones. Let Helmholtz explain them in his own words

(note the opening phrase: 'these tones are heard'):

These tones are heard whenever two musical tones of different pitches are
sounded together, loudly and continuously ... Combinational tones [also
known as terzi suoni, grave harmonics, resultant tones, subjective tones, inter­
modulation tones, aural harmonics, and heterodyne components!] are of two
kinds. The first class, discovered by Sorge [a German organist, in 1745] and
Tartini [the Italian violinist, in 1754], I have termed differential tones, because
their pitch number [frequency] is the difference of the pitch numbers of the gen­
erating tones. The second class of summational tones, having their pitch number
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Helmholtz's first interest was physics but, because state aid existed

for medical students and his family was of modest means, he trained as

a doctor and then started medical practice in the army. However his

interest was always more in research and, while a student and in prac­

tice, he worked with Johannes Muller and his students and absorbed

their philosophy of founding physiology on physical and chemical

processes, rejecting ideas of non-physical 'vital forces'. Significantly,

Helmholtz's first major paper, in 1847, which arose from his study of

the action of muscles, introduced the idea of potential energy and was

one of the several simultaneous announcements of the principle of

conservation of energy. He was the first to measure the speed of nerve

impulses and his result, that it was around 30 metres per second in

frogs' nerves, caused great surprise by being so slow. He invented the

ophthalmoscope in 1850, and laid down our understanding of the eye

in his three-volume Handbuch der physiologischen Optik (1856-67). His

book On the sensations of tone does the same for the ear.

He was among the first to give detailed physiological descriptions of

some aspects of the fine structure of the ear, which he summarizes over

thirteen pages of his book in a passage that begins: 'The construction

of the ear may be briefly described as follows .. .'. The mechanism is

exquisitely delicate: the eardrum or tympanum is linked by three small

bones (collectively called the ossicles-individually, the hammer,

attached to the drumskin, the anvil, and the stirrup) to the inner ear,

which is filled with fluid and contains both the balancing mechanism of

the semicircular canals and the auditory mechanism of the snail-like

cochlea, containing the neural mechanism for detecting and analysing

the sound and transmitting the resulting nerve impulses on to the brain.

Helmholtz gives a detailed analysis of all aspects of the ear including,

in the spirit of Muller's approach, its mechanical characteristics. For

example:

The mechanical problem which the apparatus within the drum of the ear had
to solve, was to transform a motion of great amplitude and little force, such as
impinges on the drumskin, into a motion of small amplitude and great force,
such as had to be communicated to the fluid in the labyrinth.
A problem of this sort can be solved by various kinds of mechanical apparatus,
such as levers, trains of pulleys, cranes, and the like. The mode in which
it is solved by the apparatus in the drum of the ear, is quite unusual, and very
peculiar.

One of the peculiarities that Helmholtz described is its asymmetry: the

drumskin (or tympanic membrane) is curved inwards, and hammer and

anvil are not fixed together but have interlocking teeth that allow a

ratchet-like behaviour.

Back, now, to combinational tones. Helmholtz gave a general

description of his explanation in the text, but reserved the details to a

short appendix. The first-order theory of vibration and hearing is linear,
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as exemplified by Ohm's law of perception:

The human ear perceives pendular vibrations [simple harmonic motions] alone
as simple tones, and resolves all other periodic motions of the air into a series
of pendular vibrations, hearing the series of simple tones which correspond
with these simple vibrations.

This corresponds to the approximation of assuming that all vibrations

are infinitesimally small and periodic motion can be resolved into its

Fourier expansion; but while, in reality, the vibrations may be very

small, they are in no sense infinitesimal. Although Helmholtz does not

actually use these words, for they were not then fashionable, his

explanation is that combinational tones are the ear's non-linear response

to these vibrations of finite amplitude. He concludes the short mathe­

matical appendix that gives the detailed argument (in the form of the

solution of a differential equation) with these words:

If, then, we assume that in the vibrations of the tympanic membrane and its
appendages, the square of the displacements has an effect on the vibrations, the
preceding mechanical developments give a complete explanation of the origin
of combinational tones. Thus the present new theory explains the origin of the
tones (n + m) as well as of the tones (n - m), and shows us, why when the
intensities a and b of the generating tones increases, the intensity of the com­
binational tones, which is proportional to ab, increases in a more rapid ratio ...
Now, among the vibrating parts of the human ear, the drumskin is especially
distinguished by its want of symmetry, because it is forcibly bent inwards to a
considerable extent by the handle of the hammer, and I venture therefore to
conjecture that this peculiar form of the tympanic membrane conditions the
generation of combinational tones.

Since Helmholtz's time, much delicate work has been done on the

fine structure of the ear, but I do not know how the detail of this final

hypothesis has stood the test of time. The following quotation from

J. F. Bell, a leading experimenter in the field of non-linear elastic

phenomena, indicates that the topic may still be far from resolved:

History abounds with unwarranted rejection of valid experiments. Only in
hindsight do we learn that a good nonlinear ear is required to hear Hermann
Helmholtz' summation tones in musical acoustics, an acoustical property uni­
versal among musicians but obviously not a common characteristic of the ears
of many, but fortunately not all, physicists since the 1850s. [Bell's footnote:
Aural harmonics are a subjective measure of the phenomenon of summation
and difference tones. As a small sample of the difference of opinion among
physicists, I quote titles from the 'Letters to the Editor' section of a single issue
in June 1957 of TheJournal of the Acoustical Society of America: :Aural Harmonics
are Fictitious'; 'On the Inadequacy of the Method of Beats as a Measure of
Aural Harmonics'; 'In Support of an 'Inadequate' Method for Detecting
'Fictitious' Aural Harmonics'.] Only in hindsight, too, do we learn that patience
and knowledge, ignored by his numerous contemporary discreditors, were
required to reproduce Leon Foucault's pendulum experiment in the
mid-nineteenth century.
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At this point, Bell has another footnote:

Foucault presented the results of his experiment to the French Academy on

February 3, 1851 and demonstrated the experiment to the general public in the
Pantheon in May, 1851. [His pendulum has now been reinstalled there.J

Foucault's experiment which demonstrated the rotation of the earth aroused

his contemporaries to publish over 60 papers during that same year. There

were debates among the theorists who adopted opposing analytical approaches.

There was discord among the experimentists, some of whom, not appreciating

the demanding requirements of Foucault's experiment on the pendulum,
obtained conflicting results. Thus was generated the heated controversy that

dominated the remaining 17 years of Foucault's life of only 47 years.

Two comments conclude this section. First, in this model,

Helmholtz inferred that the ear generates its own harmonics. So har­

monics are all around us, in the physics of most musical instruments, in

the mathematics of the analysis of periodic motion, and in the acoustics

of our perception of tone. This underlines the second-order violation of

Ohm's law of perception: the ear perceives more than the frequencies

that objectively are presented to it. Second, there is a simple and

obvious explanation of the difference tone that was advanced by

Lagrange, Thomas Young, and many others, and was still a live issue

at the time of Ellis' translation, that as the beating of two almost

coincident pure tones increases in frequency as the tones move apart, so

the beating sensation would move into the perception of the difference

tone (hence the name 'beat tone' often given to the difference tone).

Experiments have been done, with ambiguous results, to see if a

beat-like phenomenon can give rise to the perception of a tone, but the

most convincing single argument against this proposal-at least to

those who can hear it!-is that the summation and other combinational

tones cannot be so easily explained. The matter of beating also enters

our second topic.

The problem of consonance

One of the oldest problems of science is to explain the Pythagorean

association of consonance with small integer ratios. As we saw in

Chapter 1, when we sound a unison 1 : 1, an octave 2 : 1, a twelfth 3 : 1,

a double octave 4: 1, a fifth 3: 2, or a fourth 4: 3, we get a blended har­

monious sound, different in quality from an interval taken at random.

Such a repertoire of harmonious sounds has been at the basis of the

Western and some other musical traditions, as far as we can trace back

in time. So just what is consonance, and just why are these particular

intervals perceived as consonant?

Plato included music alongside mathematics and astronomy in the

curriculum for the future rulers of his state that he set out in his
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Republic, Book VII, explaining the parallel as follows:

It appears that just as the eyes are fIxed on astronomy, so the ears are fixed on
harmonic motion, and these two sciences are one another's sisters, as the
Pythagoreans say and we agree ... [But we must] rise to problems, to investig.
ate which numbers are concordant and which are not, and why each are so.

There is also a Greek treatise (attributed to Euclid) on the division of the

scale, the Sectio canonis, whose obscure introductory essay concludes:

Among [pairs of] notes we also recognize some as concordant, others as
discordant, the concordant making a single blend out of the two, which the
discordant do not. In view of this, it is to be expected that the concordant notes,
since they make a single blend of sound out of the two, are among those numbers
which are spoken of under a single name in relation to one another, being either
multiple [of the form n : 1] or epimoric [of the form (n + 1): n].

This abstract principle-if concordant, then multiple or epimoric­

seems to have mediated the Pythagorean approach to music, for they

do not seem to regard the eleventh, the octave plus fourth with ratio

8: 3, as concordant, to the derision of those Greek music theorists who

had a closer eye on practice. Here, for example, is what Aristoxenes

writes, in the Elementa harmonica II:

We must explain first that the addition of any concordant interval to the octave
makes the magnitude resulting from them concordant.

The problem of explaining consonance was a live issue until com·

paratively recent times: Kepler, Galileo, Stevin, Bacon, Descartes,

Gassendi, Mersenne, Rameau, Euler, Tartini, d'Alembert, and others all

gave explanations of the phenomenon (although not all of them

published their thoughts), and many of them regarded themselves as

providing the first really satisfactory explanation. For example, Kepler

wrote in his Harmonices mundi of 1619:

After two thousand years [during which the causes of the intervals] had been
sought for, I am the first, if I am not mistaken, to present them with the great­
est precision.

and Galileo wrote, in his Two new sciences of 1638:

I stood a long time in Doubt concerning the Forms of Consonance, not think­
ing the Reasons commonly brought by the learned Authors, who have hitherto
wrote of Musick, sufficiently demonstrative ... We may perhaps be able to
assign a just reason whence if it comes to pass, that of Sounds differing in Tone,
some Pairs are heard with great Delight, others with less; and that others are
very offensive to the ear.

By general consent, Helmholtz's explanation, more than two centuries

later, is much ahead of the rest, bestriding as it does all aspects of the

problem: instrumental, acoustical, physiological, psychological, and

mathematical.

What features should a satisfactory explanation of consonance possess?

• It should centre on some characteristic that we can recognize,

something that makes precise what Helmholtz, echoing the Sectio
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canonis, described in the words 'consonance is a continuous, disso­

nance is an intermittent sensation of tone'.

• It should be broad enough to admit some change over time, to

allow for intervals such as the third, the sixth, and the seventh, that

gradually move into the corpus of permitted consonant intervals;

or to explain why the fourth 4: 3, a classically consonant interval,

may not seem as consonant as the third 5: 4, or even the sixth 5: 3.

• It must be broad enough to admit that most of the so-called

consonant intervals in our music are mistuned: our tempered fifth,

used in almost everything except unaccompanied choral singing, is

not ~: 1 but 2 7
/

12
: 1 (that is 1.4983 ... : 1), while the major third is

worse: if the instruments and players are indeed playing in properly

tuned equal temperament, the third is not ~ : 1, but 21
/
3

: 1

(= 1.2599 ... :1). We do not hear nice ratios but musical notes!

• On the other hand, it should explain how some intervals, such as

the unison and octave, can stand no tempering, while other inter­

vals are much more tolerant.

• Ultimately, it should be able to explain the ambiguity of intervals: that

a grossly mistuned major sixth may in some circumstances be recog­

nized as a widened major sixth, and in others as an arrowed minor

seventh, but never as both simultaneously; or an interval of six semi­

tones (a tritone) may be parsed in one context as a diminished fifth,

and in another as an augmented fourth.

• It must also be broad enough to explain how some intervals such

as the major third sound more consonant in the treble than in the

bass. Or, in a celebrated prediction of Helmholtz, that a major third

D-F' played by a clarinet and oboe sounds much better when the

clarinet takes the lower note than when the oboe does, while a

fourth or minor third will sound better when the oboe takes the

lower note.

Having put together such a formidable list of desiderata, let us

embark on Helmholtz's explanation. As has just been suggested, the

instruments involved are significant so let us fix, for example, on two

violins. (This choice is especially favourable, as we can play notes of

every pitch with a violin, so chords of any interval with two of them.)

We know that the violin's quality of tone is produced by its own par­

ticular mix of fundamental and overtones, so we do a harmonic analysis

to determine what precisely this mix is.

The listener is crucial, so we do an experiment there also. This time

we use pure tones-and, in this precis of the description (but not in

Helmholtz's book!), we ignore the complications of the combinational

tones and other non-linear responses of the ear. We, the subject, hear

two tones that start in unison; as one of them increases in pitch, we

hear beating-slow at first, then getting quicker, and more unpleasant,
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until it reaches its peak of unpleasantness at around 30 beats per sec­

ond. After this stage the quality of unpleasantness-roughness is the

word used by Helmholtz-decreases away to zero. So we have some

sort of 'unpleasantness curve' such as this:

o 30
number of beats per second

AX'
Y=---

(30+x')'
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Helmholtz took the simplest such kind of expression, which he

admitted was an arbitrary choice, but

it at least serves to shew that the theoretical view we have proposed is really

capable of explaining such a distribution of dissonances and consonances as

actually occurs in nature.

Take, then, two violins playing any chord, and, using the harmonic

analysis of the violin's tone and this roughness curve, add up the contri­

butions of each constituent of the two notes: this gives a total measure

of the roughness of the interval. Better, says Helmholtz, 'knowing that

diagrams teach more at a glance than the most complicated descrip­

tions', to draw all this out as a graph. His figure appears opposite, split

into two halves, with a further scale added. (It is not clear what technol­

ogy he used to produce his graph, but it is difficult to read and interpret

in his book-in particular, it was printed in white on black; our version

has been greatly cleaned-up and enhanced.) One violin plays middle C,

while the other violin plays any note in the two octaves above.

Look at the left-hand end of the top graph, around the point middle C.

The lowest curve gives the roughness of the two fundamentals,

labelled 1 : 1, to which is added the roughness of the harmonics, labelled

successively 2: 2, 3 : 3, 4: 4, and 5: 5, their magnitudes being determined

by the harmonics analysis of the violin's tone. As the interval widens,

contributions from the ninth harmonics of the lower note and the

eighth of the higher note enter, then of the eighth and seventh, while

the contributions of the harmonics of the unison fade away into

insignificance, and so on. The sum of all of these contributions is the

top-most curve, the total roughness curve. The minima of this total

roughness curve then give the points of relative local consonance: we

find steep valleys at the most perfect points of consonance, especially

the unison, the octave (where the two graphs join), and the twelfth

(on the lower half), and less well-defined minima at the imperfect

consonances. The steeper the valley, the more critical is the tuning; the
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c e', e' f' g' a, a' b', c"

1:1 6:5 5:4 4:3 3:2 5:3 7:4 2:1
Uni~on minor major t"urth fifth major harmonic octave

thirds sixth seventh

e" d" e"~- e" f" g' a" b"~- etlt

2:1 12:5 5:2 8:3 3:1 1:3 7:2 4:1
octave major minor eleventh twelfth major harmonic double

thirteenth fourteenth octave

lower the trough, the greater the degree of consonance. His diagram is

not definitive: it clearly required an immense amount of labour to

calculate this example by hand, and it can be refined. (For an obvious

example, the unison involves only contributions up to the fifth

harmonic, although data is elsewhere included up to the tenth, so the

valley at the unison should be steeper; translated into musical terms,

this means that its tuning is even more critical.)

Such was Helmholtz's explanation. With rather more justification

than some of his predecessors in the long tradition, he says:

I do not hesitate to assert that the preceding investigations, founded on a more
exact analysis of the sensations of tone, and upon purely scientific, as distinct
from esthetic principles, exhibit the true and sufficient cause of consonance and

dissonance in music.
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Concluding remarks

Two things cannot but strike the mathematically alert twenty-first­

century reader in this backward look to the nineteenth century. Two

fashionable bits of mathematics in recent years have been non-linear

analysis (with the possibility therein of chaotic behaviour) and catastrophe

theory. Helmholtz's passionate belief was that the non-linear contribution,

the second and higher order effects, are essential to an understanding of

musical acoustics, and his minimum-seeking approach to consonance is

the exploitation of a pure catastrophe-theoretic technique. And while

Helmholtz's book is a delight for those who like their science broad and

deep, embracing physiology, physics, and mathematics, we have not

begun to explore his appreciation of the stuff of sound, music itself.

Finally, the reader will find there gems of other diverse sorts; for exam­

ple, the elaborate connection between the non-conformist church,

tonic sol-fa, music publishing, and the nineteenth-century attempt to

construct keyboard instruments that could play in just intonation, or at

least better approximations to it than that provided by the crude tem­

pered diatonic scale. Read this for yourself!



PART III

Mathematical structure in music
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CHAPTER 6

The geometry of music

Wilfrid Hodges

The dimensions of time and pitch make music into a two-dimensional space.

Geometers study a space by describing its possible transformations, and they

study a pattern in space by asking what transformations leave the pattern

unchanged-that is, what symmetries the pattern has, We apply these ideas

to musical space. For example, when does it make musical sense to squeeze a

tune, or to turn it upside down? Since musicians cannot use very high or low

pitches, a piece of music is like a frieze; we can find musical example of all

the possible symmetries of a frieze pattern.

In memory of Graham Weetman (1963-92), mathematician and musician.

The rise and fall of musical space

While Edward Elgar was writing his Enigma Variations, he went for a

walk along the banks of the River Wye with his friend G. R. Sinclair.

Sinclair brought his bulldog Dan, who fell in the river and barked as he

climbed out again. Sinclair turned to Elgar and said 'Set that to music'.

So Elgar did, in the variation named G.R.S. after Sinclair. Elgar's manu­

script marks 'Dan' at the point where Dan barks, though the printed

editions rather prudishly leave it out.

Here is the score of the crucial moment:

---- .~
---- --- 1-~------

ff

~~H+-~~~~::;;;=;-l-·_-----_·

Viola

Allegro di molto

Viol. I

An example of a musical palindrome: the
minuet from Joseph Haydn's Piano sonata
No. 41, Hob. xvi/26.

Vel.

Edward Elgar, Enigma variations XI 'C.R.S.'
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Johann Jakob Froberger, Suite XII in C major,
Lamento sopra la dolorosa perdita della Real Msta
di Ferdinando IV, Re de Romani.

92

You can clearly see the lines slanting down from top-left towards bot­

tom-right. Since the music runs from left to right, these lines represent

the music falling, and indeed you can hear it falling if you listen to a per­

formance. Elgar makes the music fall because the dog fell. But these are

two quite different kinds of falling. In the musical score, high-pitched

notes (notes of short wavelength) appear near the top, and low-pitched

notes (notes of long wavelength) are near the bottom. So a fall in the

score indicates that the orchestra moves from short wavelengths to long

wavelengths. The dog, on the other hand, falls by moving rapidly two

or three metres closer to the centre of the earth.

Here is an example of the opposite phenomenon: music that rises to

describe something going up. It comes at the end of Froberger's mus­

ical depiction of the death of Emperor Ferdinand IV. The picture shows

Froberger's manuscript, and you can see Froberger's picture of the

clouds of heaven welcoming the soul of the emperor as it climbs up a

scale of three octaves.

The two examples above illustrate the difference between up or

down in space and up or down in musical pitch. In fact there are not two

but three different kinds of space to be correlated. First, there is phys­

ical space. It has four dimensions-three of space and one of time.

Second, there is the score. To a first approximation, the score is a plane

surface with a horizontal dimension and a vertical dimension. By con­

vention the horizontal dimension represents time, from the past on the

left to the future on the right. Also by convention the vertical dimension

represents pitch; notes of shorter wavelength are written higher up.

Third, there is musical space. This space has any number of dimensions,

depending on how we choose to analyse it. The two most obvious

dimensions are time and pitch, and these are the two that we represent

as dimensions in the score. Probably the best candidate for a third

dimension is loudness. But the human ear is very bad at comparing the
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loudness of different sounds, and even worse at remembering degrees

of loudness. Most music doesn't distinguish more than five or six

degrees of loudness.

Taken literally, time in music just is physical time; some musical

events happen before others, and 'before' means 'earlier than' in the

usual physical sense. It's pure convention that time is represented in the

score by movement from left to right. The same convention makes

physicists put time on the x-axis, moving forwards from left to right.

Pitch is a more complicated matter. To us today it seems obvious that

high-pitched notes are 'high' and low-pitched ones are 'low'. That's how

we are able to understand the music of Elgar and Froberger quoted

above. So it comes as a shock to learn that in classical Greece high­

pitched notes weren't heard as 'high'. In fact the highest-pitched note of

the classical Greek octave was called nete, the 'nether' or lowest note. It

got this name from the fact that the stringed instrument called a kithara

was held with the highest-pitched string nearest the ground-just how

one holds a guitar today. The classical Greek expression for high-pitched

notes was oxys 'sharp', whence our musical sharps today; the Greek for

low-pitched was barys 'heavy'. Classical Greek musicians represented

pitches by letters, not by position on a musical page.

Very likely the correlation between short wavelength and height on

the musical page was set up before anybody connected either of them

with physical height. The correlation was made in western Europe,

probably during the period 850-1150 AD. Two manuscripts of the late

ninth century use a system of labelled boxes for the pitches, and they

both put the boxes for higher pitches nearer the top of the page. This

clumsy system never caught on. But during the next few centuries a

notation developed for showing where the music rises and falls, and the

notation formed a strong tendency to show rises in pitch by shapes like

/ , and falls in pitch by shapes like \. This led directly to the modern staff

notation, which started to emerge in the twelfth century.

Nobody knows just when high pitch came to be correlated with phys­

ical height, but the correlation seems to come from western Europe

again, and it became very strong during the fifteenth century. This is the

century in which the names altus or superius 'high' and bassus 'deep' came

to be used for high-pitched and low-pitched voices-whence our altos

and basses. (Altos count as high because women weren't allowed to sing

in churches.) During this century there were still a few notation systems

that put lower-pitched sounds higher on the page-for example, some

Italian lute tablatures-but they disappeared at the beginning of the six­

teenth century, presumably because they had come to feel too unnatural.

Josquin Desprez put the seal on this development by sending Jesus

down from Mount Olympus in a descending scale of twelve notes.

This is still one of the longest descending motifs in all vocal music

(see overleaf).
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ius - sit 0 - lymde - rede - seen

~u~
poJosquin Desprez, Hue me sydereo (late 1490s).

Up, down, between and distance

Josquin's idea opened the floodgates to a torrent of musical representa­
tions of ups and downs, mostly in music from western Europe. We find

them in Byrd, Purcell, Handel, Haydn, Wagner and Elgar.
An interesting example is a moving passage from the chorus The cold

deepens in Michael Tippett's oratorio A child of our time. The first staff is
the soprano part and the second staff shows some of the notes played
by the orchestra.

Michael Tippett, A child of our time, No. 26
Chorus.

Largo, poco lenta

de-scends in - to the i - cy wa-ters

While the soprano sings 'The world descends' and duly sinks down­

wards into the frozen ocean, the orchestral part surprises us by moving
upwards. Tippett knows exactly what he is doing. Physical space has
more structure in it than just up and down. It also has distance, and as
distance changes in time we have moving apart and coming together.
We can carry these notions over to musical space. In fact, Tippett's
piece conveys a strong feeling that as the sopranos descend and the bass
instruments of the orchestra rise to meet them, something is getting

trapped between the two.

Moderato/I

OJ
und r1lh re ouch mcht an.

~
r1lh re nuch Dieht

/I

OJ
P ~:=r

R*.. .. .. ..
:

-1

1
Franz Schubert, song: Death and the maiden.

/I

OJ

l.
an.

t:\

OJ R* '<! ~ ~ I~
PJ1 dim t:\
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Charles Ives, Duty.

Metrics: diatonic in C major; diatonic in F I

major; chromatic.

Richard Wagner, Parsifal, second act.

CHAPTER 6 I The geometry of music

Tippett was by no means the first composer to play this metaphor.

Schubert has a very similar device in his song setting of Claudius' poem

Death and the maiden. In the first half of the song the maiden begs Death

to leave her alone ('Riihre mich nicht an'). She sings energetically, but

the bass line in the piano betrays that her strength is sinking. Then sud­

denly the bass line turns upwards; not because her strength comes back,

but because Death is trapping her between the right hand and the left

hand of the pianist. From that point onwards, only Death sings.

Charles Ives set himself an impossible problem. He wanted to use

pitch distance to represent the fact that God is infinitely close to man.

But what is an infinitesimally close pitch distance? In the end Ives gave up

and left it to the singer to decide. Maybe what Ives wanted was a small­

est perceptible pitch difference. There is no standard notation for this.

~
So qnear is God to man

How does one measure distances of pitch? For classical western

music there are two main answers. The first is that pieces of music tend

to be in a key, and we count one unit of distance for each step up the

scale of that key. This measure of distance is called the diatonic metric,

and it depends on the key. ('Metric' is the mathematicians' name for a

scale of measurement.) The second answer is that for many instru­

ments with set pitches (such as pianos and organs) the smallest distance

between two playable notes is a semitone; so we count one unit of dis­

tance for each semitone. This is the chromatic metric. Thus from B to F

is 4 diatonic units in the scale of C major, 3 diatonic units in the scale of

FI major and 6 chromatic units;

Things become immensely more complicated as soon as one moves

even a short distance from western classical music.

There is a natural dual to Ives' question: How can we use musical

space to represent that two things are infinitely far apart? For some

reason, composers have generally wanted to do this more with time

than with pitch; the problem is to represent eternity within the confines

of a piece that lasts, say, half an hour. There are several ways to do it. A

simple way is to make a note last not for ever but for a relatively long

time. Thus Wagner in Parsifal:

('You and I would be damned for eternity, for the sake of one hour.')

~

~~~~j,I,e!$r~lr- JWf?t1¥=r r rJr .,pr r~
Auf E wig - keit war'st du ver-dammt mit mir. fur ei - ne Stun-de
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CHAPTER 6 I The geometry of music

These three kinds of symmetry are not independent; one can prove that

if two of them are symmetries of a motif M, then the third is a sym­

metry of M too. So we can classify motifs according to which symme­

tries they have, and there are five possibilities, which we shall call the

symmetry types of musical motifs. (The names pl etc. are adapted from

crystallography, where one studies the shapes of crystals by describing

their symmetries.)

pl: only the identity transformation is a symmetry;
ph: besides the identity, only Rh is a symmetry;
pv: besides the identity, only Ry is a symmetry;
p2: besides the identity, only Rz is a symmetry;
phv: all of Rh, Ry and Rz are symmetries.

For some broad guidance, here are examples of letters which (at least

approximately) have the five symmetry types. We think of a letter as

being a set of points of the plane. For example the reflection Ry is a sym­

metry of the letter A because the letter covers exactly the same set of

points of the plane if you flip it over around a vertical line passing

through the top of the A. On the other hand, if you turn A over around

a horizontal line, the result is not A but an upside down A, covering a

different set of points.

(pI) F G J
(ph) C E K
(pv) A M V
(pl) N S Z
(phv) H 0 X

The five symmetry rypes of motifs.

Motifs of the five symmetry types

Type p1: no symmetries

The overwhelming majority of musical motifs belong here. For most of

them, this is a fact of no particular significance. But suppose the com­

poser has a mind to use some geometrical transformations such as

reflections and rotations. Then an asymmetrical motif M gives much

the best value, because its images under the different transformations

are all different and distinguishable.

Given that most tunes are highly asymmetrical, what should we say

about a composer who takes somebody else's tune, applies a transforma­

tion to it and then markets it as his own? This is exactly what

Rachmaninov did to a violin caprice of Paganini. Below we show the

Paganini original and the inverted Rachmaninov version in lock step.

Rachmaninov follows Paganini bar by bar, and it's a chromatic inversion

(so that it changes minor to major). But he slightly changes the rhythm
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Upper line: Niccolo Paganini, 24 caprices for
violin solo, Op. I, No. 24.
Lower line: Sergei Rachmaninov, Rhapsody on
a theme by Paganini, Op. 43, Variation XVIII.
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and at one point he jumps by an octave. (It's a good exercise to play
Paganini's tune upside down with no further alterations; one can see why
Rachmaninov made the changes that he did.) What the table doesn't

show is the difference in mood between a single violin playing
staccato on its E string and a large symphony orchestra souping up the
harmonies.

I:~:==
3

I:*~
In the Classic FM Hall of Fame, where the British public votes for its

most popular classical pieces, the scores in the year 2000 were

Rachmaninov inverted version: 33rd out of 300.
Paganini original: nowhere.

Type ph: only reversal of pitch

If a simple melody with no accompaniment has type ph, then it consists
of a single note repeated. Surprisingly there are motifs with this property.
Anton Reicha, a friend of Haydn, published a piano fugue whose
subject consists of the same note repeated 34 times. (Towards the end
the left hand sees the challenge and manages to repeat a single note
86 times. Fans of the Fibonacci numbers will be interested to hear that
these 86 notes are grouped into blocks of 5 beats and 13 beats.)

Reicha's fugue is more entertaining than musical. On the other hand

there certainly are worthwhile melodies that lie entirely in one pitch. But
then they must owe their interest to another dimension. It could be
rhythm, as with drum music, though a good drum player usually varies
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the timbre as well. The didgeridoo plays only one note, but an expert per­

former can get a tremendous range of timbres from it. Much of the music

of the Italian composer Giacinto Scelsi revolves around changing the tim­

bres of a small number of notes, as in his Quattro pezzi su Ulul nota sola.

If a motif of type ph has several voices or instruments, the upper

voices can reflect the pitch movements of the lower ones and there is

no restriction to a constant pitch. When the upper and lower voices

move in opposite directions, this is known as contrary motion. It forms a

well-known gesture in classical music, just as in conversation one

sometimes throws one's arms out or brings one's hands together. Some

composers do it naturally, as if they never even noticed:

Allegro" ~ ~

OJ

" " ~

OJ v " - ?i~

"
-.:t - ~- -.. ~

:

VlOhnl

Cello

VIOla

VlOhr.1I

Woltgang Mozart, Clarinet quintet, 1<381,
opening of first movement.

Mozart's two upper voices reflect the movements of the two lower

voices very closely for the first nine notes here. The intervals in the

upper voices are not always exactly the same as in the corresponding

lower ones, as they would be under a mathematical reflection; but they

are remarkably close.

Most composers have little interest in making their upper voices mir­

ror their lower ones with mathematical exactness, or in making the

contrary motion last more than a few bars. But occasionally a composer

does it for interest, as in Bartok's set of 'progressive piano pieces' for

people learning to play.

Bela Bartok, Mikrokosmos, No. 141, Subject and
reflection.

Incidentally, the title of Bartok's piece points to the geometric

theme. But mirrors or reflections often appear in the titles of twentieth

century compositions:

Boulez, Constellation-Miroir (in his 3rd Piano sonata)
Carter, A mirror on which to dwell
Debussy, Rejl.ets dans l'eau
Francesconi, String Quartet 3, 'Mirrors'
Kokkonen, ... durch einem Spiegel . ..
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Maxwell Davies, A mirror of whitening light
Maxwell Davies, Image, reflection, shadow
Panufuik, Reflections
Ravel, Miroirs
Reynolds, The behavior of mirrors
Takemitsu, Rocking mirror daybreak
Certainly not all of these pieces contain pitch reflections.

Type pv: only reversal of time

One of the earliest recorded pieces of secular music has a strong lean­

ing towards left-right symmetry. This is the jingle recorded on the wall
of Reading Abbey, Sumer is icumen in.

Anonymous 13th century, Sumer is icumen in.

~1LDIF p~J=t~ )J¥J
SU - mer is i-ell - men in, Lhu - de sing cue - eu, Grow - eth sed and

f ~ J Jl J J\ I J Pr PI r' J' I r r I r J' I
blow -eth med. And springth the wu - de nu, Sing cue - cu.

This tune is quite unusual in starting high, dropping and then rising
again. A much commoner pattern in the folk music of western Europe
(though not in Russia) is to start at a low pitch, rise to a high point and

then fall back again. Two typical examples are the French folk song Nous

n'irons plus aux bois and the Londonderry Air.

r~-bi£¥=~

~~2§IJ r r J 12 J J

,~ e J 2 J pi

'~I'
e J J 2 I W-I,

First line: French folk song: Nous n'irons plus
aux bois.
Second line: Londonderry air.

The primitive rise-fall pattern is in some sense a grandfather of
sonata form, where a section of rising tension, starting in the tonic key,
is followed by a development section of high tension, and then by a
fmal section where the tension falls and the tonic key is recovered. But
in sonata form the final section is never a mirror image of the first sec­
tion in any more precise sense. In fact musical palindromes, composi­

tions with a virtually exact left-right symmetry, are fairly rare.
Some examples have a programme-these are usually vocal pieces

with a libretto-and the symmetry expresses something in the pro­
gramme. One very effective example of this genre is Stravinsky's depic­
tion of Noah's flood spreading over the world and then receding, in his

musical play The flood.

Another famous example, with a programme of a sort, has nothing
directly to do with reflections and everything to do with balance and
stability and the other virtues of a well-ordered state. Here is Handel

implying, not quite subliminally, that The Lord God has everything very
nicely under control, thank you.
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for the Lord God Om - ni po - tent reign - eth

George F. Handel, Messiah, Hallelujah chorus.

- • • •
•

• - •

There is a slight asymmetry in the rhythm, but not enough to damage

the symbolism.

Some other musical palindromes seem to have been written for

the challenge. If the symmetry is obvious enough, the performers

can enjoy it as much as the composer. One of the best specimens of

this kind is Haydn's reversible minuet. He was so proud of it that

he recycled it into three separate works, the piano sonata shown at the

beginning of the chapter, a violin sonata and a symphony.

In a sense, Haydn cheats with this piano sonata. If you take a tape

recording of the first half of the minuet and play it backwards, you

won't hear anything remotely like the second half. This is because of

two physical properties of piano notes. First, they start with a bang and

fade out gradually; so if you play them backwards, they start soft and fin­

ish with a bang, which makes it impossible to hear them as piano notes

at all. And second, the length of time that they last depends on how loud

they are (unless the pianist brings down the damper to stop them). This

means that a loud note A may start before a soft note Band fmish after

B; when the tape is reversed, A still sounds as if it was played before B,

so the order of the notes is not reversed as it is in Haydn's minuet.

2.01.5

Key r~leased

1.0
Time in seconds

0.1 0.5.05

'-r---.....--1
Piano 1\

I \

<P

C;; -10
§
s;. -20
~

-30
o

String struck
0·

Piano note, from H. F. Olson, Music, physics
and engineering, Dover, New York (1967),257.

Luigi Nono's Canti per tredici is an exact palindrome for voices and

not pianos, but it deliberately uses effects that are like what we hear

when we reverse the tape of the piano recording. Like Alban Berg ear­

lier in the twentieth century, Nono used palindrome as a structural

device in composition. Most of Berg's and Nono's listeners will not

notice these palindromes until they are pointed out, but for composer

and performers they bind the music together as a unity.

Type p2: only rotational symmetry

This is not at all a common pattern, and generally it is not easy to hear.

It hardly ever happens by accident, except where it falls out of some

other feature of the motif.
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Paul Hindemith, Ludus tonalis,
beginning and end.

Nikolai Rimsky-Korsakov, theme from
The golden cockerel.

I04

As with the pattern pv, the non-accidental examples tend to be either

technical challenges or programmatic symbols. A serious technical

challenge should be a complete movement, or two together. This kind

of extended symmetry only became possible in twentieth century

music; the rules of earlier periods were too rigid. Hindemith provides

an example in his piano piece Ludus tonalis ('game of tones'). If we

ignore the very last chord, the fmal movement is the same as the first,

but rotated through 180 degrees.

.~
,

-and here follows an hour of music~~

Another example is Penderecki's orchestral Threnody for the victims of

Hiroshima. This is one of many pieces which illustrate the fact that there

is no contradiction at all between an emotionally charged topic and a

higWy formal compositional structure.

To illustrate the symbolic use of p2, here is an example with some

interesting geometry that its composer may not have been fully aware of

DANGER PEACE

~tI~-~=:ti~U~~~~

The story of Rimsky-Korsakov's opera The golden cockerel revolves

around a magic bird that sings two songs, one when there is danger and

one when there is not. Rimsky-Korsakov has the ingenious idea of

making the Safety song a geometric transformation of the Danger song.

The tidiest way to do this is to choose a theme that has exactly two

images under isometries; so it should be of type ph, pv or pl, not phv

(which would make it identical under all isometries) or pI (which would

give it four forms, not two). Should the song be flipped between Danger

and Safety by a pitch reflection (as in ph) or a time reflection (as in pv)? By

choosing p2, Rimsky-Korsakov gives the answer Yes to both possibilities.

Type phv: all possible symmetries

Interesting motifs of this type are extraordinarily rare. One appears in

an elementary piano exercise of Georg Kurt<ig. The round blobs are

instructions to hit the keyboard with the palm of your hand.



Georg Kurtag,)dtekokfor pumo I, Hommage d
E6'tvos Peter.
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(Rugalmasan nem gyorsan *)
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Why are there so few examples of this type? I can only answer

with an anecdote. Once I thought I heard an example in a concert of

contemporary piano music. Since the composer (Luke Stoneham) was

sitting behind me, I asked him in the interval whether I could check

the score. When he heard what I was looking for, his jaw dropped

and he said that if he had spotted any such figure in the piece, he would

certainly have removed it. It seems that any composer with taste regards

this symmetry group as too crass to use.

Breaking out of bounds

The dot-dot-dot symbol

•••
repays some study. We read it from left to right. The second dot comes

from the fIrst by a small translation to the right. If we repeat the translation,

we get the third dot. That's enough to establish a pattern, and if we made

a few more repetitions we would soon run over the edge of the paper.

So the three dots point us to infInity. This is a purely geometrical idea

and it transfers immediately to the musical plane. Several composers have

used it, usually at the end of a programmatic piece with a message 'and

so life goes on'. One such composer is Bedtich Smetana, at the end of his

string quartet From my life (see overleaf) where the story sinks into the

indefinite future.

Bela Bartok used the same device at the end of his opera Duke

Bluebeard's castle. Shortly before the fmal 'dot dot dot' we hear (in the

German version) the word ewig 'ever' repeated four times. One can hear

another example (played very softly) at the end of Benjamin Britten's

opera Peter Grimes when Grimes is gone and the community's life returns

to its normal cycle, while 'in ceaseless motion comes and goes the tide .. .'.

Did it have to be a horizontal translation that we used to point to

infinity? Yes and no.

This calls for a small digression, to bring in a class of transformations

of the plane that includes the isometries and more besides. Defined

mathematically, affine transJOrmations are the transformations which take

any straight line to a straight line. One important kind of affine
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Bedfich Smetana, end of string quartet:
From my lift:.

VlolmI

VloltnII

VIOla
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transformation is horizontal dilation which keeps all pitches the same but

slows down the time scale so that notes which were s seconds apart

become rs seconds apart. The number r is called the ratio of the dilation.

If 0 < r < 1 then the dilation speeds up the time. Likewise a vertical dila­

tion expands the pitch scale in some fIxed ratio r but doesn't alter time.

Vertical dilations occur constantly in Beethoven's writing. He uses them

systematically as a way of generating new material out of a basic motif But

the device is much older than Beethoven. There is a kind of canon called a

mensuration canon where a tune is played simultaneously at two different

speeds (and usually at different pitches too). This is a way of using hori­

zontal dilations. It was popular in the fIfteenth century, and in the twenti­

eth century several composers used it, most notably Olivier Messiaen (as a

metaphor) and Conlon Nancarrow (who used bizarre ratios like

1//13.1/!2
vln V16 . Vn V'3

in music for a player piano).

To come back to the matter in hand: there are just two kinds of affine

transformation of the musical plane that can be iterated as often as we

like but eventually lead out towards infInity. These are horizontal trans­

lations and horizontal glide reflections, either of which will give us the

dot-dot-dot pattern. All other affine transformations of musical space

that lead us out towards infInity hit the buffers after a very few itera­

tions: either the pitch rises or falls too far for the instrument, or the

music is too quick to be playable, or it's too slow to be heard as music,

or some other similar physical problem.



George E Handel, Organ concerto in A major.
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The best composers struggle against these limits, and where neces­
sary they fmd ways of deceiving the ear into thinking there has been
more iteration than in fact there has been. Two examples will suffice.

The first example is Handel fighting against the speed limits built
into the action of an eighteenth century organ. The passage is from the

organ part of his Organ concerto in A major:

n fr

1'# e J J 'I P I 90 0 #5 5 5 5 5 5 5 r I

1'-## rrrrrrrr._

1'-## [;r~~
We think he keeps doubling the speed of the repetition; this is a hor­

izontal dilation with a ratio of 0.5. But when he reaches the physical
limit, instead of continuing the iteration by repeating faster, he changes
the notes. The ear is deceived. Handel may have learned this or a simi­
lar trick from the Italian opera writers.

The second is from one of those sadly beautiful motets that William

Byrd wrote for his fellow Catholics (a persecuted minority under
Elizabeth I) to sing at Ingatestone House under the protection of Lord
Petre, Non vos relinquam orphanos 'I will not leave you comfortless'. Jesus

is foretelling his ascension into heaven, Vado 'I am going'.

-
H

William Byrd, Non vos relinquam orphanos. Va -

Va

- do

Va

- do

do

- do

The moment passes quickly, but this was music to be appreciated by

the performers themselves. The Vado motif seems to move steadily
upward through the voices, pointing to Jesus' own movement upwards
to heaven. Geometrically this is a diagonal translation iterated. In fact
the movement is not as steady as it sounds; at two of the repetitions
there is no movement upwards. Again the ear is deceived.
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The seven types of frieze pattern.

108

This passage of Byrd seems to have entered the subconscious of a

number of later English choral composers. There is a very similar upward

movement in a passage of Gustav Holst's Hymn of Jesus to the words

'When I am gone'; and Tippett has a splendid example in the climax of

the fmal chorus of A child of our time, to the words 'Walk into heaven'.

Friezes

Afrieze pattern is a pattern that repeats itself endlessly in one dimension.

We can classifY frieze patterns by their symmetries, just as we classified

motifs. Since a frieze pattern keeps repeating, one of its symmetries must

be a translation; this is one difference from motifs. Geometers looked to

see what other isometries can be symmetries of a frieze pattern, and they

discovered that there are exactly seven symmetry types of frieze. In the

chart below, one should imagine each frieze pattern as running infmitely

far to the left and the right. The names correspond to those used earlier,

except that they also contain t for translation or g for glide reflection.

(pIt) FFFFFFFFFFFFFFFFF
w~ F~F~F~F~F~F~F~

w~ EEEEEEEEEEEEEEE
(pvt) AAAAAAAAAAAAAAA
(pl~~) A 'T/A 'T/A 'T/A 'T/A 'T/A 'T/A 'T/
(p2t) NNNNNNNNNNNNNN
w~ HHHHHHHHHHHHHH

A line of music endlessly repeated is a musical frieze pattern. One

can fmd examples of all seven types. But one shouldn't expect too much

here; music that repeats itself over and over again is almost by defini­

tion background or mood music, not meant to be listened to for its own

sake. Nevertheless in at least four cases (pIt, pvt, pvg and phvt) there are

interesting examples.

plt

This is the type of a pattern that repeats over and over with no symme­

tries except sheer repetition. Many birds make sounds like this, from the

tap tap tap of the woodpecker to the jug jug jug of the nightingale.

Enrique Granados has a famous and suitably repetitive portrait of a

nightingale at the end of Quejas 6 la Maja y el Ruisefior in his piano suite

Goyescas. But obviously when birds are mentioned, we have to pay a

visit to Olivier Messiaen. Here is slightly less than half of his setting of

the song of the curlew. The rest is similar.



Olivier Messiaen, Catalogue d'oiseaux, Le
eourlis cendre.

Jean Sibelius, Symphony No.3, last movement.
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pvt

Earlier we saw that the symmetry type of an arch-shape that rises and

then falls again is pv. So pvt is the type of a line of arches; we can see them

in the row of As in the example above. Sibelius, that genius of orchestra­

tion, gives just such an arch shape to his violins to play over and over

again. What makes this an interesting passage is that he does two other

things. First, he divides the violins into four groups and makes each

group start its arches at a different time. The effect is a throbbing sound

that repeats at a quarter of the length of the arch; the arch lasts four bars

but the combined pattern repeats at each bar.

Second, although the violins are providing a background texture, the

rest of the orchestra seems not to realise this and keeps trying to turn

the rising side of the arch into a foreground tune. It never quite suc­

ceeds, but it holds us on the edge of our seats.

phg

A sine curve is the best mathematical example of this frieze type. What

music sounds like a sine curve? There are plenty of rippling sounds in

music, for example in Smetana's depiction of the Vltava in Mti Vlast­

though if you look at the score you will see that Smetana's ripples are

generally a good deal less regular than the ear takes them to be. But step

forward Debussy, whose jumping jacks leap to and fro across the sky in

his Fireworks prelude. The symmetries are not quite exact, but with

music like this, who's counting?
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Claude Debussy, Preludes for piano II, Feux
d'artiflCe.
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phvt

This is the frieze type of a single note repeated regularly and endlessly.

The endlessness and the resemblance to a church bell make this figure

a potent symbol of death. A repeated note hangs over the last five pieces

of Schubert's song cycle Die schone Mill/erin, sometimes dryly, some­

times frantically. In the song Die liebe Farbe it is constant throughout the

piece. In the third bar below, Schubert (always a master of

spacing) has placed a huge emptiness between the low D' and the high pi

of the relentless bell. The fact that this is a major chord, which in roman­

tic music tends to express happiness, makes the passage doubly poignant.

Poco len'"

MeJn Schatz bal's Grtin so gem, mem Schau hat's Grtln so gem

Franz Schubert, Die schone Miillerin, Die liebe
Farbe.

Igor Stravinsky, The rite of spring, 14 in score.

Igor Stravinsky, Petrushka, 53 in score.

no

Three frieze patterns remain. In the following extract, which illus­

trates pIg, the upper staff is the cor anglais, while in the lower staff two

bassoons alternately play the frieze motif the right way up and inverted.

The inversion is chromatic.

The harp motif below illustrates pht; one can imagine a row of letter Cs

opening up to the left instead of the right. The metric is diatonic in D minor.

•
Finally, the flutes and oboes below playa motif that one can see as

the crossbar of the repeated N for p2g in the table. The motif is made

up of whole tones, so that again we are rotating in a chromatic metric.



Claude Debussy, La mer, second movement,
bar 72.

Conclusion

Books on counterpoint or canon contain many examples of transfor­

mations of melodies. Beyond these, one must go to the composers

themselves, the recordings and the scores. The following composers are

particularly fertile in geometrical ideas:

Johann Sebastian Bach (1685-1750) was the grand master of fugue, and

he wrote several collections of fugues which illustrate an amazing

range of possibilities.

Bela Bartok (1881-1945) rivalled Beethoven in his ability to spin

whole pieces of music out of a few notes by various geometrical

transformations.

Ludwig van Beethoven (1770-1827) hardly needs introducing. C. Rosen, The

classical style, Faber, London (1971), studies Beethoven's development of

themes, and compares him in this regard with Haydn and Mozart.

Alban Berg (1885-1935) was, like Anton Webern, a student of Arnold

Schoenberg. These three composers developed Schoenberg's twelve­

tone techniques, which were built round isometric transformations of

a sequence consisting of the twelve notes of a chromatic scale in some

fIxed order.

Josquin Desprez (c. 1440-1521) was one of a number of polyphonic com­

posers in the period 1350-1500 who built much of their music around

types of canon, sometimes of dazzling virtuosity. (Others were

Machaut, Dunstable, Du Fay, Ockeghem.)

Joseph Haydn (1732-1809) loved musical tricks and witticisms, but he

combined them with a deeply serious commitment.

Olivier Messiaen (1908-92) had an almost obsessive interest in structural

devices-for example, scales with particular symmetry types, and

rhythmic patterns from classical Indian music. Robert Sherlaw Johnson,

Messiaen, J. M. Dent and Sons Ltd., London (1989), gives an excellent

introduction to Messiaen's methods.

Conlon Nancarrow (1912-98) wrote almost exclusively for player pianos,

because these instruments can produce notes with a speed and accuracy

which no human player could possibly achieve. His Studies for player piano

are a kind of modern Art ofJitgue, covering all conceivable kinds of canon.

Unfortunately most of them are unpublished and exist only as piano rolls.

But recordings have now been issued on CDs and are well worth hearing;

the notes issued with the discs are a fascinating introduction.
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The title page of the third edition of Fabian
Stedman's book, Campanalogia, published in
1733. Stedman's books were the first to
present the underlying ideas of change
ringing.

CHAPTER 7

Ringing the changes: bells and
mathematics

Dermot Roaf and Arthur White

Change-ringers wish to ring bells in different orders, with no bell moving more

than one place in successive rows, The mathematical problem is to devise

ways of ringing all possible orders (for example, all 5040 permutations of

seven bells) without repetition. English bell-ringers solved this problem more

than two hundred years ago; about a hundred years later mathematicians

began developing the concepts and terminology to tell the ringers that they

had been doing 'group theory' and 'ringing the cosets' all along.

When clocks were rare and watches unknown, people needed to be

summoned by bells to come to church-large bells make a lot of noise

and can call people from long distances. While there may no longer be

this time-keeping need, church bells are still in regular use, now often

functioning as a musical instrument played by a team, with what turns

out to be a strong mathematical aspect to the music.

Bells are hung in bell-towers or belfries and each is sounded by

pulling on a rope, one ringer to a bell, which moves the bell and gives

energy to its tongue or clapper, A bell makes a nicer noise, and the

sound carries further, if it is swung with the mouth upwards rather than

while hanging downwards or hit with a hammer. But a bell that swings

high swings slowly. The ideal pendulum, swinging at a steady rate

regardless of amplitude, is mathematically accurate only for small

swings. With larger swings it goes more slowly-indeed, an imaginary

bell swinging through a whole circle so that it just reaches the vertical,

without going over the top, would take an infinite time to get there.

Near the top, a small change in the energy of the bell makes a large dif­

ference to the period of a swing, and so another consequence of ring­

ing full circle is that the timing is easy to control.

Each bell sounds near the end of its swing, when the clapper catches

up with the bell, sounding once when the bell swings one way, and

again as it swings back to its original upside-down position of unstable

equilibrium. English ringers control bells with a rope tied to a wheel,

fixed to the bell in such a way that they always know which direction

II3
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In the English tradition of full-circle ringing, a different approach has

been followed, which allows even larger numbers of bells to be used,

without too wide a range of weights.
Normally, the sequence of pitches of the diatonic scale are chosen,

producing scales when the bells are rung in order of size-from the

lightest bell with the highest pitch, known as the treble, to the heaviest

bell with the lowest pitch, known as the tenor, sounding the keynote.

With intervals of pitch as small as tones and semitones, many of the

'chords' produced if two bells strike at once are not harmonious, and it

is therefore important to coordinate the timing of the different bells so

that they all sound at different times.

Conventionally, the treble is numbered 1, and the other bells are

numbered in order of note downwards to the keynote. So, on six bells,

the downward scale is 123456. On six bells the last four will be 3456,

producing exactly the same melodic sequence as 5678 on eight bells, or

7890 on ten (denoting the tenth bell by 0).

Ringing rounds and call-changes

The simplest (and oldest) procedure was to ring all the bells at the same

speed and in regular succession, evenly spaced in what are called rounds, with

the bells in order from the treble to the tenor; for a set of eight bells, this is:

1234567812345678123456781234567812345678, etc.

A row is a sequence in which each bell sounds once; here, each occur­

rence of 12345678 is a row. To make the rhythm clearer, most teams of

ringers leave small gaps after alternate rows: bear in mind that each bell

rings successively in opposite directions:

1234567812345678 1234567812345678 1234567812345678, etc.

These gaps occur conventionally after the backstroke row and before

the handstroke row.

An evening spent playing unchanging rounds might be considered

uneventful, and so the practice developed of changing the order of ring­

ing every so ofren. Because bells are heavy and slow, this cannot happen
rapidly, but two adjacent bells can be interchanged without too much

difficulty. You might start with rounds 12345678 several times; you

might then call out an instruction to the ringers of the second and third

bells to exchange the places of their bells in the ringing order, so that

13245678 is rung and repeated until another instruction is called. This

way of generating different orders is known as call-changes.

Ringers often use the word 'change', both to mean 'row' and to mean

the process by which one row is changed to produce another row; here we

shall be more precise and use only this latter meaning. Some commonly
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used phrases can be interpreted in either sense: a 'peal' of 5040 changes'

includes 5040 changes as well as 5040 rows, although ringers usually

think of the rows as what is being counted; the same applies to 'ringing

the changes', the title of this chapter.

Compositions in ringing are designed to include musically attractive

sequences, which are usually based on sequences running up or down

the scale (roll-ups'), sometimes with single notes omitted to produce

slightly larger intervals of pitch.

Taking every other note of the scale, and running through the scale

twice so as to include all the bells, produces 135246 on six bells, or

13572468 on eight. This is the best known of these favourite rows; it is

called Queens, because a Queen of England is said to have commented

on how nice the bells sounded when she heard it being rung.

Reversing the first half of Queens on six bells produces Whittingtons:

531246; when heard by Dick Whittington leaving London as 'Turn

again, Whittington; Lord May'r of London', it persuaded him to return

and, eventually, become Lord Mayor.

Another popular row is THrums, 15263748, in which high and

low notes alternate; here the low notes stand out when rung because

they are rather louder, producing a shorter but spaced out descending

scale.

Seventeenth-century change ringing

Call-changes require a lot of calling on the part of the conductor, the

person in charge of a piece of ringing. One way of saving effort for the

ringers would be to place a music stand in front of each one showing

the successive rows, or to write them on the wall of the belfry, and

instruct the ringers as to what new row to ring when the conductor calls

'Change'. This became common in the seventeenth century and still

survives in a few remote country towers.

Of course, someone needs to work out the successive rows, making

sure that no bell moves more than one place at a time, because more

movement would require too much change of speed between one row

and the next when a change is made. For four bells this might lead to

music like this:

12341234 ~ 12341234 ~ 12341234 ~ 21342134 ~

21342134 ~ 21342134 ~ 23142314 ~ 23142314 ~

23142314 ~ 23142314 ~ 23142314 ~ 23142314 ~

32143214 ~ 32143214 ~ 32143214 ~ 32143214 ~

31243124 ~ 31243124 ~ 31243124 ~ 31243124 ~

31243124 ~ 13241324 ~ 13241324 ~ 13241324 ~

13241324 ~ 12341234 ~ 12341234 ~ 12341234.

n6
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Here the conductor has decided to keep the largest bell (4) ringing at a

steady speed and change one pair of the other bells every few pulls, not

necessarily at regular intervals. (Here, each new row is indicated by

bold type.)

This can still sound somewhat monotonous, and as the quality of the

bearings on which the bells swing improved, it became possible to

change their order more frequently. Indeed, it became common to

change after each whole-pull:

12341234~ 21342134 ~ 23142314 ~ 32143214 ~

31243124 ~ 13241324 ~ 12341234

-it was then unnecessary for the conductor to call 'Change' each time.

As bearings continued to improve further, the same touch (a set of

successive rows starting and ending with rounds) could be rung in half­

pulls, in between rounds as introduction and conclusion. Here we omit

the arrows and use bold type to indicate the pair of bells that have been

interchanged from the previous row; for example, 1234 is followed by

2134, which in turn is followed by 2314 and then 3214:

12341234

32143124

12341234

13241234

12341234

12341234

21342314

12341234

This touch was known in the seventeenth century as ringing the sixes,

because six different rows were rung, each only once, apart from the

rounds at the beginning and end. These are in fact all the possible

arrangements, and are known as the extent on three bells.

After a while, the ringers learnt what to do when ringing the sixes, and

no longer needed the rows written down. They would start changing when

the conductor called 'Go' and stop in rounds when he called 'That's all'.

Similar methods of ringing different rows on larger numbers of bells

were developed. The twenties on five bells were:

1234512345

2341523451

4351245312

5124351234

1234512345

1234512345

3245134251

4513245123

1523412534

1234512345

2134523145

3452134512

5412351423

1235412345

The twentyJours on five bells (with bell number 5 fixed behind) were:

1234512345

2134523145

1324513425

4312541325

4231524315

1234512345

1234512345

2341532415

3142534125

1432514235

2413521435

1234512345

1234512345

3214531245

3421543215

4123542135

1243512345

1234512345

II?
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In both twenties and twenty-fours, only one pair is interchanged at a

time, so most bells are static. It would sound more interesting to change

more than one pair at a time whenever possible. That might mean a bell

moving from, say, third place to fourth place and then back to third

place in successive rows, which requires larger changes of speed than in

the early methods mentioned so far. Such versatility became possible

only when better bearings became available.

This practice of change ringing started in England and spread through­

out the English-speaking world. The first book on the subject was

Fabian Stedman's 1668 Tintinnalogia: or the art of change ringing, which

he followed in 1677 with Campanologia: or, the art of ringing improved.

The methods developed by Stedman and his fellow-enthusiasts anticip­

ated by a century algebraic ideas that were subsequently rediscovered

by mathematicians such as Joseph-Louis Lagrange, in what came to be

called the theory of groups.

There are now over 5200 sets of bells hung for change ringing in

England, another 200 in the rest of the British Isles, and about 100 else­

where in the world. Of these 5500 sets, 3500 contain 5 or 6 bells, 1700

have eight bells, 200 have ten and 100 have twelve. Recently, two towers

have had extra bells added, so that one has 14 and the other 16 bells.

A few sets have one or more semitone bells added so as to provide

subsets in different keys.

Modern change ringing

The basic idea of modern change ringing is to keep changing the order,

and never to ring any particular order more than once, except for

rounds which appears at the beginning and end. Each bell may move

only one place at a time and, generally speaking, no bell should stay in

place for more than two successive rows, except that the tenor may remain

at the end all the time. To make learning the changes easier for the ringers,

the paths of most bells should follow the same rules, although in most

methods one or two bells follow a simpler standard path.

How long does it take to ring every possible row? With three bells

there are only 6 rows in the extent, so (at two seconds each) it takes only

12 seconds to ring them all. With four bells there are 24 rows (48 seconds);

with five bells there are 120 rows (4 minutes); with six bells 720 rows (25

minutes); and with seven bells 5040 rows (3 hours). That is long enough

for most people, so the standard long performance is a three-hour peal

of 5040 changes. The standard short performance is a quarter-peal of

1260 changes, taking approximately 40 minutes, which is typical of the

length of time that bells are rung before church services.

When peals are rung on eight or more bells, only a fraction of the

full extent can be rung. This allows some scope for selection, so as to
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include a larger proportion of rows that are preferred for musical reasons;

any ringing with 5000 or more different rows is recognised as a peal.

How can we obtain all these different rows?

Three bells

Consider three bells numbered 1, 2, 3 in order from the highest note.

The individual bells can move only one place at a time, so there are only

two possible ways of ringing the extent, depending on whether the first

bell or the last bell holds its place after the first change:

123 132 312 321

123 213 231 321

Four bells

231 213

312 132

123

123

There are several different methods for ringing four bells, one of which,

Plain Bob Minimus is shown below. (Minimus refers to the change ringing

of four bells-other numbers of bells have different names, given

below.) We first exchange two pairs of bells (denoted by x as all bells

move); the next time, we exchange the middle pair, denoted by 14 ('one­

four') because the bells in first and fourth places do not move. This

alternation is repeated until after eight changes the order would return

to rounds if we exchanged the middle pair. We avoid this by changing

instead the last pair (denoted by 12). We then repeat all that we have

done so far, twice more. We obtain the following pattern.

Note that bell 1 (the treble) has a very simple zig-zag path called plain

hunting. This pattern is similar to that followed by each bell in the case

of three bells described above. Next, look at the paths of bells 2, 3

Plain Bob Minimus
Paths of bells

2 3 4
x 1234 --t:---+-r---+-",-+--r­
14 2143
x 2413
14 4231
x 4321
14 3412 -+_'---+-+---¥'----+~-__l

x 3142
12 1324
x 1342
14 3124
x 3214 -+--'...,.....-+:r'-----i<;---+--+­
14 2341
x 2431
14 4213
x 4123
12 1432 4---+-+-+-E--+-"t---
x 1423
14 4132
x 4312
14 3421
x 3241 -+-+-+7"---+,___--+----"'.,--­
14 2314
x 2134

12 m~
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120

and 4: these three paths are the same, but the bells start at different

points-rather like singing a round. These paths are based on plain

hunting, with differences every eight changes. If you draw the corre­

sponding paths for the twenty-fours described earlier, you will probably

agree that the path of the working bells (not including the treble) in Plain

Bob Minimus-based mainly on plain hunting with steady movement for

several changes at a time in each direction-is easier to learn; it is also

physically easier to ring, especially on heavier bells. The basic idea is for

all the bells to plain hunt until the treble does its two blows leading (at

the start of the row): then another bell does two consecutive blows in

second place and returns to lead, and the other working bells repeat the

positions they have occupied in the previous two rows (known as dodg­

ing) and continue plain hunting from their new positions until the next

time the treble leads.

More bells

This method of ringing works equally well on more than four bells, so

the name Plain Bob is given to a family of methods-Plain Bob Doubles

on five bells, Plain Bob Minor on six bells, and so on.

Our general principle in choosing methods is that we move as many

bells as possible at most of the changes. Now with five bells we can

exchange two pairs at each change. We call changes on five bells doubles,

even though we may occasionally change only one pair-indeed, to

obtain all 120 arrangements of five bells, we need to ring at least two

single changes. Shortly, we will describe Plain Bob Doubles-the Plain

Bob method on five bells.

It often sounds better to keep the heaviest bell (the tenor) at the end and

change only the front bells, as the gap that follows allows the favoured

musical combinations at the end of the change to stand out more clearly.

As most towers have an even number of bells, this means that an odd

number of bells will change their positions. Ringers fmd steady rhythm

and accurate striking rather easier with the tenor 'covering' in this way,

and listeners can more easily appreciate the structure of the ringing.

Experts, however, fmd greater challenges and variety in ringing on even

numbers of bells, with the tenor continually changing its position.

If seven bells change, we are ringing Triples, because there are triple

changes-for example, 1234567 changing to 2143657 has three pairs

swapping: 12, 34 and 56. The other names for odd numbers changing

are Caters on nine bells and Cinques on eleven bells. With even numbers

changing we have Minimus (four bells), Minor (six bells), Major (eight

bells), Royal (ten bells) and Maximus (twelve bells).

With larger numbers, we usually keep the heavier bells working

closely together and frequently arrange 'roll-ups', such as ----5678 on

eight bells. There are only 24 different roll-ups on eight bells, but



Grandsire

Caters

3425196870

3241569780

2314657980

2136475890

1263748590

1627384950

6123748590

6217384950

2671839450

2768193540

7286915340

7829651430

8792564130

8975246310

9857423610

9584732160

5948371260

5493817620

4539186720

4351968270

3415692870

3146529780

1364257980

1632475890

6134257980

6312475890

3621748590

3267184950

2376819450

2738691540

Stedman

Caters

9358274610

9532847160

5938274610

5392847160

3529481760

5324918670

5239481760

2534918670

2359481760

3254918670

2345196870

2431569780

4235196870

4321569780

3425196870

3241569780

2314657980

3216475890

3124657980

1326475890

1234657980

2136475890

1263748590

1627384950

6123748590

6217384950

2613748590

2167384950

1276839450

2178693540
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composers try to include them all at backstroke since it is felt that the

gap that follows improves the music. Other popular sequences are

···-6578, ··--7568 and ··_-2468 (as in Queens)-all at backstroke.

A peal on eight or more changing bells can include only a small

proportion of the possible orders, so the heaviest bells can be kept in

fixed relationships to one another. This eases the problems of compo­

sition and 'proof' (the verification that rows are not repeated), as well

as improving the music.

Some of the music most favoured by composers on more than eight

changing bells is related to Tittums (see above), which on ten bells is

1627384950 (denoting the tenth bell by 0). Most methods are based

more or less closely on plain hunting, and if Tittums (or any other

change with the heavier bells in the same arrangement) occurs any·

where in a composition, then the same spaced out sequence 7-8-9 and

its reverse 9-8-7 with heavy bells alternating with light bells, also occur

in several of the preceding and following rows.

In addition-and perhaps valued even more highly-four steps away

from Tittums in plain hunting on nine bells with the tenth covering

(coming at the end), the heavy bells come together at the end of the

change to produce the same melodic pattern as the 4-bell equivalent of

Whittingtons: ·····-9780. (The 8-bell equivalent of this is ···-7568, which

was one of the examples quoted above.) This is illustrated by the

sequence on the left, which could be produced in Grandsire Caters.

Another musical effect, common in all but the most basic methods,

and valued both when ringing with and without a tenor behind, is par·

tial repetition, in which one or more pairs of bells dodge (as explained

in Plain Bob Minimus) while other bells elsewhere in the change must do

something different, so that no row is produced twice.) Dodging in the

musically conspicuous position at, or just before, the end of the row

produces an effect rather like rhymed verse, with rhymes between the

ends of alternate lines in groups of four or six. This occurs once every

eighteen changes in Grandsire Caters, breaking up what is otherwise sim·

pIe plain hunting; but it occurs continuously, in blocks of six rows, in

Stedman Caters, which many regard as the most musical of all methods.

Here a touch might include the Tittums·like rows on the right, in which

you can hear the alternation of light and heavy bells.

A non·ringer may like to try to listen to the treble (bell 1), which usually

has a path different from (and simpler than) that of the other bells, as in

Plain Bob Minimus (described earlier) and Grandsire Caters. Stedman Caters is

a rare exception, as here all the bells have the same rather complex path.

Proof

Recall that one of the ground·rules for change ringing is that the

bells should not be rung in the same order more than once, and that
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checking whether this is the case is called proof For three or four bells

it is easy to ascertain that no row is rung twice, by inspection of the

written-out rows: simple examination of the extent of Plain Bob

Minimus shows that the rows are all different. With larger numbers of

bells, inspection of all the rows is more laborious. Of course, we can

now make computers do the work, but it is reassuring and illuminating

to see the proof for ourselves.

Let us look at the 24 rows of Plain Bob Minimus and group them in fours.

1234 2143 2413 4231

4321 3412 3142 1324

1342 3124 3214 2341

2431 4213 4123 1432

1423 4132 4312 3421

3241 2314 2134 1243

Here, each set of four can be labelled by the bold row with 1 at the

front. If this row is 1abc, then the others in the set are a1cb, ac1b

and cab1; so, if the rows with 1 at the front are all different, so are the

other rows.

There are six rows with 1 at the front:

1234 1324 1342 1432 1423 1243.

These are all different, so the proof is complete. Note that these are just

like the six different rows on three bells (123 213 231 321 312 132), with

each digit increased by 1 and then 1 placed at the front.

We can now see how to generate the 120 rows on five bells. We start

by exchanging the front two pairs (from 12345 ~ 21435), then the back

two (21435 ~ 24153), and keep repeating. We can group these rows in

leads of ten rows:

12345214352415342513452315432153412351423152413254.

After these nine changes, a double change on the back two pairs would

return us to rounds (13254 ~ 12345), so instead we exchange only the

pair in the 34 position (13254 ~ 13524). If we then repeat these ten

changes three more times, then the rows with 1 at the front become

12345 13254 13524 15342 15432 14523 14253 12435

and the final row is 12345. So we return to rounds after eight sets of five

rows-that is, four leads of ten rows-giving a total of 40 changes; this

is the Plain Course of Plain Bob Doubles.

Let us now look at Plain Bob Minimus. The first eight rows are

1234 2143 2413 4231 4321 3412 3142 1324

If we now add one to each digit and put 1 in front, we have the eight

rows from Plain Bob Doubles. In order to ring the twenty-four rows of

Plain Bob Minimus, we make the eighth change from 1324 to 1342, and

not from 1324 to 1234.
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Now, if we make the 40th change of the Doubles, 12435 ~ 14235,

and then repeat these forty changes, we reach 13425, and after another

forty changes we reach 12345; this gives the full extent of 120 different

rows. In order that the ringers know what to do, the conductor calls

'Bob' at the 40th, 80th and 120th rows to inform them that the standard

pattern has to be altered here.

We can easily extend this method to more bells, with a new change

(summoned up by a new call) each time we increase the number of

bells. It turns out that more complicated basic patterns enable us to

reduce the number of calls to just two.

The problems of proof can involve very sophisticated mathematics.

Group-theorists publish learned papers on it, and computer experts

produce programs to verify compositions by what group-theorists call

'sledge-hammer'methods.

A simple example is with Grandsire Doubles, in which the basic

method uses three changes: a double exchange of the front and back pairs

(12345 ~ 21354), a double exchange of the back two pairs (21354 ~

23145), and a double exchange of the front two pairs (23145 ~ 32415).

All rows that we can achieve with these changes can be obtained by an

even number of single exchanges; these arrangements are called even

permutations of 12345.

Permutations

It may be helpful to give a brief explanation of permutations. If we take
five objects labelled 1, 2, 3, 4, 5, then the ordering 23451 is an even
permutation of 12345 because it can be obtained by four exchanges of a
single pair, whether adjacent or not, and 4 is an even number; for example,
we can take:

12345 --7 21345 --7 23145 --723415 --7 23451.

Similarly, an odd permutation is obtained from an odd number of
exchanges; for example, 24351 is an odd permutation of 12345, because it
can be obtained by five exchanges:

12345 --7 21345 --723145 --7 23415 --7 23451 --724351.

A permutation cannot be both even and odd. For five bells there are
120 (= 5 X 4 X 3 X 2 X 1) possible permutations in the extent, consisting
of sixty even permutations and sixty odd permutations. So, in order to
ring the extent, we need to include one single change (such as that from
13254 to 13245).

The 24 rows of Plain Bob Minimus fall naturally into three leads, in

each of which the treble goes from front to back and returns:

12342143241342314321341231421324

1342312432142341243142134123 1432

1423 413243123421 3241 23142134 1243.

Mathematicians call these twenty-four permutations of four items a

group, because the permutations satiSfy certain relationships when done
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successively. The first lead (plain hunting) forms a smaller group, called

a subgroup of the full group. The three leads are known as cosets of the

subgroup; together they make up the whole group, and each row

belongs to exactly one coset.

Ringers had been ringing leads of Plain Bob for many years before

mathematicians came and told them that they were actually ringing

cosets. But, although ringers had worked out various ways of ringing

the extent of 5040 changes of Grandsire Triples, they could never do it

entirely with pure triple changes (three exchanges of pairs at each

change), even though alternate rows are even and odd permutations.

Thus, the 'even and odd' argument we used above to show the imposs­

ibility of ringing the extent of Grandsire Doubles with pure double

changes does not apply here.

But ringers went on trying to solve the problem. Eventually a non­

ringer, William Henry Thompson, sometime scholar of Gonville and

Caius College, Cambridge, was told of the problem and published in

1886 a 17-page pamphlet shoWing how the leads of Grandsire Triples can

be grouped together into what are called Q-sets. He showed that with

pure triple changes the number of Q-sets in any composition must be

odd. Since an even number of Q-sets would need to be rung to com­

plete the extent, the mystery was solved.

After the publication of this work, composers of change ringing

started a serious study of group theory; conversely, even non-ringers

have found ringing problems worthy of serious study.

A similar problem arose in Stedman Triples, where composers also

wanted to ring an extent using only triple changes. The calls are called

'bobs', which are triple changes and often rung in pairs (known as

twin-bobs, which make the ringing easier), but can legitimately be rung

separately and 'singles', which are double changes. Many ringers tried

for nearly three hundred years to find a composition without singles.

Mathematicians equally failed to prove that it was impossible. Recently,

however, the niece of one of the authors proved that it is impossible to

ring an extent with twin bobs only-and shortly afterwards a ringer

composed an extent with odd bobs, but no singles. This composition

has since been rung.

Graphs

An important aspect of analysing change ringing and of composing

new pieces is to find a mathematical language in which to describe the

effect of the changes. We have just seen how the symbolism of permu­

tations and group theory, devised by mathematicians in the nineteenth

century, has proved useful in this regard. Another mathematical language,

developed in the twentieth century, has a stronger visual quality that sim­

plifies analysis for many people. This involves the use of diagrams
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Note also that the three-octagon model displays not only the three

leads of Plain Bob Minimus, but also the three cosets of the relevant

subgroup in the group of all twenty-four permutations.

Most methods have only occasional places where bobs or singles may

be called; between these points, the ringing is determined by the initial

row. For example, in the Plain Bob Doubles described above, the bob can

be called only when the treble is at the front-that is, at every tenth

change. This means that the treble has the simple plain hunting path: as

few bands have enough expert ringers, this is important. So we can

describe this method in leads of ten rows:

12345214352415342513452315432153412351423152413254

is the first lead which we can summarize as (A) 12345 ~ 13254;

then, if no call is made, (B) 13524 ~ 15342;

then (C) 15432 ~ 14523 and (D) 14253 ~ 12435;

if now a bob is called, we ring (E) 14235 ~ 12453;

then (F) 12543 ~ 15234, (G) 15324 ~ 13542 and (H) 13452 ~ 14325;

another bob, and (I) 13425 ~ 14352;

then (]) 14532 ~ 15423, (K) 15243 ~ 12534 and (L) 12354 ~ 13245;

and the final bob gives 12345.

Five bells (Plain Bob Doubles)
14523

C' 15432
12435
14253 D'

I~ /
14532

f K 15243 15234 F' E' 12453
15423 12534 12543 14235

13425 12354 13542 14325

14352 I L 13245 15324 G' H' 13452

12345 A B 13524

13254 15342

14253 15432
12435 D C 14523

13452 H E 14235 15423 f' I' 14352
14325 12453 14532 13425

15324 12543 12534 13245
13542 G F 15234 15243 K' L' 12354

/ ~
B' 15342

13524
13254 A'

12345

126

These are shown on the graph; each point represents a lead, marked

by its beginning and end; lines with arrows denote the usual route and

unmarked lines denote the effect of calling 'Bob'. In this particular case,



Five bells (Plain Bob Doubles on a
truncated octahedron)

K F'
L

A

D

-------b1:
,,,,,,

:!3~ ~l

F

G'

B "-

/E;---_ H'

,C

l' j'

L'
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the effect of a bob is the same in both directions. Of course, the leads

can be rung forwards or backwards, so each row belongs to two differ­

ent points, and we must visit exactly one of each such pair of points.

The previous graph was drawn on a plane, but it could equally well

be drawn on a truncated octahedron with pairs of leads rung in oppo­

site directions being exactly opposite one another. If we 'identifY' each

such pair (regarding its two points as a single one), we can extend this

antipodal identification to the entire truncated octahedron, and we

again obtain the projective plane. Using the above convention of half­

lines, we then can represent this graph by another plane figure, but now

only involving half as many vertices, edges and regions.

With more bells, we may be calling both Bobs and Singles, so there will

be three different routes from each lead and three routes to each lead.

Modern compositions

We have seen that four types of change are used in Plain Bob Doubles:

double exchange of the front two pairs, double exchange of the back

two pairs, exchange of the bells in positions 3 and 4, and (at the bob) the

exchange of the 2-3 pair. The treble is plain hunting and the paths of

the other four bells are all alike. The path is symmetrical (the same

backwards and forwards); as this makes it easier to learn, composers do

their best to create symmetrical methods.

A mathematician might wonder whether all 120 rows can be rung

with only three types of change. Suppose that we use only the double

exchange of the front two pairs, the double exchange of the back two

pairs, and the exchange of the back pair; then the graph has exactly

three lines at each point, none with an arrow. The resulting diagram has

more than 120 points, because some links between points would so

confuse the diagram that it is simpler to represent some rows by two or

three points (to some of which only two lines are drawn). There are ten

half-lines joining five pairs of rows. The first twenty-four rows (rounds

being row 0) of White's No-Call Doubles are identified-other identifica­

tions can be obtained from the symmetry.

With these identifications around the periphery of the diagram, we

obtain the appropriate graph with 120 points (see overleaf). The result­

ing surface is rather complicated!

The five-fold symmetry of this diagram facilitates the fmding of a cycle

that leads to an extent. Each set of five points is equivalent under rotation

by multiples of n° about the centre of the diagram. By identifYing each

such set to a single point, we obtain a simpler diagram with twenty-four

points. The surface obtained here by identifYing the four half-lines as indi­

cated is called a Klein bottle, a one-sided surface which is well known

among topologists as a 'bottle' with no inside (so of no use on picnics).
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Five bells (White's No-Call Doubles)

0>------<0 a

1
0----------0 b

123
o I I I I I I I 10

11

o 12345 a
1 21435 c
2 21453 a
3 12543 c
4 12534
5 21354 ~
6 21345 a
7 12435 b
8 14253 a
9 41523 b

10 45132 a
11 54312 b
12 53421 a
13 35241
14 35214 ~
15 53124 b
16 51342 a
17 15432 b
18 14523
19 41253 a
20 41235~
21 14325 c
22 14352
23 41532 %
24 45123

One cycle of length 24 in the simpler diagram, when drawn on the

larger graph, ends either at the initial point or at a corresponding point

(the initial point rotated through a multiple of nO). The former case­

for example, (aciab(ac)5ab---gives a touch of 24 changes; the latter

case-for example, «ac)\ab)3ac(ab/(ac/ab»5-gives the extent of

120 changes. The numbers in the large diagram correspond to the first

24 rows of this extent.

In music thus composed, the plain course is the extent, so no special

call (a bob or a single) is required. In December 1984, this method was

rung at the Church of St Thomas the Martyr in Oxford, and named by
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Five bells (White's No-Call Doubles)

5 0 a [(ac)3 (ab)3 ac (ab)2 (ac)2 ab]5

I
0--------0 b

123
011111 110 c

20

19

~f-H-I-+Q-- a
12 18

~ --Q+t+H-+o ~
~

14
15 8 13

23 9

II Q-+t++++-C:>------Cl++++t+<;>7
17 16

24 :
0"2+t-1f-H-t-O----"-''-C

t
l-t-++t-I-+9 1O

6 - - - - - 3

4

the band White's No-Call Doubles. This method is not symmetrical, as the

backwards version is different, so it was not easy to learn, but exhaust­

ive computer analysis has shown that there is no symmetrical three­

change Doubles method that has the extent as its plain course.

A variant of this method is known as Reverse White's No-Call Doubles,

and was rung at the Carfax Tower, Oxford, in February 1985. This basic­

ally turned the previous piece back to front, by using the double

exchange of the back two pairs, the double exchange of the front two

pairs, and the single exchange of the front pair-instead of the double

exchange of the front two pairs, the double exchange of the back two

pairs and the exchange of the back pair. A similar diagram led to

another piece, Western Michigan University Doubles, which was first rung

at the Carfax Tower in July 1987.

Nor is the appeal of change ringing today confmed to the United

Kingdom. In April 1991, the first Irving S. Gilmore International

Keyboard Festival was held in Kalamazoo, Michigan, USA. The pro­

gramme on the opening night featured the world premiere performance

of Kalamazoo composer C. Curtis-Smith's Concerto fOr left hand and

orchestra, written for and performed by Leon Fleisher. The fmal move­

ment of this concerto incorporates elements from change ringing,

including Plain Bob and Western Michigan University Doubles, to great effect

in both piano and orchestra. This was a noteworthy occasion for the

introduction of change ringing, through the programme notes and

the music itself, to an American audience of nearly four thousand people.
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The opening of the Trio from the Minuet
and Trio of Schoenberg's Piano suite, Op. 25,
showing the disposition of the six forms of
the basic tone row used in its composition.

CHAPTER 8

Composing with numbers: sets,
rows and magic squares

Jonathan Cross

Throughout the twentieth century mathematical ideas emerged as basic tools

for the composer. Here we consider a range ofthese, from the twelve-tone row

ofArnold Schoenberg and the magic squares ofPeter Maxwell Davies to the

use ofset theory and geodesic suifaces by Iannis Xenakis,

Accusations of lack of artistry, lack of creative imagination, and even

lack of musicality have been hurled by critics and music-lovers alike at

very many twentieth-century composers, and not least at the Viennese

composer, Arnold Schoenberg. His 'discovery', as he put it, in the early

1920s, of his 'method of composing with twelve tones', was seen by

those at a distance from his work as being a kind of compositional

equivalent of those 'painting by numbers' kits that can be bought in

children's toy shops. In Schoenberg's composing kit was to be found the

composer's equivalent of paint and brushes-namely, the twelve notes

of the chromatic scale, arranged in any order of the composer's choos­

ing, so long as each note appeared only once (a 'tone row'). The over­

printed canvas-for Schoenberg-was often a ready-made form from

the musical past: a movement from a Baroque suite, a waltz, or even a

sonata form movement. Onto this canvas the tone row was laid, accord­

ing to very straightforward mathematical operations of translation (or,

in musical terms, transposition) and different kinds of mirroring (inver­

sion and retrogradation).

Put in this way, it is hardly surprising that Schoenberg has recurrently

been misrepresented as the bogeyman of twentieth-century music.

Nineteenth-century Romantic thought had led us to believe that the

composer was someone special, almost a god, set apart from the rest of

ordinary society. He was someone in touch with the muses who waited

for inspiration to strike before pouring out his soul, by means of some

mystical process, in order to produce works of art to be revered by the

masses almost as if they were holy relics-a surprising attitude, one

might think, for an age which paradoxically saw the rapid development

of logical scientific knowledge and method. Schoenberg seemed to be
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suggesting quite the opposite. Twelve-note music had nothing to do

with inspiration, or even with musicality, but was seen as mechanical or,

worse still, mathematical.

However, this is a misguided view. As will be seen below, many

composers of the twentieth century found numbers and various

mathematical models a useful source of compositional material or of

processing material. In the hands of some, the results certainly are

mundane and mechanical. But mundane and mechanical music is

possible under any system-not least, tonality. It is the creative use to

which such number systems are put that makes for a 'successful'

piece of music, not the fact that numbers in themselves have been

compositionally deployed.

Why, then, did Schoenberg feel it necessary to invent the twelve-note

method? The answer to this question should tell us much, not only

about Schoenberg's peculiar historical predicament, but also about why

so many composers in recent decades have attempted to frame their

music within the context of mathematics.

Arnold Schoenberg

Schoenberg presided over the break-up of tonality, the system that had

governed the composition of music for 300 years. When, in 1907, he

finally abandoned a key-signature in the finale of his 2nd string quartet,

it was not a wilful attempt to destroy the past; rather, it was an

inevitable and necessary step. Tonality had reached the end of its useful

life; it could no longer contain the extreme levels of chromaticism and

dissonance that had developed in music. The dissonance had to be

emancipated.

But with the abandonment of tonality, Schoenberg was confronted

with the problem that nearly all composers of the twentieth century

had to face. Where was he now to begin? There was no obvious

context, no common practice within which to start writing. With every

piece he had to begin afresh, had to create his own rules and modes of

operation, his own structures. At first he was able to write only very

short or fragmentary pieces, or was compelled to rely on texts to

structure the music. But eventually he moved to a position where he

began to use contrapuntal techniques to provide a more logical

structure, and eventually this became codified in the twelve-note

system. His aim in adopting the 'method' was to provide comprehens­

ibility (out of the 'chaos' of free atonality), its main advantage, he

claimed, being its unifYing effect: 'In music there is no form without

logic, there is no logic without unity'. The rigour, the mathematical

logic, of the twelve-note system was, in some senses, a substitute for

the logical rules of the tonal system.
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However, and this is perhaps the most important thing, Schoenberg

did not see the method as a general panacea for the ills of twentieth­

century music. Far from it: 'The introduction of my method of

composing with twelve tones does not facilitate composing'. The method

merely provided a logical context within which composition could take

place. As he wrote, 'One has to follow the basic set; but, nevertheless,

one composes as before', a view echoed almost exactly by his pupil

Webern, 'For the rest, one composes as before, but on the basis of

the row'.

Composers of the twentieth century found many ways around this

central problem. Some adopted and adapted Schoenberg's method;

others, as we shall see, drew on mathematical sources such as set theory,

game theory, magic squares, Fibonacci numbers, and so on, to provide

them with material or methods of working. Neither the method, nor

mathematics, nor any other system, has made the actual act of com­

position any easier, nor (necessarily) any more mechanical.

Let us consider an example of Schoenberg's twelve-note practice: the

Trio from the Minuet and Trio of the Piano suite, Op. 25 (1921-3). Figure 1

shows all the material for the Trio. The form of each row is indicated by

a letter: P = prime (or original), I = inversion, R = retrograde (the

prime form backwards) and RI = retrograde inversion (inversion

backwards). Of the 48 possible forms of his twelve-note row, Schonberg

uses just six in the Trio: the row itself (P-O), the row transposed up a

tritone (P-6), this transposition backwards (R-6), the inversion of the

row (I-O) and its tritonal transposition and retrograde (I-6 and RI-6).

Already Schoenberg is having fun with the peculiar properties of this

row, with certain patterns that remain constant across the geometric

transformations. For instance, the row spans a tritone from E (note 1) to

B~ (note 12), so that by employing transpositions only of a tritone, each

form of the row will begin with either an E or a B~. This interval will

then become explicitly represented in the music when, as happens in the

P-O-
I 2 3 4 8 9 10 II 12, eS8 1>.. 1>i++84

q.. q.. .
ilM 1>.. -'dl.. M

P-6_ -R-6

'I>..
§}? ~.. §.. 1,. m.----t7zJI'M 11M M

!q..

1-0_

f lM I'M !£JJB g.. r·- ilM I'M I'M 1>.. d11M

1-6_ "-RI-6

4;¥ 11M Iit§ I'M !'M :1>.. jFigure I. The six forms of the row used in q.- 1>.. q. M q..
the Trio.
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Trio, the six forms of the row are strung together. Another invariant

across the transformations is a further tritonal pair G-Db (symmetric­

ally placed within the E-Bb pair), and a feature is made of this in the

music.

So how does this manifest itself compositionally? The extract at the

beginning of the chapter shows us. What we see and hear is a beauti­

fully formed piece of geometry realised in music. The Trio is canonic

throughout and the structure of the row and its transformations

articulates these canons clearly. In the first half we have a canon at the

tritone in inversion at a bar's distance: P-O imitated by 1-6, and I-O

imitated by P-6. The second half splits the row into groups of four, still

an inversional canon but now at the octave (P-O imitated by I-O). Finally,

we return to two-part counterpoint where R-6 is imitated by RI-6.

Thus, though Schoenberg has followed the basic set throughout,

nevertheless, in terms of transpositions and deployment, and in terms

of rhythms, registers, dynamics and form, Schoenberg has composed

freely. The row provides intervallic material; it does not do the com­

poser's work for him.

Interestingly, Schoenberg was not the first to invent a twelve-note

system-such ideas were evidently 'in the air' in Vienna in the

earlier years of the century. Josef Matthias Hauer, a Viennese contem­

porary of Schoenberg, had already devised a different system of

composing with all twelve notes before Schoenberg. Hauer's ideas

were based on what he described as cosmic laws, and (notably) he

proposed that music-specifically, atonal music-represented a supreme

kind of mathematics.

Alban Berg

Schoenberg's pupils quickly followed their teacher's example by adopt­

ing the twelve-note method. The first substantial work of Alban Berg's

to use the method (although not in every movement) is the Lyric suite

for string quartet of 1926. The outer sections of the 3rd movement, the

'allegro misterioso', employ the method: indeed, its structure is

dependent on a simple mirroring device where two-thirds of the first

69 bars of the movement are mirrored exactly in the last 46 bars and

frame a central, more freely atonal section of 23 bars (see Figure 2).

These numbers are higWy significant because there is another sense

in which Berg was'composing with numbers' in the Lyric suite, and this

has to do with its proportional relations: both the durationaI lengths

and the tempi of movements. There are various numerological clues in

the score, but the extent to which number symbolism, as well as other

kinds of cryptograms and enigmatic quotations, govern the structure of

the work, was first fully revealed by George Perle in 1977. Berg, it

seems, was obsessed with the number 23. It evidently had some great
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Figure 2. The proportions of the third
movement of Berg's Lyric suite are governed
by Berg's 'fateful' number 23.

.....-----69 bars-----i.~._23 bars_.....t---46 bars--.

.....-----------138 ba,.,iSr-----------.~

personal significance for him-he referred to it as his 'fateful' number.

If we look again at the 'allegro misterioso', we can see that its propor­

tions, in terms of numbers of bars, are governed by multiples of 23.

This is no fluke. Movements 1 and 4 are both 69 bars long (3 X 23);

movement 5 is 460 bars long (20 X 23); and movement 6 is 46 bars long

(2 X 23). Furthermore, the metronome markings are also multiples of

23: movement 4, J= 69; movement 6, J= 69 and J= 46.

As for the length and tempi of the other movements, they are all

multiples of 10: metronome marks of 100 or 150 and a second move­

ment that is 150 bars long. Note that the length of movement 5 (460 bars)

is a multiple of both 23 and 10. What is the significance of this 10? Some

detective work by Perle, including a reading of Berg's letters and the

discovery of a miniature score meticulously and colourfully annotated

by Berg, revealed that 10 was the fateful number of Mrs. Hanna Fuchs­

Robettin with whom, it transpires, Berg had become passionately

involved, The score is secretly dedicated to her in Berg's own hand:

It has also, my Hanna, allowed me other freedoms! For example, that of
secretly inserting our initials, HF and AB, into the music, and of relating every
movement and every section of every movement to our numbers, 10 and 23. 1
have written these, and much that has other meanings, into the score for you
... May it be a small monument to a great love.

Thus the intertwining of 10 and 23 has not only structural implications

for the composer but strongly extra-musical (extra-marital?) ones too. It

remains a fascinating personal example of composing with numbers.

Anton Webern

The late works of Anton Webern, Schoenberg's other celebrated pupil,

are concise statements and show a highly developed understanding of

the possibilities of the twelve-note method, particularly in terms of

their concentrated motivic working and their exploration of symmetrical

structures. Canons abound. Yet the end results are not in any sense

mechanical or abstractly mathematical but poignantly expressive. As

one commentator has observed about Webern's serial string quartet:

'its "suitability for study", as a compendium of Webern's serial

technique in full maturity, should not blind us to its musical qualities',

The twelve-note row with which Webern composed his Concerto,

Op. 24 (1934), is given in Figure 3a. It is a marvellous example of

symmetry, even within the row itself. Each half of the row involves a
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Figure 3. Webern's Concerto, op. 24.

Ca) The basic row, showing its four three-note
subsets.
(b) The P-O and Rl-I forms of the row,
showing the identical pitch-class content of
each three-note set.
(c) The opening shows the use of the P-O and
Rl-I forms of the row divided into
three-note groups, each containing a
semitone and a major third.

mirror symmetry and the row can be further broken down into four

groups of three notes, each of which contains the intervals of a

semitone and a major third, and which represent, in microcosm, the

four different forms of the basic row-prime or original, retrograde

inversion, retrograde and inversion. Furthermore, the retrograde

inversion form of the complete row in transposition (a semitone)

preserves the pitch-class content of the three-note groups (see Figure 3b).

Figure 3c, the opening of the first movement, shows how this is

exploited in the actual music. Notice how Webern makes a rhythmic

feature of the three-note groups.

Thus, numbers again provide a context within which the composer

can work; they are in no sense the end result-that is, what the piece is

about-which is more than can be said for the ways in which Webern

was interpreted by some of the younger generation of avant-garde

composers after the Second World War. The works of Webern, not

Schoenberg, were viewed as the models for the future of music. Only

total organisation of music in all its aspects (pitch, duration, mode of

attack, dynamics, form) meant that the composer, in theory, was in

complete control of the music and independent of forms and processes
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from the past. Olivier Messiaen was one of the first to suggest the pos­

sibilities of total serialism in his Modes de valeurs et d'intensites for piano

of 1949, but it was his pupil, Pierre Boulez, who took these ideas to

their extreme and logical conclusion in his Structures for two pianos of

1952. Karlheinz Stockhausen and, on the other side of the Atlantic,

Milton Babbitt were similarly extending serial principles beyond the

domain of pitch.

Pierre Boulez

The very title of Boulez's Structures gives away its central premise­

namely, that it is concerned with building integrated musical structures

that stand on their own terms rather than being dependent on anything

outside of themselves. The architectural implications of the title were

intentional and exemplify a more general trend (and not just in music)

towards associating art with science, mathematics and architecture. The

development of the possibilities of electronics in music was just one rea­

son for this-and the concomitant scientific exploration of the proper­

ties of sound. Varese anticipated this in works with such titles as Density

21.5, Ionisation and Hyperprism. Later composers made explicit use of

these ideas in works with such titles as Cage's First construction (in metal),

Boulez's Polyphonie X and Stockhausen's Zeitmasse. All these works rep­

resented a desire on the part of the composers to move forward, to erad­

icate the past and memories of earlier music; the apparent 'objectivity'

of number, mathematics and the mathematically based architecture of a

figure like Le Corbusier provided a means to achieve this.

The structure of Boulez's Structures is based entirely on the basic row

from Messiaen's Mode de valeurs-see Figure 4a. Two number matrices

were derived from this to represent all 48 forms of the row which are

used once each in Structure Ia. Each pitch class corresponds to the same

integer throughout: H = 1, D = 2, A = 3, etc.

From these matrices a series was also derived for durations by

reading each integer as numbers of demi-semiquavers. For example, at

the very beginning Piano I plays the pitch classes of the original row,

but with the durations of the fmal inverted, retrograded row (12, 11,9,

10,3, ...)-see Figure 4b.

Furthermore, each statement of the row was assigned a particular

dynamic and mode of attack determined by the matrices-Figure 4c

shows the row of 12 dynamics and 10 modes of attack. The selection of

dynamic and mode of attack is determined by reading diagonally across

the matrices: the P-matrix for Piano I, the I-matrix for Piano II. Even the

order in which the 48-note and 48-duration series are chosen is deter­

mined by the number matrices: for instance, the first twelve-note series

in Piano I are those of the P-matrix but in the order of the numbers of

the first row of the I-matrix (1,7,3, 10, ... ).
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Where does this leave the composer? What scope is there for him or

her, in Schoenberg's words, to compose 'as freely as before'? Not too

much, apparently. Though Boulez makes free choices regarding

register, tempo, metre, and even the use of rests, his hands were tied by

the system. The end result is so highly over-determined that it ends up

sounding almost completely random: the differences are not readily

discernible between Structure fa and, say, Cage's near-contemporary

Music of changes, where chance procedures of coin-tossing and use of

the I-Ching were used to determine the various musical parameters.

As an experiment in number made audible, Boulez's Structures are

fascinating, but he was soon to admit that 'composition and organisation

cannot be confused with falling into a maniacal inanity, undreamt of by

Webern himself'. Whether or not Structures is maniacally inane is for

the individual listener to decide.

Peter Maxwell Davies

The English composer, Peter Maxwell Davies, began his composing life

as a follower of the thinking of Schoenberg and showed an early famili­

arity with serially derived techniques of composition. There is, as Paul

Griffiths has pointed out, a kinship between the work of Maxwell

Davies and Boulez of the mid-1950s 'in matters of rhythmic style,

texture and serial handling'. Though their paths have subsequently

gone in very different ways, there is a striking similarity in their attitude

to number in generating musical material in some of their works. In

particular, procedures in those works of Maxwell Davies of the 1970s

which 'process' pitch and durational material through magic squares

are not that dissimilar from some of Boulez's working in Structures.

Ave maris stella (1975) is one such example in which the Gregorian

chant 'Ave Maris Stella' is, in Maxwell Davies's words, '''projected''

through the magic square of the moon'. A mirror of whitening light

(1976-7) is another. The title, according to the composer, refers to the

alchemical process of purification or 'whitening', 'by which a base

metal may be transformed into gold, and, by extension, to the purifica­

tion of the human soul'. The 'agent' of this transformation is the spirit

Mercury, represented here by the magic square of Mercury, and

through which is projected the plainchant Veni sancte spiritus. The

number 8, Davies tells us, 'governs the whole structure', and its source

is the 8 X 8 'Magic square of Mercury' in Figure 5a, in which each row

and column and each diagonal adds up to 260.

Figure 5b shows the way in which the plainchant is projected through

the magic square. An 8-note 'summary' was derived from the beginning of

the chant and consists of 8 different pitches, though it still maintains the

proftle of the original. An 8 X 8 matrix was then constructed in which each

note of the summary was transposed, just like a tone row, to begin on each
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of its constituent notes, and each note was numbered consecutively from

1 to 64. The fmal stage was to map this matrix on to the magic square.

The composer then charted various courses through the matrix to

generate pitch material: from top to bottom, left to right; from bottom

to top, right to left; diagonally; in spirals; indeed, in any way he chose.

Figure 5c shows how this is achieved at the opening of the work-in

this case, top-bottom, left-right (C, A, B~, pi, D, D, ...). It is just one way

in which notes were generated in this piece, one aspect of the various

transformations or 'whitenings' that the plainchant undergoes.

Durationallengths can also be determined by the Mercury matrix­

Figure 5d shows one such instance. The pitches of the clarinet line were

generated by starting at 'square 47' (see Figure 5b) and working back­

wards and upwards:

47 [B>], 17 [F], 33 [F'], 31 [D'], 30 [E], ...

The durations of the accompanying bassoon line use the same

numerical sequence from the magic square, but here all the numbers

were converted so that they lie within the range 1 to 8, by reducing

them modulo 8 (for an explanation of modular arithmetic, see Chapter 9).

This new but related numerical array was then taken to represent

numbers of quaver beats and is stated in the opposite direction from the

pitch 'row':

clarinet 'pitch row'

bassoon 'duration row'

47 17

7

~ )\

33 31

7

lj

30

6

J

36

4

,J

37

5

,J)

27

3

J

26

2

J

40

8

The bassoon's pitches, incidentally, were generated by a left-right read­

ing of the Mercury matrix starting, as at the beginning of the work, in

the top-left corner.

Can any of this be heard? Maxwell Davies has great faith in his

listeners: these 'sequences of pitches and rhythmic lengths ... [are] easily

memorable once the "key" to the square has been found', he claims. No

doubt he would argue that the 'logic' given to the various transforma­

tions by the magic square is, at the very least, subconsciously perceived.

I have my doubts. What one hears is a piece of music, clearly structured

with a focal 'key' centre of C, and not just a mathematical game made

audible. However, the numbers were vital to the compositional process,

as they were a means of providing the composer with his working

material. To misappropriate Schoenberg, one has to follow the magic

square; but, nevertheless, one composes as before. As Maxwell Davies

himself has said in the context of his later Second symphony, magic

squares 'are a gift to composers if used very simply as an architectural

module'.



(J) Magic square
of Mercury

8 58 59 5 4 62 63 I

49 15 14 52 53 II 10 56

41 23 22 44 45 19 18 48

32 34 35 29 28 38 39 25

40 26 27 37 36 30 31 33

17 47 46 20 21 43 42 24

9 55 54 12 13 51 50 16

64 2 3 61 60 6 7 57

(b)

ve - ni Sane -te Spi ri Ius re - pie Iu - 0 - rum cor - de Ii - de - Ii - urn

Summary (derived from the plainchart and retaining its profile)

• • • I- •

G E F D F# A G# C
I 2 3 4 5 6 7 8

E c# 0 B 0# F# F A
9 10 II 12 13 14 15 16

F 0 E' C E G F# A#

17 18 19 20 21 22 23 24

0 B C A c# E 0# G
25 26 27 28 29 30 31 32

F# 0# E [j F A' G B
33 34 35 36 37 38 39 40

A F# G E G# B B' 0
41 42 43 44 45 46 47 48

G# F F# P G B' A c#

49 50 51 52 53 54 55 56

C A B' G B D c# F
57 58 59 60 61 62 63 64

8 x 8 matrix

Figure 5. Peter Maxwell Davies, A mirror of whitening light.

C A B' F# 0 D c# G
8 58 59 5 4 62 63 I

G# F F# E' G 0 c# c#

49 15 14 52 53 17 10 56

(0) (G#)
A F# G E G# E' 0 0

47 23 22 44 45 19 18 48

0# c#
(0) (A)

G E A A' G 0
32 34 35 29 28 38 39 25

B B C F [j E 0# F#

40 26 27 37 36 30 31 33

F B' B C E G F# A#

17 47 46 20 21 43 42 24

E A B' B 0# F# F A
9 55 54 12 13 51 50 16

F E F B G A G# C
64 2 3 61 60 6 7 57

Magic square of Mercury
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Figure 7. First model of the Philips pavilion.
Its structure is generated by straight lines.

CHAPTER 8 I Composing with numbers

lannis Xenakis

Such a sentiment was also close to the heart of another composer

for whom an understanding of mathematics and architecture were

fundamental. Iannis Xenakis was born of Greek parentage and

educated in Greece; ancient Greek culture-be it drama, architecture,

philosophy or mathematics-continued to have a profound influence

on his thought.

Xenakis's early education was principally as an engineer, and when

he moved to Paris in 1947 he not only studied with the composers

Honegger, Milhaud and Messiaen, but also met the architect Le

Corbusier with whom he was to collaborate on a number of important

projects. Their most celebrated undertaking was for the Philips

Pavilion (Figure 7) at the 1958 Brussels World Fair for which, in just a

few days, Xenakis sketched the basic structure using conoids and hyper­

bolic paraboloids. As Xenakis later observed:

I discovered on coming into contact with Le Corbusier that the problems of

architecture, as he formulated them, were the same as I encountered in music.

And elsewhere:

With Le Corbusier I discovered architecture; being an engineer I could do

calculations as well, so I was doing both. This is quite rare in the domain of
architecture and music. Everything started coming together and I also asked

musical and philosophical questions.

It would seem, then, that for Xenakis music and architecture were

concerned with the same issues: in architecture his ideas were articu­

lated in space; in music they were articulated in time. Furthermore,

mathematical models underpinned the development of his ideas in

both realms.

His first acknowledged composition, Metastasis (transformations')

of 1953-4, clearly exemplifies these concerns. The structure of the

curved surfaces of the Philips Pavilion was generated by straight lines;

Metastasis had already demonstrated, as Xenakis put it, that it was 'pos­

sible to produce ruled surfaces by drawing the glissandi as straight

lines'. Music and architecture here found an intimate connection, as we

can see if we compare Xenakis's graph plotting the paths of a section

of glissandi with the same passage in the score-see Figure 6.

Metastasis shows Xenakis exploring architecturally derived notions

of mass and ruled surface, and a concern to represent 'sound events

made out of a large number of individual sounds [which] are not sep­

arately perceptible, ... [to] reunite them again ... [so that] a new sound

is formed which may be perceived in its entirety'. In Metastasis one is

not aware of individual sounds but of a new mass of sounds and tim­

bres. The means by which he achieved this were derived from The mod­

ular of Le Corbusier: pitches (based on twelve-note rows) were
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assigned a series of durations based on the Fibonacci sequence, along

with a range of timbres. The way in which this material was processed

became the form of the piece.

Xenakis subsequently developed these ideas in a much more

comprehensive way, using many mathematical models as well as

computers to assist him in his pre-compositional calculations. He soon

became interested in probability theory as a way of handling mass

sound phenomena, and from this grew what he described as 'large

number' or 'stochastic' music, where the operation of individual

elements is unpredictable but the shape of the whole can be deter­

mined. For example, Pithoprakta, the next work after Metastasis, drew

(the composer claimed) on Maxwell-Boltzmann's kinetic theory of

gases; Achonipsis employed Poisson's law; and Duel and Strategie used

game theory-each work employed two conductors who 'compete'

with one another. More recently, Xenakis developed what he called

'symbolic music' which drew on principles of symbolic logic. Paul

Griffiths has observed that 'Xenakis's symbolic music has ... the nature

of a translation into sound of theorems of set theory', first evident in

Herma for piano of 1960-1.

This may suggest that Xenakis's music is completely abstract and

sterile. Not at all. His music, like the man, is all too human and he always

asserted the primacy of music over mathematics-music, he believed, is

never reducible to mathematics, even though they have many elements

in common. Xenakis was a philosopher who expressed his ideas

primarily in music, but who was constantly searching for profound

fundamental principles that underlie all thought. As another commentator

has put it, 'he gives us something only an artist can give-a dynamic

picture of the universe informed by the science of today'.

Although Xenakis's use of a variety of mathematical models may have

been undertaken in a more consistent and thoroughgoing manner than

almost any other composer, it does not make his music any less exciting,

challenging, creative-or even valid-than music composed in a different

age or by different means. Mathematics is a means to an end, not the end

in itself. Composers today are as aware as have been thinkers of the past

that music is inherently mathematical, but this does not mean to say that

it is mathematics. Composing with numbers is not an admission of

compositional failure, a substitute for 'inspiration' or 'mUSicality',

whatever those concepts may mean. Composers have composed with

numbers as one way of generating new musical ideas, as a means of

stimulating their creativity, in answer to the fundamental questions posed

for all artists of the last century. In Xenakis's words, this represents:

the effort to make "art" while "geometrizing", that is, by giving it a reasoned
support less perishable than the impulse of the moment, and hence more
serious, more worthy of the fierce fight which the human intelligence wages
in all the other domains.



Part IV

The composer speaks





An example of 31-tone music: the beginning
of Carlton Gamer's Organum, from Canto
LXXXI (Ezra Pound).

CHAPTER 9

Microtones and projective planes

Carlton Gamer and Robin Wilson

Although most music is composed in the 12-tone equal-tempered system,

attention has also been paid to the systems obtained by dividing the octave

into other numbers ofdivisions. For certain ofthese systems, there is an

unexpected connection between the compositional operation ofmusical

inversion and the idea of'duality' for certain geometrical objects called finite

projective planes.

For hundreds of years mathematicians and musicians have been

intrigued by the musical systems obtained when an octave is divided up,

not into the usual twelve tones with which we are all familiar, but into

a smaller or larger number of tones. Certain of these systems, such as

the 19-tone, 31-tone and 53-tone equal-tempered systems, have been

much investigated, since they give rise to tunings that more closely

approximate particular intervals in the harmonic series ('just' runings)

than does the 12-tone equally tempered system; a table comparing

these tunings is given below.

interval just ratios 12-tone I9-tone 31-tone 53-tone

octave 2.000 2.000 2.000 2.000 2.000

perfect fifth 1.500 1.498 1.494 1.496 1.500

perfect fourth 1.333 1.335 1.339 1.337 1.333

major third 1.250 1.260 1.245 1.251 1.249

minor third 1.200 1.189 1.200 1.196 1.201

The 19-tone and 31-tone equally tempered systems date from the six­

teenth century and were studied by such mathematicians as Marin

Mersenne, who designed a 31-tone keyboard (see Chapter 1), and

Christiaan Huygens, who used logarithms to perform the necessary

numerical calculations. The 53-tone system was studied by Boethius,

Mersenne and others, and a version of it was confirmed as the official

musical system in China in 1713, although a method of equal tempera­

ment had already been introduced there by Prince Chu Tsai-yii in 1584,

fifty years before the first writings on the subject in Europe. Indeed, it
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has been claimed that the idea of equal temperament was familiar to

the Chinese by the year 1000.

Systems with fewer than twelve tones are also of interest, although

most of these are not equally tempered. For example, 7-tone systems and

other systems of a similar nature have been used in the music of India and

Thailand, and by the gamelan orchestras of Indonesia. Similarly, the

various modes (Dorian, Phrygian, etc.) were much employed in medieval

and Renaissance music, from which our own major scale derives.

In the past few years composers have increasingly become involved

with 'microtonal' systems. This interest may be due, at least partly, to

the desire in the various arts to 'return to fundamentals', as exemplified

in the early twentieth century by the serialism of Schoenberg's 'twelve­

tone row' (see Chapter 8), the paintings of Mondrian, the sculptures of

Brancusi, and the contributions to the foundations of mathematics by

Russell and Whitehead. The artistic desire to return to fundamentals

has been coupled with a search for new technical and expressive

resources, and significant aspects of such resources-the various dis­

coveries feeding into so-called 'geometrical abstract art', the science of

digital imaging, the shaping of metals in recent architecture-have

been informed in one way or another by mathematics. In consequence,

the study of atonal and microtonal music has become increasingly

mathematical, involving set theory, permutation groups and, recently,

cyclic designs.

Such studies have been given impetus by the advent of electronically

produced music. This has made it possible to perform music in systems

other than the 12-tone system with far greater accuracy of intonation

than previously. In view of this, it seems possible that attention will

move away from 'traditional' microtonal systems, such as the 19-tone

and 53-tone systems, and that other systems will figure more promi­

nently in the future. In this chapter our interest lies in equal-tempered

systems with n tones, where n is a number of the form kZ
- k + 1, for

some integer k; as we shall see, these numbers arise naturally out of

geometrical considerations. Included in this list are the 7-tone and

31-tone systems (corresponding to k = 3 and k = 6), as well as the less

familiar 13-tone and 21-tone systems (corresponding to k = 4 and k = 5);

in all these systems we employ cyclic designs and finite projective

planes, concepts that we introduce later. Equally tempered systems

with 19 and 53 tones do not fit directly into this classification.

Equally tempered systems

Consider the piano keyboard opposite, depicting the twelve notes of

the octave. In order that music in any key can be played as nearly in tune

as possible, the tuning is equally tempered, so that (for example) D' = H,

B' = C, and BIO = A. As we saw in Chapter 1, this tuning is effected by
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CHAPTER 9 I Microtones and projective planes

Difference sets

Consider the following extract from the last movement of Bela Bartok's

Fourth String Quartet:

6 7 6 I 3 6 7 6

The set of tones involved in this extract is {I, 3, 6, 7}. This four-tone

set has been used by several composers (for example, in Schoenberg's

Opus 33a, Webern's Opus 5 and Elliott Carter's First String Quartet and

Double Concerto), and is called an all-interval tetrad since every possible

interval occurs in it; for example, intervals of size 4, 6 and 10 occur

between the pairs 3 and 7, 1 and 7, and 3 and 1, respectively. In fact, this

tetrad gives rise to each interval exactly once, with the single exception

of the tritone interval of size 6 which can be written in two ways, as

1 - 7 or 7 - 1 (modulo 12).

It would be even more satisfactory if every possible interval, without

exception, were to occur just once. This leads us to investigate sets of

tones in an equally tempered system that have this property. With this in

mind, we introduce the idea of a dijference set (modulo n) to be a set of

distinct integers cl , ... , Ck (modulo n) for which the differences Ci - cj

(for i ;f. j) include each non-zero integer (modulo n) exactly once; for

example:

• {o, 1, 3} is a difference set (modulo 7), since the differences are

1 == 1 - 0, 2 == 3 - 1, 3 == 3 - 0,4 == 0- 3, 5 == 1 - 3 and 6 == 0-1;

• {o, 4, 6} is also a difference set (modulo 7);

• {I, 3, 6, 7} is a difference set (modulo 13), but (as shown above) it is

not a difference set (modulo 12) because the 'tritone difference'

occurs twice;

• {O, 1,4,6,13, 2I} and {o, 10, 18,25,27, 30} are both difference sets

(modulo 31).

Cyclic designs

We shall also need the concept of a cyclic deSign. Given positive integers

nand k, with k < n, a cycliC design with these parameters is an arrange­

ment of n numbers into n blocks of size k, in such a way that any two

numbers appear together in exactly one block, and that the numbers in

each successive block are obtained from those of the previous one by

adding 1 (modulo n). For example, a cyclic design with parameters

n = 13 and k = 4 is as follows, with the blocks written vertically; you can

check that any pair of numbers (such as 6 and 10) appear together in exactly
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one block-in this case, block (4)--and that the numbers in each successive

block are obtained from those of the previous one by adding 1 (modulo 12).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

2 3 4 5 6 7 8 9 10 11 12 0

3 4 5 6 7 8 9 10 11 12 0 2

6 7 8 9 10 11 12 0 2 3 4 5

7 8 9 10 11 12 0 2 3 4 5 6

In musical terms, the numbers 0, 1, ... , 12 appearing in this cyclic

design can be thought of as the tones in the equally tempered system

ETS 13, and the successive blocks can be thought of as tetrads that are

obtained from earlier ones by transposition. Note that any two tones in

ETS 13 appear together in just one tetrad-for example, the tones 6 and

10 appear together in tetrad (4). Note also that 4 X 3, the number of

possible differences between numbers in the difference set, is equal to

12, the number of non-zero integers modulo 12.

More generally, we can construct such cyclic designs whenever we

have a difference set. For, if S is a difference set (modulo n), then S gives

rise to a cyclic design whose first block is S and whose successive blocks

are obtained by adding 1 (modulo n) to each element of the preceding

block. For example, the difference set {I, 3, 6, 7} (modulo 13) gives rise

to the cyclic design above.

It follows from the definition of a difference set (modulo n) that

k(k - 1), the number of possible differences between two numbers in

the difference set, must be equal to n - 1, the number of non-zero

integers modulo n. Thus, difference sets (modulo n) can occur only

when k(k - 1) = n - 1, for some integer k-that is, n = k2
- k + 1.

Finite projective planes

A finite projective plane is a geometrical system consisting of a finite

number of points and lines, with the properties that any two points lie

on just one line, and any two lines pass through just one point. In such

a system it can be shown that each line contains exactly k points and

that each point lies on exactly k lines, for some integer k, and that in

total there must be exactly k2
- k + 1 points and k2

- k + 1 lines. For

example, the following finite projective plane corresponding to k = 3

has exactly 3 points lying on each line, and exactly 3 lines passing

through each point. Since 32
- 3 + 1 = 7, there are exactly 7 points

(0, 1,2,3,4,5,6) and 7 lines «0), (1), (2), (3), (4), (5), (6» in this system;

the reason for labelling the lines in this way will become apparent soon.

It is often called the Fano plane, since it was introduced by the Italian

geometer Gino Fano, in 1890; notice that one of the lines has to be

drawn curved, but this does not invalidate the concept.

More complicated is the finite projective plane corresponding to k = 4;

since 42
- 4 + 1 = 13, this has 13 points and 13 lines, with 4 points lying

on each line and 4 lines passing through each point.
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Fano plane.
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CHAPTER 9 I Microtones and projective planes
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13-point projective plane.

We have seen that any difference set in ETS n leads to a cyclic design

with n = kZ
- k + 1 tones, in which any two tones appear together just

once. For many values of k, such a cyclic design gives rise to a finite pro­

jective plane. We now look at a difference set in each of the systems ETS

7, ETS 13 and ETS 31, and obtain the corresponding cyclic designs and

finite projective planes. However, although 43 = 72
- 7 + 1, the

equally-tempered system ETS 43 cannot be studied in this way, since it
can be proved that there exists no projective plane with n = 43.

ETS 7 Fano plane: difference set = the triad {O, 1, 3}

(0) (1) (2) (3) (4) (5) (6)

0 1 2 3 4 5 6

1 2 3 4 5 6 0

3 4 5 6 0 1 2

ETS 13 13-point projective plane: difference set = the tetrad {I, 3, 6, 7}

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 2 3 4 5 6 7 8 9 10 11 12 0

3 4 5 6 7 8 9 10 11 12 0 1 2

6 7 8 9 10 11 12 0 1 2 3 4 5

7 8 9 10 11 12 0 1 2 3 4 5 6

ETS 31 31-point projective plane: difference set = the hexad {O, 1,4,6, 13,21}

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (29) (30)

0 1 2 3 4 5 6 7 8 9 10 29 30

1 2 3 4 5 6 7 8 9 10 11 30 0

4 5 6 7 8 9 10 11 12 13 14 2 3

6 7 8 9 10 11 12 13 14 15 16 4 5

13 14 15 16 17 18 19 20 21 22 23 11 12

21 22 23 24 25 26 27 28 29 30 0 19 20
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Duality

One of the most important ideas in geometry is that of duality, in

which we can obtain a new system by interchanging the roles of points

and lines. In particular, for every finite projective plane there is a dual

plane obtained by interchanging the points and lines; thus, if p is a point

and I is a line of the original projective plane, then I is a point and p is a

line of the dual plane. Lines through the point p of the original plane then

become points lying on the line p in the dual plane, and points lying on the

line I in the original plane become lines passing through the point I in the

dual plane. For example, the dual plane of the Fano plane is as follows;

note that the lines (0), (4), (6) passing through the point 0 in the origi­

nal plane become the points (0), (4), (6) lying on the line 0 in the dual

plane, and similarly for the other points and lines.

(0)

4 (6)

Fano plane. Dual of Fano plane.

We now return to our finite projective planes for the systems ETS 7,

ETS 13 and ETS 31, and find their dual planes. For the system ETS 7, the

dual plane also turns out to be a cyclic design, and the numbers 0, 4, 6

appearing in its first block {(O), (4), (6)} can also be obtained by sub­

tracting from 7 the numbers in the original difference set {o, 1, 3}. For

the system ETS 13, the dual plane is again a cyclic design, and the num­

bers 6, 7, 10 and 12 appearing in its first block {(6), (7), (10), (12)} can

be obtained by subtracting from 13 the numbers in the original differ­

ence set {I, 3, 6, 7}. Similarly, for the system ETS 31, the dual plane is a

cycliC design and its first block is obtained by subtracting the numbers

in the original difference set from the number n of points. The dual

plane for ETS 31 is of musical interest, since the first four notes of each

hexachord (for example, (0), (10), (18), (25» form a perfect dominant

7th chord, as shown on the following 31-tone keyboard.

.. .. .. ..
o 1234 5 6789 101112 13 14151617 18 19202122 23 24252627 28 2930

c D E F G A B c
L-_-L ---'-- "---- ~ _



ETS 7 Fano plane:

(0) (1) (2) (3) (4) (5) (6)

0 1 2 3 4 5 6

1 2 3 4 5 6 0

3 4 5 6 0 1 2

Dual plane:

0 2 3 4 5 6

(0) (1) (2) (3) (4) (5) (6)

(4) (5) (6) (0) (1) (2) (3)
(6) (0) (1) (2) (3) (4) (5)

ETS 13 Finite projective plane:

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 2 3 4 5 6 7 8 9 10 11 12 0

3 4 5 6 7 8 9 10 11 12 0 1 2

6 7 8 9 10 11 12 0 1 2 3 4 5

7 8 9 10 11 12 0 1 2 3 4 5 6

Dual plane:

0 2 3 4 5 6 7 8 9 10 11 12

(6) (7) (8) (9) (10) (11) (12) (0) (1) (2) (3) (4) (5)

(7) (8) (9) (10) (11) (12) (0) (1) (2) (3) (4) (5) (6)

(10) (11) (12) (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(12) (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

ETS 31 Finite projective plane:

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (29) (30)

0 1 2 3 4 5 6 7 8 9 10 29 30
1 2 3 4 5 6 7 8 9 10 11 30 0

4 5 6 7 8 9 10 11 12 13 14 2 3

6 7 8 9 10 11 12 13 14 15 16 4 5

13 14 15 16 17 18 19 20 21 22 23 11 12

21 22 23 24 25 26 27 28 29 30 0 19 20

Dual plane:

0 2 3 4 5 6 7 8 9 10 29 30

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (29) (30)
(10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (8) (9)

(18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (16) (17)

(25) (26) (27) (28) (29) (30) (0) (1) (2) (3) (4) (23) (24)

(27) (28) (29) (30) (0) (1) (2) (3) (4) (5) (6) (25) (26)

(30) (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (28) (29)

157



Music and mathematics

Inversion

In each of these examples the blocks of the dual plane can be obtained

by subtracting from n (the number of tones) the numbers in the ori­

ginal difference set: this construction corresponds to musical inversion.

Up to now, this direct link between the concepts of geometrical duality

and musical inversion-that the dual plane corresponds precisely to inver­

sion of the tones in the original difference set-has been largely unnoticed

by musicians; for a proof of this result, see the following box. It is our

hope that musicians will find it worthwhile to concentrate increasingly

on equally tempered systems ETS n, where n = k2
- k + 1 for some

integer k, and that they will find the concept of duality to be fruitful in

both musical analysis and composition.

Theorem. The dual plane corresponds precisely to
inversion of the original diffirence set

Proof Let the original difference set (block (0» be {c l , ••• , Ck}' We
must show that the dual plane is a cyclic design whose first block
isn-cI,···,n-ck·

Note first that {n - CI , ••• , n - Ck} is a difference set, since if s =
Cj - c)' then s = (n - c) - (n - c), and so there is a one-one corre­
spondence between the differences formed by the two sets. Note
also that tone 0 occurs in blocks n - CI , .•• , n - Ck, and so these
numbers form the first block of the dual plane. Similarly, each
other tone t occurs in blocks n - C1 + t, ... , n - Ck + t, and so
these numbers form a block of the dual plane. It follows that the
dual plane is a cyclic design whose first block is n - cl>"" n - ck'

Fanovar: Variations on a Fano plane

We conclude by describing the composition Fanovar by the first author.

As its title indicates, the piece is governed by the structure of the

Fano plane. It is composed for seven instruments and consists of seven

sections, or variations, of which the first two are presented here. The

seven instruments are grouped into seven trios in accordance with the

disposition of points and lines in the Fano plane, as follows.

'Flute'

'Cello' ~---"'='''''=-----'''. 'Trombone'

'Clarinet'
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Each of the seven instruments is to be tuned to play in the equally

tempered system ETS 7, and for this reason, the most feasible

realization of the score entails the use of electronically synthesized

instruments. The quotation marks around the name of each instru­

ment in the score are intended to suggest a traditional instrumental

timbre that approximates that of the instrument shown. Furthermore,

because of the temperament employed, the lines and spaces in the

staves of the score do not denote the scale degrees of the traditional

'white-key' subcollection of ETS 12; rather, they denote the scale

degrees of ETS 7 with pitch classes C = 0, D = 1, E = 2, F = 3, G = 4,

A = 5 and B = 6.

The melodic content of the piece is governed by a different seven­

note diagram, in which each point represents a pitch name, such as C.

The diagram for the first variation (see page 160) is shown below. Note

that the instrumental triad of 'cello'-'trombone'-'clarinet' plays the

pitch classes C, D, G that appear in the triangle on the left, while the

'oboe' and 'trumpet' play the pitch classes A, B, F, E that form a path on

the right.

G E

The second variation (see page 161) follows similar instrumenta­

tional and melodic principles, with the diagram re-Iettered as shown

below; for example, the instrumental triad of 'flute'-'clarinet'-'violin'

plays the pitch classes G, B, D that appear in the triangle on the left.

B c
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The Mandelbrot set.

Robert Sherlaw Johnson.

CHAPTER 10

Composing with fractals

Robert Sherlaw Johnson

An iterative fonnula can be used to generate two-dimensional patterns on

a plane. A computer program is described which generates musical patterns

using the same principles leading to a completed composition.

A glance through the illustrations in The science of fractal images edited

by Peitgen and Saupe, or The beauty offractals by Peitgen and Richter is

sufficient to suggest that it is possible to create unusual and interesting

patterns, and even landscape and floral pictures, by computer genera­

tion. These works are concerned principally with the visual application

of fractals, music receiving only a brief mention in the former book.

One is tempted to speculate, however, that if meaningful visual

patterns can be created by fractal generation, then it should also be

possible to create aural ones. This chapter is the result of such an invest­

igation using one particular type of fractal generation.

Of the various fractal sets described in the above literature and else­

where, the one that seems to have caught the popular imagination is

the Mandelbrot set, shown on the left. It has been the subject of a num­

ber of computer programs, designed to create the visual image of this

set on the screen, largely because of the large variety of detail that

appears when one zooms in on specific parts of the 'picture'. Some use

has been made by others of the Mandelbrot set to generate music, but

none of the results that have come to the knowledge of the author has

seemed particularly impressive. Others have used the concepts of com­

position derived from chaos theory and fractals-for example, the self­

similarity of nesting one musical phrase within itself, each note of the

sequence generating the sequence itself at different pitches.

The method with which we are concerned here, however, is not

the Mandelbrot set, but a chaotic dynamical system such as described

in Peitgen and Saupe's book. The actual iterative formula employed

originated with Martin Bell of Aston University, and appeared in

A. K. Dewdney's mathematics column in Scientific American in 1986.

It was designed to create interesting and symmetrical patterns on

the two-dimensional computer screen coordinatized by two variables
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x andy:

x+-y-sign(x)~, y+-a-x.

In the first of these formulas, sign (x) means that 1 is substituted for this

if x is positive, -1 if x is negative, and °if x is zero; a, band c are any

real number constants. The initial values for the variables x and yare

usually 0, but can be chosen to be any real numbers. The formula on

the right-hand side of each arrow is calculated in turn and assigned to

the variable on the left: these new values are then substituted into the

right-hand side and new values for x and yare calculated, and so on.

The result is a string of real numbers which are then converted to

points on the computer screen, so building up a pattern over a period of

time. Using this process as the basis, a computer program was devised

(written in Modula-2) on the Atari ST computer to convert the variables

to sound, while still retaining the plot facility.

Unlike the flat surface of the screen, music is a multi-dimensional

environment, these dimensions consisting of pitch, duration, the time

interval between successive sounds, timbre, loudness, tempo, and so

on. The most obvious assignment of the x- and y-values would be pitch

and the time interval between successive sounds (rhythm), but

although early experiments proved to be promising as regards pitch,

they were not so as regards rhythm, because of the different way in

which rhythmic patterns are built up. A melodic pattern can consist of

a large number of different pitches but a smaller number of different

durations, which have to form some kind of metrical pattern (although

this may be quite complex), in order to make rhythmic sense. In

addition, rhythm is not only a question of durationaI patterns, but also

of accentual ones. Initially it was decided, therefore, to work on con­

stant streams of pitches and to assign the y-values to loudness. As it

happened, a sense of rhythm emerged through the interaction of

accented (louder) sounds with pitch. The pitch information is distrib­

uted among eight channels of a synthesizer (as described below), so

that selection of one or two channels can also create rhythmic patterns

of different durations.

Translating real numbers into sound

Real numbers could be translated into pitch in a variety of ways, but the

most convenient, using a computer with a MIDI output port, was to

drive a synthesizer capable of receiving MIDI information. As MIDI

devices recognize integers and not real numbers, the x- and y-values had

to be scaled to be within the acceptable range for pitches and loudness

(0 to 127). It was not desirable that the whole pitch-range should be

used all the time, so the program was designed to allow the user to
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decide the range to be used in any given instance. Initially, then, the user

chooses real numbers that represent an index for range of pitch and one

for range of dynamics, and an integer representing tempo. All these

values can be changed in real time while the program is running.

The real indices representing pitch and dynamic ranges start from °
(representing no variation) and vary upwards in steps of 0.1. The precise

effect of any given index on pitch would depend on the spread of x-values

generated, and would need to be adjusted by trial and error in any given

case for the most satisfactory results.

One of the major problems was how to drive the eight MIDI chan­

nels available on the synthesizer, and how to assign 'voices' (timbres) to

them. The latter problem was accomplished by trial and error, on the

basis of providing a mixture of percussive and sustained sounds in order

to achieve contrast. The selection of channel for any given pitch genera­

ted was built into the computer program.

At this point it should be noted that all these parameters: pitch and

dynamic range, tempo and channel selection, could have been brought

under fractal control by extending the formula to include more than

two variables, or by further calculations from the formula involving

more constants. For musical reasons, rapid changes of these parameters

is not desirable, so that (for the present) they were left under user control.

Selection of channel was tried using the y-values of the formula, as well

as by a three-dimensional extension, but the rapid change of timbres

involved tended to produce a monotony because all eight channels were

equally favoured continually. The method eventually implemented was

to assign ranges of values of y (rounded to four decimal places) to each

channel. Although these ranges can also be decided by the user, the

program provides default settings, as shown in the following table:

0-1.9999 2-3.9999 4-5.9999 6-6.9999 7-7.9999 8-8.9999 9-9.9999 10 or over

channel:

values of Iy [:
2 3 4 5 6 7 8

If low values are selected for the constants, the corresponding values of

y tend to be in the lower ranges, which means that values above 10 are

not particularly frequent; this results in an overall balance between the

eight channels.

In some cases, there is only a gradual expansion of values of y around

0, which gives rise to a sense of 'orchestration', in so far as the higher

numbered channels are introduced progressively. In other cases (includ­

ing the sequence for Fractal in A flat), there are subsequent contractions

in the selection of channels, as well as an initial expansion, providing

even greater variety in the range of timbres. All these ranges can be

altered at the start to accommodate different spreads of the y-value.

This can even be taken to the extreme case of excluding certain

channels by giving them a range of 0, or limiting the number of
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two interweaving lines
(a = 8, b = 4, C = 0)

r66

channels by setting abnormally high ranges for the upper ones. For

example, the program asks for upper limits of the range of y-values for

each channel: settings of 0, 2, 4, 4, 6, 8, 1000 will silence channels 1

(range 0 to 0), 4 (range 4 to 4) and 8, except in the unlikely event of a

value of y appearing greater than 1000; 1000 being the upper limit of

channel 7 is automatically the lower limit of channel 8.

So far, each pitch is sustained until silenced by the next one, so that

some means of allowing simultaneity of sound had to be devised. This

was achieved by choosing another constant representing the maximum

duration that a sound can have. This constant is divided into the note's

MIDI-integer and the remainder assigned to a counter which is decre­

mented on each subsequent generation of x and y: the note is stopped

when the counter reaches o. There is one modifYing factor that results

from the way in which the synthesizer handles MIDI information:

when another note is assigned to the same channel, the previous note

is cut short, even if 0 has not been reached on the counter. This means

that, although initially each note will have the same potential duration,

in some cases it may not reach its full length, owing to the arrival of a

new note on the same channel.

One respect in which a musical interpretation of the formula differs

radically from a visual one is the ability to create different patterns by

selecting only alternate values of x and y, or every third value, and

so on. As the visual pattern is built up on the screen, one sees the

accumulation of points created by all the values generated up to that

particular moment. The longer the generation takes place, the more

interesting and complex the pattern becomes. Music is not perceived in

this way. One hears patterns that occur at the moment of listening, and

one may perceive that these relate to something that happened earlier,

or that they are different. For visual realization it is only the whole accu­

mulation of values that gives rise to a sensible pattern, whereas in the

case of music the whole is not perceived simultaneously and only local­

ized patterns make sense. It is easy to perceive, therefore, why rejecting

particular generations from the stream can create radically different

musical patterns, whereas it makes no difference to the cumulative

effect of the visual pattern, except to make it sparser in appearance.

Example 1 opposite illustrates this: in (a) all the values are converted to

pitches, whereas in (b) every third value is converted; although only

fragments, the difference of melodic behaviour can easily be seen.

It is a characteristic of this particular iterative formula that, for most

low-value constants, values of x and y remain within a reasonable range

for at least the first few thousand generations. The screen-patterns gen­

erated show a clear ordering because the dots tend to cluster in certain

areas, leaving other areas blank. In an extreme case (a = 8, b = 4, c = 0),

two interweaving lines are generated, as shown on the left. These lines

are not caused by a single row of dots, but by narrow clusters of dots,



Example 1.

CONSTANTSa=3 b=2 c=1

CHAPTER 10 [ Composing with fractals

White notes-tails up: channel I
Black notes-tails up: channel 2
White notes-tails down: channel 3
Black notes-tails down: channel 4

so that an exact placing of a particular dot is not predictable: all that

can be said is that they are attracted towards a line, which I called an

attractor.

In most cases, dots tend to be attracted to particular areas, rather

than form in narrow lines, and it is largely this feature that allows such

sequences to be recognised as patterns, whether visual or musical.

Composing with the formula

A variety of patterns can be generated involving recognizable repeti­

tions and transformations, but the raw sequences from any particular

constants are too uninteresting in the long run without introducing the

human element in the form of the composer. The question of how

much a composer should interfere with the process of generation is not

an easy one to answer, as in an extreme case it would be possible to cut

and paste different sequences to the extent that the fractal generation

element becomes degraded. Imagine a hypothetical case where a

composition is assembled from fragments of sequences involving

different sets of constants, each fragment involving perhaps no more

than about 30 generations of x and y. It could be argued in such a case

that the fractal element has been broken up to the extent that the

resulting composition could not be fairly called 'fractal'. It is not easy to

see what the allowable extent of interface from the human composer

should be, but the composition now to be described perhaps provides

some pointers.

Fractal in A flat

During the process of experimenting with different constants and

other parameters, one particular combination displayed markedly tonal

characteristics as well as producing other usable motivic ideas. The
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Example 2.

three constants used for the formula were a = 1, b = 0.1 and c = 1, and

the index for pitch spread was 2. This latter number is critical, in that

any variation destroys the sense of A flat tonality that arises from the

predominance of the major triad in the opening sequence, as illustrated

below in Example 2.

Tails up: channel I; tails down: channel 2

3 times 16 times'

(~J]4?[D~~~
• Channel 2 moves from the C to the second E flat after the eighth time.

The index for the dynamic range is less critical, provided that it is not

too large to silence the notes at the lower end of the dynamic scale. The

integer representing tempo has to vary with the computer running the

program. The ST on which the program was initially developed, and on

which this composition was generated, took a tempo index of 110 (the

larger the index, the slower the tempo). On the Atari TT, however, an

index of around 600 is needed to generate an approximately similar

tempo. Other crucial parameters are an index of 16 for the maximum

duration of pitches, and 2 for the gap value. The choice of 16 ensures a

reasonable variation of long and short notes, and the gap value of

2 means that every other value of x (starting with the first) is converted

to pitch.

An interesting characteristic of the basic sequence is the way in

which a distinct musical shape develops. For the channel selection, the

above default settings were used. After a prolonged 'duet' involving the

first two channels, the remaining channels quickly enter, giving a sense

of development in the music. After a while, the 'duet' returns-more

prolonged this time-followed by the rapid re-entry of the other

channels. This creates a binary structure A-B-A-B in the music-the

following diagram shows the shape.

Channels 1 & 2 Channels 1 & 2 KAll channels All channels

Channel 3 on its own also presented some interesting features, as

shown below in Example 3. It is not involved in the initial 'duet' and

starts on generation 828. A natural musical development was evident

from this channel, involving repetition, transformation and contrast.

Perhaps the most surprising feature was the return of the opening

motif (a) at the end of the sequence, creating once again a sense of

musical form.
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these real values into 'note' integers, and they are also too small for

there to be an immediate difference in the visual pattern.

Fractal dialogue (Variations)

In order to illustrate the versatility of the programme, a second com­

position, Fractal dialogue (Variations), was designed to exploit melodic

variations obtainable from varying the channel and pitch ranges. The

generating constants were a = 0.05, b = 0.5 and c = 5. The visual pat­

tern generated is less interesting than the one that corresponds to

Fractal in A flat, but one of the notable features of this formula is the

general lack of correlation between the visual and audible aspects as far

as interest is concerned. The principal line of music alternates between

oboe and flute sound and employs only the first 171 generations on

channel 2, although this is extended to the first 285 generations for the

last two variations. Each variation either moves or expands the y-values

used to excite channel 2, while the pitch-range is also varied. This pro­

duces a greater elaboration of the initial 'theme' each time, as illus­

trated in Example 4.

Theme

Var.2

Var.3

Var.4

Var.S

h

., - ...... .-.. ...--...

., ..... "-J
~ -

h --=
., - "-J ..... ~.
., .-. "-J ~ -
h ...--...

"-"-=:1 - - - ~ =

-
.,

...--... -
I ., .... -

h .= --
., "-J - -
., .......

- -
Example 4. ., - - '-::l ~ - - ~ -

What is composed?

In the selection of timbres for the eight channels, there is clearly a

compositional choice involved. There is also a compositional choice in

selection of sequences and the manner in which they are overlaid, as

well as in the manner and point of termination. Also important is the
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extent to which the computer is allowed to generate the music, rather

than the composer-in other words, how long each individual sequence

should be. In Fractal in A flat, one of these sequences-the solo channel 3

sequence-was computer determined, in that there was a natural shape

and termination to the sequence as a consequence of the generation.

The decision, however, to seek out these features is again a composi­

tional one, rather than arbitrary or dependent in some way on the frac­

tal generation itself. By harnessing several different fractal processes, or

by extending the scope of the one described, some (or even all) of these

features could be brought under fractal control. This would, of course,

need a radical revision of the program. Another course is possible: fol­

lOWing the practice ofJohn Cage, decisions about length of sequences,

position and number of overlays, etc., could be made the result of

chance processes, by the rolling of dice or by random number genera­

tion by the computer.

One question remains to be answered: can the computer be said to

have 'composed' anything? The whole idea arose from the awareness

that fractal sound patterns generated by this means made musical

sense. Yet the computer could not be described as 'making decisions'

about melodic shape, motivic repetition or form, all of which are appar­

ent in the channel 3 generation in Fractal in A flat. If these patterns are

apparent to a listener, it can only be because the listener tries to make

formal sense of any kind of pattern in sound. (The question of whether

this is in itself a creative process is not one that can be gone into here,

as it has ramifications outside the scope of the question of fractal

music.) This is normally done in response to a composer who has gen­

erated these patterns, although not all listeners (depending partly on

their musical background) may perceive these patterns as making sense

to them. It is possible for naturally occurring sounds to form 'musical'

patterns, if only in a rudimentary way. The stream of variables genera­

ted by the above formula, however, cannot be included amongst these,

as it is only when the stream of variables is harnessed in a particular

way that musical or visual sense is derived from it, otherwise it remains

a chaotic sequence.
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32 However, Kepler has departed Details of Kepler's
astrological theories are given in]. V Field,
'A Lutheran astrologer: Johannes Kepler', Archive for

history of exact sciences, 31(3) (1984),189-272.

33 his lack of success is displayed in the form of two
tables The first two tables in Chapter IV of Book V,
]. Kepler, Harmonices mundi libri V, Linz, 1619. See also
Johannes Kepler. Five books of the Harmony of the World,

translation, introduction and notes by E.]. Aiton, A. M.
Duncan and]. V Field, Transactions of the American

philosophical society, 209, Philadelphia, 1997.

35 A particularly spectacular set See]. V Field, Kepler's

geometrical cosmology, London and Chicago (1988).

36 When Kepler objected that no astronomer See
]. V Field, 'Kepler's rejection of numerology', in
Occult and scientific mentalities in the Renaissance

(ed. B. W. Vickers), Cambridge (1984), 273-96.

38 Figure 5: Mersenne frontispiece Marin Mersenne,
Harmonie universe/Ie, Paris, 1636; 'facsimile' reprint
(reduced size), 3 vols., Edition du Centre National de
la Recherche Scientifique, Paris (1963).

39 Actually, it goes back to the sixteenth See
W. B. Ashworth, 'The persistent beast: recurring
images in early zoological illustration', in The natural

sciences and the arts (ed. Allan Ellenius), Acta

universitatis Upsaliensis, Figura Nova 22, Almquist &

Wiksell, Uppsala (1985), 46-66.

43 Kepler's work is important See]. V Field, 'Kepler's

cosmological theories: their agreement with
observation', Quarterly journal of the Royal astronomical

society 23 (1982), 556-68.

Discography Music by some of the composers whose
names are to be found in accounts of music at the Court of
Rudolph II in Prague, in particular pieces by Camillo
Zanotti (c.1545-91), who is known to have worked for one
of Kepler's patrons, is to be found on Capella Rudolphina,
Duodena cantitans, and Michael Consort, conductor Petr
Danek, Musica temporis Rudolphi II, Supraphon, (1994),
CD 11 2176-2231.

CHAPTER 3: THE SCIENCE OF MUSICAL SOUND

Most of the material discussed in this chapter is discussed in
greater detail in the author's Exploring music, published by
the Institute of Physics in 1992.



CHAPTER 4: FAGGOT'S FRETFUL FIASCO

61 Today's Western music See Otto Karolyi, Introducing

Music, Penguin (1965), for a musician's introduction to

the principles behind Western musical scales.

62 Frankie and]ohnny The origins of this song are not

known, but its structure suggests that it is probably

from the Mississippi valley in the pre-blues period of
the 1890s; a version, which includes the chord

sequence, can be found in Alan Lomax (ed.), The

Penguin book of American folk songs, Penguin Books
(1964), 121.

63 in order to create a harmonious scale See

C. A. Taylor, The physics of musical sounds, Edinburgh
University Press (1965), for a mathematical

introduction to the principles behind Western

musical scales; see also the Notes on Chapter 1.

65 The transcendence of 1T For proofs that e and 1T are

transcendental, see Ian Stewart, Galois theory,

Chapman and Hall, London (1989).

66 Eutocius, a commentator from the 6th century AD

See Ivor Thomas, Selections illustrating the history of

Greek mathematics (2 vols.), Heinemann, London
(1939); this book contains information on many

special geometrical problems, including angle
trisection by neusis construction, conic sections, the

quadratrix, and other methods.

66 David Fowler argues that See David Fowler, The

mathematics of Plato's Academy: a new reconstruction,

Clarendon Press, Oxford, 1987; this book contains a
wealth of material on the relationship between contin­

ued fractions and early Greek mathematics.

67 Duplicating the cube amounts to solving For the

impossibility of duplicating the cube, see Ian Stewart,
Galois theory, Chapman and Hall, London (1989).

68 In 1581 Vincenzo Galilei See Vincenzo Galilei,
Dialogo della musica antica e moderna, Florence (1581),

49; see also]. M. Barbour, Tuning and temperament,

Michigan State College Press (1951; 2nd ed., 1953).

68 In 1636 Marin Mersenne See Chapter 2 and Marin
Mersenne, Harmonie universelle, Paris (1636),68.

68 In 1743 Daniel Strahle Daniel P. Strahle, 'Nytt

pafund, til at finna temperaturen i stamningen for

thonerne pa claveret ock dylika instrumenter',

Proceedings of the Swedish academy IV (1743),281-6.

68 The geometer and economist Jacob Faggot Jacob
Faggot, 'Trigonometrisk utrakning, pa den nya

temperaturen for theonernes stamming a claveret',

Proceedings of the Swedish academy IV (1743),286-91.

71 It was not until 1957 that]. M. Barbour

]. M. Barbour, 'A geometrical approximation to the

Notes, references, and further reading

roots of numbers', American mathematical monthly

64 (1957) 1-9.

73 Isaac Schoenberg did the same in 1982 Isaac].
Schoenberg, 'On the location of the frets on a guitar',

American mathematical monthly 83 (1976) 550-2, and

Mathematical time exposures, Mathematical Association
of America (1982).

73 the most natural thing to do This approach was first

published in Ian Stewart, 'Les mathematiques de la

gamme musicale', Pour la science 151 (May 1990),
108-14, and reprinted in English in Ian Stewart,

Anotherfine math you've got me into ... , W H. Freeman,
New York (1992).

74 a beautiful theory of the so-called Pel! equation For

further details, see L.]. Mordell, Diophantine equations,

Academic Press, New York (1969).

75 Strahle's function is then obtained In fact, as David

Fowler has pointed out, while*is not a convergent of
the continued fraction for \2, it is a so-called intermedi­

ate convergent.

CHAPTER 5: HELMHOLTZ: COMBINATIONAL TONES AND

CONSONANCE

77 Helmholtz's book: Die Lehre von den Tonempfindungen

als physiologische Grundlage fiir die Theorie der Musik (1st
ed. 1863, 4th ed. 1877); translated as On the sensations

of tone by A.]. Ellis (1875, 2nd ed. 1885), reprinted by

Dover, New York (1954); all page-references here are
to the Dover edition.

77 Bosanquet's enharmonic harmonium This

instrument, constructed in 1876, is in the Science

Museum, London; for details of its operation and
use, see Ellis's translation of Helmholtz's book,

pp.427-30,479-81.

77 For a summary of Helmholtz's life (1821-94) and

work, with bibliographies, see the introduction to the

Dover edition and the entry by R. S. Turner in the
Dictionary of scientific biography.

77 On A.]. Ellis (1814-90), see the Dictionary of national

biography, Vol. 22. His further passionate interests in

etymology, phonetics and pronunciation shine

through this translation; see, for example, his long

note on p. 24 on the appropriate renderings of the
German Ton and Klang, from which the following is

but one sentence: 'Timbre, properly a kettledrum, then
a helmet, then the coat of arms surmounted with a

helmet, then the official stamp bearing that coat of

arms (now used in France for a postage label), and

then the mark which declared a thing to be what it
pretended to be, Burns's 'guinea's stamp,' is a foreign
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word, often odiously mispronounced, and not worth
preserving.' He was a ftiend of]. A. H. Murray, the
founding editor of the Oxford English dictionary; there
are many details about him in Murray's affectionate
biography by his granddaughter K. M. E. Murray,
Caught in the web of words, Yale University Press,
1997.

78 These tones are heard Helmholtz, pp. 152-3.

80 principle of conservation of energy See, for
example, T. S. Kuhn, 'Energy conservation as an
example of simultaneous discovery', in M. Claggett
(ed), Critical problems in the history of science,

University of Wisconsin Press (1959), 321-56.

80 The mechanical problem Helmholtz, p. 134.

81 Ohm's law of perception Helmholtz, pp. 33, 56.

81 If, then, we assume Helmholtz, p. 413.

81 History abounds with unwarranted rejection and

Foucault presented the results 'A late-twentieth
century resolution of a mid-nineteenth century
dilemma generated by the eighteenth-century
experiments of Ernst Chladni on the dynamics of
rods', Archive for the history of the exact sciences 43

(1991),251-73, on p. 255.

82 Hermann von Helmholtz This photograph appears
as the frontispiece of]. G. McKendrick's Hermann
Ludwig Ferdinand von Helmholtz, Fisher Unwin,
London (1899).

82 the Pythagorean association of consonance For the
Greek texts, with commentaries, see A. Barker, Greek

musical writings, Vol. 2, Cambridge University Press
(1989); the quoted texts below come from pp. 55-6,

191-3 & 160. For a scholarly assessment of
Pythagoreanism, see W Burkert, Lore and science in
ancient Pythagoreanism, Harvard University Press
(1972).

84 The problem of explaining consonance was a live issue
See H. F. Cohen, QuantifYing music, Reidel (1984); the
quotations from Kepler and Galileo are on p. 11.

85 consonance is a continuous ... sensation of tone
Helmholtz, p. 226.

85 in a celebrated prediction of Helmholtz Helmholtz,
p.211.

86 Helmholtz took the simplest such kind ...
Helmholtz, p. 417.

86 knowing that diagrams... Helmholtz, pp. 192-3.

87 I do not hesitate Helmholtz, p. 227.

87 for example, the elaborate connection ...
Helmholtz, pp. 422-30, 470-83.
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CHAPTER 6: THE GEOMETRY OF MUSIC

A good introduction to symmetry in general (particularly in
nature and the visual arts) is H. Weyl, Symmetry, Princeton
University Press (1952). After this, one can browse through a
textbook of geometry. Three recommended books are
H. S. M. Coxeter, Introduction to geometry, John Wiley &

Sons, New York (1969); P. M. Neumann, G. A. Stoy and
E. C. Thompson, Groups and geometry, Oxford University
Press (1994); and D. A. Brannan, M. F. Esplen and].]. Gray,
Geometry, Cambridge University Press (1999).

CHAPTER T RiNGING THE CHANGES: BELLS AND

MATHEMATICS

Dorothy L. Sayers' detective story The nine tailors, Gollancz
(1934), is the most exciting introduction to change ringing.

Extensive information about the history and lore of change
ringing is available in Change ringing: the history of an English

art (general ed.]. Sanderson), The central council of change
bell ringers, Vol. 1 (1987), Vol. 2 (1992) and Vol. 3 (1994);

John Camp, In praise of bells, Robert Hale, London (1988);

Ron Johnson, Bellringing, Viking (1986); and Wilfrid G.

Wilson, Change ringing, Faber & Faber, London (1965).

Simple mathematical articles about change ringing include
Arthur White and Robin Wilson, 'The hunting group',
Mathematical gazette 79 (1995), 5-16, and B. D. Price,
'Mathematical groups in campanology', Mathematical gazette

53 (1969), 129-33. More advanced mathematical papers may
be found in the papers listed in the Notes for this chapter.

Further information about the mathematics of change­
ringing can be found in the following papers:

Deryn Griffiths, 'Twin bob compositions of Stedman
triples', Bulletin of the institute of combinatorics and its

applications 16 (1966), 65-76;

R. A. Rankin, 'A campanological problem in group theory',
Mathematical proceedings of the Cambridge philosophical society

44 (1948), 17-25;

W H. A. Thompson, A note on Grandsire Triples, London,
1886 (reprinted in W Snowdon, Grandsire, London, 1905:

revision of]. Snowden, Grandsire, 1888);

Arthur T. White, 'Ringing the changes', Mathematical

proceedings of the Cambridge philosophical society 94 (1983),

203-15;

Arthur T. White, 'Ringing the cosets', American mathematical

monthly 94 (1987),721-46;

Arthur T. White, 'Ringing the cosets II', Mathematical

proceedings of the Cambridge philosophical society 105 (1989),

53-65;

Arthur T. White, 'Fabian Stedman: the first group theorist',
American mathematical monthly 103 (1996), 771-8.



129 Since 1991, C. Curtis-Smith's Concerto forleft hand and

orchestra has received performances in Detroit, New

York and Tokyo.

CHAPTER 8: COMPOSING WITH NUMBERS:

SETS, ROWS AND MAGIC SQUARES

Excellent introductions to issues in twentieth-century music,

including some technical discussion of works, can be found

in Paul Griffiths, Modern music and after: directions since 1945,

Clarendon Press, Oxford (1995), and Arnold Whittall,

Musical composition in the twentieth century, Oxford University
Press, Oxford (1999).

A concise but comprehensive introduction to the twelve­

note compositional techniques of Schoenberg, Berg and

Webern is given in George Perle, Serial composition and

atonality, 5th edn., University of California Press, Berkeley

(1981).

One of the most highly developed accounts of the creative

possibilities offered by mathematics for music is to be found

in Iannis Xenakis, Formalized music. Thought and mathematics

in composition, Pendragon Press, Stuyvesant, New York

(revised in 1992).

Controversial and thought-provoking accounts of the

structure of the music of Bartok and Debussy in terms of

golden section and Fibonacci numbers can be found in Ern6

Lendvai, Bela Bartok: an analysis of his music, Kahn & Averill,

London (1971), and Roy Howat, Debussy in proportion. A musi­

cal analysis, Cambridge University Press, Cambridge (1983).

132 In music there is no form and The introduction of my

method Arnold Schoenberg, 'Composition with

twelve tones', Style and idea (ed. L. Stein, tr. L. Black),

Faber & Faber, London (revised 1984),244 and 223-4.

133 For the rest Anton Webern, The path to the new music

(ed. W Reich, tr. L. Black), Universal Edition, London

(1975),53.

134 For a detailed discussion of the Lyric Suite, see G. Perle,

'The secret programme of the Lyric Suite', Musical

times 118 (Aug-Oct 1977),629-32,709-13,809-13.

135 It has also, my Hanna G. Perle, 'The secret

programme of the Lyric Suite', Musical times

118 (Aug-Oct 1977), 709.

135 its 'suitability for study': Arnold Whittall, Music since

the First World War, Dent, London (1977), 174.

137 An exhaustive analysis of the serial organisation of

Structure la is to be found in Gy6rgy Ligeti, 'Pierre

Boulez: decisions and automatism in Structure la', Die

Reihe 4 (English edn. 1960),36-62.

139 composition and organisation cannot be confused

Pierre Boulez, Stocktakings from an apprenticeship

(tr. Stephen Walsh), Clarendon Press, Oxford (1991), 16.

CHAPTER I I Notes references, and further reading

139 in matters of rhythmic style Paul Griffiths, Peter

Maxwell Davies, Robson, London (1982), 25.

139 'projected' through the magic square Quoted in Paul

Griffiths, Peter Maxwell Davies, Robson, London (1982),

74; Griffiths gives a detailed account of Ave maris stella

on pages 72-9 of this book.

139 by which a base metal may be transformed and

governs the whole structure Quoted in Paul

Griffiths, Peter Maxwell Davies, Robson, London

(1982), 163-5.

140 sequences of pitches and rhythmic lengths and are a

gift to composers Paul Griffiths, Peter Maxwell

Davies, Robson, London (1982), 164, 173.

145 I discovered on coming into contact and With Le

Corbusier I discovered architecture Xenakis (1977),

quoted in Nouritza Matossian, Xenakis, Kahn and

Averill, London (1986),53,55.

145 possible to produce ruled surfaces Iannis Xenakis,

Formalized music. Thought and mathematics in

composition, Pendragon Press, Stuyvesant, New York

(revised 1992), 10; he goes on to demonstrate 'the

causal chain of ideas which led me to formulate the

architecture of the Philips Pavilion from the score of

Metastasis' .

145 sound events made out of a large number Xenakis

(1972), quoted in Nouritza Matossian, Xenakis, Kahn

and Averill, London (1986),58.

146 Xenakis's symbolic music Paul Griffiths, 'Xenakis:

logic and disorder', Musical times 116 (April 1975), 330.

146 he gives us something only an artist can give

Nouritza Matossian, Xenakis, Kahn and Averill,

London (1986), 243-4.

146 the effort to make 'art' while 'geometrizing' Iannis

Xenakis, Formalized music. Thought and mathematics in

composition, Pendragon Press, Stuyvesant, New York

(revised 1992), ix.

CHAPTER 9: MICROTONES AND PROJECTIVE PLANES

A historical account of various equally tempered systems

appears in]. M. Barbour's Tuning and temperament:

a historical SU1YeY, published by Michigan State College

Press (1953).

An introduction to atonal music and the mathematical tools

it uses can be found in A. Forte's The structure of atonal

music, Yale University Press (1973), and]. Rahn's Basic atonal

theory, Longman (1980).
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The relationship between transposition and inversion,
among numerous other foundational matters, is formalized
in D. Lewin's Generalized musical intervals and transformations,

Yale University Press (1987).

The compositional employment of pitch classes receives a
thorough explication in R. D. Morris's Composition with

pitch-classes, Yale University Press (1987).

The history of major-minor dualism is traced in
D. Harrison's Harmonic jUnction in chromatic music,

University of Chicago Press (1994).

Finally, a fuller discussion of block designs, projective planes
and difference sets can be found in I. Anderson's A first

course in combinatorial mathematics, 2nd edn., Oxford (1989),

182

or J. H. van Lint and R. M. Wilson's A course in combinatorics,

2nd ed, Cambridge University Press (2001).

CHAPTER 10: COMPOSING WITH FRACTALS

163 A glance through the illustrations See Heinz-Otto
Peitgen and Dietmar Saupe (eds.), The science offractal

images, Springer, New York (1988), and Heinz-Otto
Peitgen and Peter H. Richter, The beauty offractals,

Springer, New York (1986). Chaotic dynamical systems
are described in Chapter 3, and the Mandelbrot set in
Chapter 4, of Peitgen and Saupe's book.

163 A. K. Dewdney's mathematics column appeared in
Scientific American, September 1986.
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