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Serdar Yümlü a, Fikret S. Gürgen a,*, Nesrin Okay b
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Abstract

This paper makes a comparison of global, feedback and smoothed-piecewise neural prediction models for financial

time series (FTS) prediction problem. Each model is implemented by various neural network (NN) architectures: global

model by a multilayer perceptron (MLP), feedback model by a recurrent neural network (RNN) and smoothed-piecewise

model by a mixture of experts (MoE) structure. The advantages and disadvantages of each model are discussed by using

real world finance data: 12 years data of Istanbul stock exchange (ISE) index (XU100) from 1990 to 2002. A conven-

tional exponential generalized autoregressive conditional heteroskedasticity (EGARCH) volatility model is also imple-

mented for comparison purpose. The comparison for each model is done based on well-known criterions of index return

series of market: hit rate (HR), positive hit rate (H
þ
R), negative hit rate (H

�
R), mean squared error (MSE), mean absolute

error (MAE) and correlation (f). Finally, it is observed that the smoothed-piecewise neural model becomes advantageous

in capturing volatility in index return series when it is compared to global and feedback neural model, and also the con-

ventional EGARCH volatility model.
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1. Introduction

Recently, mixture of models and multiple models

have become popular research areas in machine
learning and related fields. Generally in this field,
ed.
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there has been a special interest in the development

of clustering, classification, regression, prediction

and parameter estimation algorithms for time

series (dynamics) problems. Remarkable efforts

include the directions such as support vector

machines (SVM), Bayesian networks, mixture of

experts, ensembles of neural networks, fuzzy mod-

els, etc. (Shafer and Vovk, 2001; Petridis and

Kehagias, 1998; Petridis et al., 2001; Rao et al.,

1997; Castillo and Melin, 2002; Shawe-Taylor

and Cristianini, 2004; Heckerman, 1999). These

ideas have further led to reinterpretation of exist-

ing network structures; proposals of new network
structures; and novel learning algorithms based on

optimization techniques, principles, and criteria

from these areas.

This study addresses the problem of application

of global, feedback and piecewise neural models to

financial time series (FTS) prediction (Yümlü

et al., 2003, 2004). It is an example case of choos-

ing the proper model for a specific application
of FTS prediction. Furthermore, a conventional

exponential generalized autoregressive conditional

heteroskedasticity (EGARCH) model is employed

for comparison. A multilayer perceptron (MLP)

is employed as a global predictor of FTS that uses

the training samples obtained from each local part

of the time series. Here, the MLP is trained with

these local, fixed-size samples to receive the overall
picture of the series, and then make a prediction. A

recurrent neural net (RNN) is used as a feedback

predictor that introduces a memory between parts

of local series. In this case, a number of weighted

feedback connections are added to the feedfor-

ward structure of aMLP, so it can encode the rela-
Table 1

This table reports the statistics for XU100 index return series

Summary statistics for the daily returns of XU100 index (12/01/1990–

Size Mean Variance Standard deviation Skewness Ku

2945 0.002 0.001 0.033 0.130 5.7

Q (5) Q (10) Q2 (5) Q2 (10) P1 q2

40.61 56.922 415.784 551.324 0.105 0.0

The XU100 index data are obtained from ISE database. The sample p

daily return observations in the sample period. As this table shows

distribution is negatively skewed. The kurtosis coefficient, which is a m

rejects the null hypothesis of normally distributed returns. ARCH (E
tionship of a number of partially local series better

in the weights. Finally, smoothed-piecewise predic-

tors such as mixture of experts (MoE) structure are

used to summarize the localized series with a num-

ber of statistics such as mean, variance values and
then, obtain an overall prediction smoothed by

conditional probability values of each local series

or local expert.

The global, feedback and smoothed-piecewise

neural models are employed for the prediction of

volatilities of certain assets in Istanbul stock

exchange (ISE) index (XU100) from Turkey from

years of 1990s to 2002s. The real world finance
data is divided into two parts: (a) 12 years data

from 1990 to 2002 and (b) 4 years data from

1998 to 2002. There is an important reason behind

this separation: ISE shows different distributional

effects between 1990 and 1998 because of the

indeterminate economical structure, so we have

decided to test our models with a smaller and more

predictable data set from 01/01/1998 to 04/04/2002.
Financial markets (ISE) in Turkey have various

instability sources of the economical infrastruc-

ture. Any news or rumor may cause changes in

volatile movements, as a result, forecasting the

volatility of the market becomes an important

issue. With the described features (Table 1), we

try to measure the effectiveness of above models

in the prediction. No previous work has been
reported in the area.

We try to make a comparison of the well-known

neural models for the case of ISE data in our

study: these models are global model with a MLP

example, feedback model with a RNN example

(Elman�s model with feedback from hidden units),
26/04/2002)

rtosis Min Max J. Bera (J-B) (p value)

27 �0.2 0.171 918.253 (0.00)

ARCH (Eq. (3))

05 272.544

eriod is from January 12, 1990 to April 26, 2002. There are 2945

like most of the financial time series, also in XU100 return

easure of the thickness of the tails, is very high. Jarque-Bera test

q. (7)) tests the ARCH effects using Engle and Ng�s (1993) test.



S. Yümlü et al. / Pattern Recognition Letters 26 (2005) 2093–2103 2095
smoothed-piecewise model with MoE example and

a well-known, conventional EGARCH model. We

furthermore mention piecewise models (individual

local experts) such as linear predictors (LP) and

polynomial predictors (PP) and the reasons of not
using them in our case. Even though a combination

of various models such as neural and EGARCH

models can also be considered, in this study we

limit our attention to performances of above

models and describe their effectiveness in the case

of ISE data.

The rest of the paper is organized as follows:

Section 2 introduces predictor models. Section 3
introduces volatility forecasting and the character-

istics of the stock market FTS. Section 4 describes

global, feedback and smoothed-piecewise neural

prediction models. Section 5 mentions the imple-

mentation issues of neural models and the experi-

ments. Section 6 presents results with discussions.

Final section concludes the study with future

work.
2. Predictor models

In general for a time series (TS) prediction

problem, a predictor fits a model to given data

and finds an approximate mapping function be-

tween the input and the output values (Shafer
and Vovk, 2001; Petridis and Kehagias, 1998; Pet-

ridis et al., 2001). Thus, the proposed model pre-

dicts underlying patterns, trends and cycles using

historical and currently observable data. A time

series xt, t = 1,2,3, . . .; for simplicity xt is taken

to be scalar but vector-valued time series are also

used. Among a number of predictors of this series,

the kth predictor is obtained by

ykt ðffi xkt Þ ¼ f ðxt�1; xt�2; . . . ; xt�M ;wkÞ;
k ¼ 1; 2; 3; . . . ;K. ð1Þ

The real value of xt is predicted as yt with a pre-
diction error et. The kth predictors belong to a

general family f(.,w), where w is a parameter vec-

tor; the kth predictor is obtained by setting

w = wk. It is reasonable to assume that, if kth pre-

diction�s error ekt ¼ ykt � xkt forms a sequence of

independent, identically distributed (iid) random
variables with zero mean and r2 variance. The

value of M is also known as the prediction horizon

is expected to be made as large as possible by keep-

ing the prediction error (et) within reasonable

bounds.
Linear (regression) predictors (LP) are

defined as single input (autoregression) predictors

of form

ykt ¼ ak0xt þ ak1xt�1 þ ak2xt�2 þ ak3xt�3 þ � � � þ akMxt�M

ð2Þ
and multi-input predictors with two-inputs case are

defined by

ykt ¼ ak0xt þ bk0ut þ ak1xt�1 þ bk1ut�1 þ ak2xt�2

þ bk2ut�2 þ � � � þ akMxt�M þ bk0ut�M ð3Þ

Training of the predictors means obtaining a

and b coefficients using a least squares approxima-

tion method. LP has limitations especially in time

series with nonstationary nature. Even though var-

ious solutions are available for certain applications
such as short time linear predictive coding (LPC)

of speech signal representation, etc. In the LPC,

nonstationary speech signal is frozen at short

frames and then is represented by LP coefficients.

This becomes unsuitable for FTS prediction prob-

lem since the coverage of the representation will be

limited to short windows.

Polynomial predictors (PP) are polynomials of
time variable t, an nth order polynomial predictor

is shown by

ykt ¼ ak0 þ ak1t þ ak2t
2 þ ak3t

3 þ � � � þ aknt
n ð4Þ

In this case also, training for every data group

means the computation of a coefficients by least

squares regression method. PP has limitations in

capturing main trends of the overall series: for

example, when the series get longer, the order n

may become too large and the prediction becomes

harder.
Neural predictors are similar to linear predictors

in the principle but they differ in the sense that they

use a nonlinear regression implemented by various

neural networks such as MLP, RNN and MoE

structure to form

ykt ¼ f ðxt�1; xt�2; . . . ; xt�M ;wkÞ ð5Þ
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or in two-variable case of the form

ykt ¼ f ðxt�1; xt�2; . . . ; xt�M ; ut�1; ut�2; . . . ; ut�M ;wkÞ
ð6Þ

Here wk is a matrix of weights or parameters.

Training algorithm is used to determine these

parameters.

Various prediction models, modular networks

(Petridis et al., 2001), bayesian networks (Hecker-

man, 1999), support vector machines (SVM)

(Nuller et al., 1997), etc. are also used in different

applications: modular nets combine various pre-

dictors such as bayesian combined predictor model

(Petridis et al., 2001). Bayesian nets considers the

dynamics of time series such as dynamic bayesian

model (DBN) (Heckerman, 1999) and SVMs
employ support vectors in the input space (Nuller

et al., 1997).
3. Financial time series problem and volatility

Generally, FTS prediction (Shafer and Vovk,

2001; Petridis and Kehagias, 1998; Petridis et al.,
2001) is a difficult problem that has hidden vari-

ables and lacks observable data for determining

the underlying structure of the series, if one exists.

Our study uses conditional variance (volatility)

that is time-dependent heteroskedastic variance

and it is not a directly observable feature. A

well-known approach of financial markets is effi-

cient market hypothesis (EMH) in which the
current market price reflects all the available

information immediately. In EMH, people do

not believe in finding evidence for the prediction

of stock markets. The alternative approach, which

is widely accepted by the traders� environment, is

the belief that the stock market is predictable in

the sense of fundamental analysis and prediction

methods. In this study, we investigate the predict-
ability of ISE index XU100 by assuming the sec-

ond approach which is against the EMH and

furthermore show the usage and comparison of

neural predictors in FTS prediction.

Briefly, volatility is the measure of the change-

ability in asset returns (Tino et al., 2000; Nelson,

1991; Engle, 1982; Engle and Ng, 1993; Black,
1976). Stock prices vary with changes in volatilities

of the underlying risk factor and as a consequence,

accurate prediction of future stock prices requires

a forecast of an asset return�s volatility. This

time-dependent variance is known as the hetero-
skedasticity. FTS of stock returns shows time-

dependent variance and this requires us to predict

the volatility. Volatility forecast of asset returns is

used in market risk management, portfolio selec-

tion, market timing, etc. Market risk management

plays a crucial role in financial decisions. None of

the players want a volatile market. Value at risk

has become a standard in market risk manage-
ment. Value at risk estimation is based on the fore-

casting of the volatility of market risk factors. As a

result, estimating the volatility of asset returns,

which is a basic risk factor of the stock market,

gives valuable information for the future risk in

the market and this will make the players to con-

sider the expected high or low volatility in the

market.
Conditional variances are known to be unob-

servable features, but in the literature there are

numerous studies and approaches to estimate vol-

atilities using historical asset returns. This variance

is time-dependent and Engle (1982) first proposed

using past asset returns to model heteroskedas-

tic behavior with an autoregressive conditional

heteroskedasticity (ARCH) process. Bollerslev
(1986) generalized this approach offering a gene-

ralized autoregressive conditional heteroskedasticity

(GARCH) model in which conditional variances

are governed by a linear autoregressive process

of past squared returns and variances.

ht ¼ xþ
Xp

i¼1

aie
2
t�i þ

Xq

i¼1

biht�i ð7Þ

In this equation, ht represents the conditional vari-
ances and x, a and b are constant parameters of

the system. Both ARCH and GARCH models lack

in modeling a volatility fact that is known as the

‘‘leverage effect’’ which is known as the effect of

the sign of the innovations. For this purpose,

asymmetric extensions of the GARCH have been

proposed. One of the most widespread is Nelson

(1991) who has proposed exponential GARCH

(EGARCH).
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logðhtÞ ¼ xþ b � logðht�1Þ þ c
et�1ffiffiffiffiffiffiffiffi
ht�1

p

þ a
jet�1jffiffiffiffiffiffiffiffi
ht�1

p �
ffiffiffi
2

p

r" #
ð8Þ

where ht represents the conditional variances and
x, a, b and c are constant parameters of the sys-

tem. EGARCH considers modeling the sign effect

besides using past squared innovations and past

variances. Later, the impact of news on volatility

models has been measured by employing especially

EGARCH models (Engle and Ng, 1993). As a re-

sult, EGARCH models have become common

models of the area.
In neural predictor models, we normalize and

use logarithm operators to transform the index

price series yt into rt continuously compounded

return series. A normalization process keeps the

price series in a constant range. The price series,

which is not stationary and contains trends, sea-

sonality and cycles, is then converted into continu-

ously compounded return series by the formula
given at Eq. (7) to obtain an accepted stationary

series:

rt ¼ lnðyt=yt�1Þ ð9Þ
where rt shows the compounded return at time t

for given price series yt and yt�1. Return series

have a constant range even when we use many
years of data, but prices do vary greatly and com-

paring assets using return series is more accurate

than using price series.

Several characteristics (Schittenkopf and Dorff-

ner, 1999; Tino et al., 2000; Chan and Gao, 2000;

Hellstrom and Holmstrom, 1997; Yao and Tan,

2001) have been confirmed by various studies on

volatility model generation for the prediction of
FTS. A summary can be as follows: a volatility

model is expected to capture and reflect the prop-

erties of the series such as volatility clustering,

which is related to changes of price assets, mean

reversion in volatility, which implies that current

information has no effect on the long run forecast,

asymmetric effect or leverage effect, which means

that changes in stock prices tend to be negatively
correlated with changes in volatility. In other

terms, volatility increases much more after nega-

tive shocks to asset price rather than positive
shocks. Finally, the distribution of returns is fat-

tailed and exhibits leptokurtosis, which means the

kurtosis, exceeds the kurtosis of a standard gauss-

ian distribution.
4. Global, feedback, smoothed-piecewise neural

prediction models

In this paper, we interpret global, feedback and

smoothed-piecewise neural prediction models for

the ISE with two FTS examples. The task of a

neural prediction model can be described as fol-
lows: given a set of input–output pairs T =

{(xi,yi)}, where xieR
n, xieR

m are drawn from an

unknown distribution, design a mapping f :

Rn ) Rm that minimizes the expected prediction

error, in the case of squared error, given by

E[(y � f(x,w))2]. The function f(x,w) defines corre-

sponding mapping for the predictor. The value of

m is 1 in the TS prediction case.
Global neural models like a feedforward MLP

(Fig. 1) implements a nonlinear regression func-

tion that must fit the data well everywhere with

no explicit partitioning of the input space without

subdivision of the parameter set. Then, it predicts

the sample yi. It is clear that the role of individual

parameters cannot be seen in the structure. In our

implementation, we choose a typical sigmoid func-
tion and train the weights w of f(x,w) function

with a back propagation (BP) algorithm.

Feedback neural models like a recurrent neural

network (RNN) (Fig. 2) structure has feedback

connections that is suitable for modeling the tem-

poral relationships in time. Unlike feedforward

MLP, the RNN introduces a valuable basis for

modeling time series. We implement Elman�s
RNN with real-time recurrent learning (RTRL)

algorithm (Petridis and Kehagias, 1998) in our

study. Elman�s RNN stores the values of hidden

units (or internal states) and feeds them back to

the net. Error minimization in RTRL algorithm

is done by measuring the sensitivity of the output

at unit k at time t to a small change in the weight

value wij (from the hidden unit j to the input unit
i). The effect of a change in the weight is taken into

account and propagated to the entire network dur-

ing the time steps.



Fig. 1. A schematic for MLP and RBF structures.
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Fig. 2. A schematic for RNN structure (Type 1 RNN of Elman).
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A smoothed-piecewise neural model such as

MoE (Rao et al., 1997) (Fig. 3) is constructed by

local experts with a prediction function f(x,wj),

where wj is the set of model parameters for local
model j. Generally, the local experts may be

constant, linear or nonlinear (polynomial of any

degree) function of x. The overall prediction func-

tion of the model is defined with conditional

expectation,

f ðx;wÞ ¼
X
j

P ½j=x�f ðx;wjÞ ð10Þ

where P[j/x] is a nonnegative weight of association

between input x and expert or local model j and it
determines the degree to which expert j contributes

to the overall model output. These weights are
often called gating units and are imposed
P

jP[j/

x] = 1, which is a parametric function determined

by a parameter set wgating. Statistical interpretation

of the model is as follows: the input–output pair
(xi,yi) is randomly selected by an input density

and by a local model according to probability

mass function {P[j/x]}. For a selected local model

k, the output is generated as a random variable

whose mean is f(x,wj). With this viewpoint,

f(x,w) represents the expected value of the output

for a given input x. It is known that conditional

expectation is the minimum mean-squared error

(MMSE) predictor.

A main advantage is that the minimization of

squared error in a smoothed-piecewise neural

structure improves cooperative prediction between



Fig. 3. The structure of the mixture of experts (MoE).
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output g(xi) and predictors f(xi,wj) while each indi-
vidual predictor improves the individual predic-

tion between output yi and each predictor f(xi,

wj). A normalized, one hidden layer, radial basis

function (RBF) (Figs. 1 and 3) structure (Petridis

and Kehagias, 1998) is a first example of

smoothed-piecewise neural structure in which we

compute the hidden layer outputs by where

RkðxÞ ¼ exp�½kx� mkk2=2r2
k � is a commonly used

gaussian basis functions with mk mean vectors

(centers of input space) and rk variance. k index

is for a specific node and input space is covered

by all the hidden layer nodes of the architecture.

The second layer generates a linear combination

of hidden nodes which may be interpreted as local

experts {f(x,wj)} and the weights to output node

represent the probabilities of association {P[j/x]}
with the corresponding local experts.

Mixture of experts (MoE) [4] as a method of

combining multiple learners becomes a general

MoE structure. It consists of two parts: the first

part is a number of parallel local experts which

use the same input pattern and the second part is

a gating expert which determines the output using

the decisions of local experts regarding the input
pattern.

The proposed MoE predictor (Fig. 3) predicts

each data point with a probability to the local

models by seeking optimal probabilistic assign-

ments {P[jl/xi]} as well as the model parameter
set {f(x,wj)}. The MMSE cost is selected for error
optimization. Any choice of random branch from

the output node takes us to one of the local

experts. The conditional distribution for selecting

the individual local decision given a node is com-

puted at output node by a ‘‘gate’’ with

gjðxÞ ¼ expðwT
j xÞ

X
m

expðwT
mxÞ

,
ð11Þ

where weight vectors {wj} create a partition of

input space.

Piecewise models generally fit data to local
region of input space and patch the local parame-

ters in a divide-and-conquer sense. Thus, piecewise

solutions generated by individual parameters of

individual submodels become easy to interpret. A

modular neural network structure (Petridis et al.,

2001) can be considered as an example in which

individual neural net modules are trained to obtain

solutions for local input regions. A smoothed-
piecewise model decomposes regression problem

into the learning set of local (expert) models but

none of them claims exclusive ownership of the

region unlike piecewise models. By using P[j/x]

weights that are restricted to the values {0,1},

the parameters are added only when they require

to improve the fit in a local region. Thus, the over-

all problem is simplified in terms of learning and
modeling. Furthermore, unlike piecewise modeling



2100 S. Yümlü et al. / Pattern Recognition Letters 26 (2005) 2093–2103
that generates discontinuous regions at bound-

aries, smoothed-piecewise solutions are smooth

everywhere due to averaging in Eq. (11). They pro-

duce no exclusive ownership of a region, thus, they

simplify the learning and modeling problem by
creating parsimonious solutions.

The cooperative prediction solution produced

by MoE structure with MMSE criterion resembles

more closely local piecewise models than global

models (Rao et al., 1997). Generally in competitive

models trained with maximum likelihood (ML)

objective, only a few experts are activated for a

given input. In cooperative models, many experts
that are distributed over the input space contribute

to a given output. The prediction solutions of indi-

vidual local experts are combined through the P[j/

x] weights which defines each predicted data point

associated in probability with the various local

models. This bears similarity between MoE predic-

tion and piecewise prediction model. On the other

hand, it generates an averaging solution or
smoothing effect for the discontinuous functions

at region boundaries of piecewise prediction

model. In this sense, it is claimed that MoE struc-

ture is closer to global models.

As a conventional model, we employ EGARCH

(Bollerslev, 1986) that includes volatility (condi-

tional variance) of a FTS, thus it overcomes the

drawbacks of ARCH and GARCH models such as
lack of leverage effect. By modeling EGARCH, we

consider the sign effect besides using past squared

innovations and past variances. This model is used

as a basic model to compare the results of neural

predictor experiments.
Fig. 4. ISE XU100 ma
5. Implementation issues of neural models

and experiments

In this section, we describe ISE data and then

use it for the prediction of risk in index return ser-
ies by using MLP, RNN, MoE and conventional

EGARCH structures. Data consists of 2946 daily

observations of ISE 100 index (Turkey) (Fig. 4).

Data covers a 12-year period, from 12 January

1990 to 26 April 2002. We use two portions: (a)

12 years data and (b) 4 years data from 1998 to

2002. Besides the index close series, we have stud-

ied four supporting series: USD dollar series, two
interest rate series which are simple interest rate

and central bank money series have been studied

as helper series to find the underlying nonlinear

relationship, the unknown patterns and the effects

of these series over the volatility of the index

return series.

Time can be introduced to a neural architecture

in various ways: in one way, we may leave the time
outside of the neural model as we do in MoE.

Here, a sliding window of last n elements is

described and then is used to predict the following

observation in the time series. In the other way, we

may encode the time as a numerical value and use

it in the structure similar to RNN. As a result, the

time becomes an index of the state of the net. The

storage of the states constructs a memory segment
and various buffering and weighted buffering tech-

niques can be applied to form the memory. In the

experiments, we have used the first type of Elman�s
RNN which loops back the outputs from hidden

neurons to the input layer for modeling the risk
rket index values.
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in index return series and use it for the future

predictions.

Financial markets in Turkey show nonlinearity

with very high noise because of various instability

sources of the economical infrastructure. Hidden
factors such as any news or rumor may cause

changes in volatile movements, as a result, fore-

casting the volatility of the market becomes diffi-

cult. With the described features (Table 1), we

try to measure the effectiveness of above models

in the prediction. There has been no previous work

in the area. Thus, we study all the main stream

neural models such as global, recurrent and
smoothed-piecewise of FTS prediction for the

ISE data. We also discuss not to apply piecewise

models to the case.

In this study, we have implemented various neu-

ral models and a conventional model. A model�s
performance besides its efficiency is dependent on

the quality and relevance of the data. For this pur-

pose, we divide the data set into three parts for
each of two cases: 12 years and 4 years. In the case

of 12 years of data, training, validation and test

data sets with sizes of 1857, 795 and 294 are used

respectively. In this case, an input window of size

7 is used with 20 hidden units. In the case of 4

years of data, training, validation and test data

sets with sizes of 649, 277 and 102 are chosen. In

this case, an input window of size 7 is used again
but the number of hidden units has chosen to be

15. As it is known, the number of hidden units rep-

resents the local experts in the MoE structures.

The best performance giving choices were used in

the experiments for both of the cases. We train

our models using the training set, validate the

model parameters using the validation set and

use the test data set for testing the performance.
In MoE implementation, first the data are clus-

tered into groups using an expectation maximiza-

tion (EM) algorithm. The number of centers was

set to be equal to the number of hidden units in

the architecture. Each group is assumed to have

a gaussian distribution with mean and variances

optimized using BP algorithm over each local

expert with MMSE criterion. Each trained local
expert with a set of parameters specializes in its

region and the outputs of all local experts are con-

nected to the output by the gating expert which
considers the input pattern at the same time by

processing the outputs of each local expert. Since

hidden units are gaussian, the overall system

applies a smoothed-piecewise linear approxima-

tion to input data.
Identical data prediction conditions are

employed for the rest of the models MLP, RNN

and EGARCH and a comparison has been done

for each model in the testing phase with various

comparison criterions. These criterions are hit rate

(HR), positive hit rate (H
þ
R), negative hit rate (H

�
R),

mean squared error (MSE), root MSE (RMSE),

mean absolute error (MAE) and correlation and
details of them discussed in the next section. Also,

the number of inputs and hidden units are kept

same for all of the architectures.
6. Results

Generally, the performance of a model is depen-
dent on the quality and relevance of the data that

it represents. Thus, the data selection becomes an

important component of a prediction. Here, we

consider four different series besides ISE 100 close

price series. Sliding windows technique, taking the

last n elements in the series as input, is only applied

to ISE 100 and USD series. Among the various

sizes of hidden units, the best performance given
size was used for structures. All the series are used

as an input to neural and conventional models and

one-time-ahead forecast is the expected output of

the NN. We work on real-valued series and the

outputs are also real-valued forecasts. In this study

we have chosen a 12-year period of ISE 100

between 01/01/1990 and 04/04/2002. A seven lag

windowed series is trained using 20 hidden units
for each neural model. ISE shows different distri-

butional effects between 1990 and 1998 because

of the indeterminate economical structure, so we

have tested our models with a smaller and more

predictable data set from 01/01/1998 to 04/04/

2002 using 15 hidden units in our models. Mean

square error (MSE) is used as an error function

during the training phase. For testing the out-
of-sample performance and the adequacy of the

model we have used several performance metrics.

The reported results in Tables 2 and 3 are obtained



Table 2

Performance of the neural models: piecewise-continuous MoE, global MLP, feedback RNN and EGARCH for 4 years of ISE data

(01/01/1998–04/04/2002)

MoE MLP RNN EGARCH

HR 0.896 0.514 0.58 0.513

Hþ
R 1 0.47 0.569 0.695

H�
R 0.87 0.569 0.588 0.359

MSE 0.139 1.064 0.101 0.174

MAE 0.373 1.032 0.318 0.417

f 0.849 0.324 0.796 0.037

Table 3

Performance of the neural models: piecewise-continuous MoE, global MLP, feedback RNN and EGARCH for 12 years of ISE data

(01/01/1990–04/04/2002)

MoE MLP RNN EGARCH

HR (%) 0.622 0.538 0.524 0.404

Hþ
R (%) 1 0.491 0.478 0.671

H�
R (%) 0.609 0.598 0.579 0.298

MSE 0.499 0.988 0.912 0.129

MAE 0.706 0.994 0.955 0.359

f 0.546 0.347 0.378 0.021
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from the production (test) data set. Hit rate (HR)

shows the percentage of the correct predictions

of the direction of the market. Positive hit rate

(Hþ
R) is the percentage of the correct predictions

during the increasing market and the negative hit

rate (H�
R) is the opposite. MSE and mean absolute

error (MAE) criterions measure the ability of the

model to capture the data. Also as a similarity
measure, correlation (f) is used which should be

close to 1 for a perfect fit (or strong correlation).

In the experiments, MoE structure becomes a

favorable structure among the others for the given

measures. The experimental results support that

smoothed-piecewise neural MoE model has the

strength to capture the underlying model in the

data series and is able to include knowledge that
can be used during trading and risk management.

In Tables 2 and 3, it is observed that MoE has

higher values for (HR, H
þ
R and H�

R) hit rates and

similarity measure (f) among others. Also MoE

gives smaller values of MSE and MAE measures

between 1998 and 2002 years. Table 2 shows re-

sults in favor of smoothed-piecewise approach.

In Table 3, some MSE and MAE values are smal-
ler for EGARCH model. In fact, the MSE and

MAE measures show the ability to model the
FTS data, but this is not reflected to the rest of

the performance measures in EGARCH results.

We observe a superior performance of the hit rates

of the MoE model in both directions (HR, H
þ
R, and

H�
R) for the ISE data and conclude that the model

is more suitable for the prediction of volatility.

Furthermore, the convenience of MoE structure

is supported by the best the similarity measure
(f) result among the others.

As a summary, Table 3 shows the metrics

obtained using the whole data set from 1990 to

2002. Because of the high volatility during the crisis

in Turkey, we generally see that the models have

difficulty to capture the features of data. But even

in these conditions, MoE as a smoothed-piecewise

neural structure is superior to its rivals in this
study.
7. Future work and conclusion

In this study, we interpret and discuss the appli-

cation of global, feedback and smoothed-piecewise,

neural MoE structure. By using the assumption
that is against the EMH hypothesis, experimental

results on ISE data suggest that MoE structure
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specifically introduces a powerful model to predict

the volatility of FTS data. In our work, we con-

sider ISE XU100 and observe the prediction of

volatilities (conditional variances) instead of

return index prices makes a valuable contribution
to this area. It was not suitable to employ linear

predictor (LP) and polynomial predictor (PP) mod-

els for ISE XU data. We have observed that global

MLP structure could not capture the FTS data

and thus, they are not suitable for modeling the

risk of the series. But, MoE model divides the data

into segments that are dealt with local experts and

it merges the results using a gating network which
gives a more successful and an applicable result

in order to give decision while trading. The

smoothed-piecewise prediction solution that it

introduces making a better focus on the areas of

FTS. RNN with feedback connections from hidden

units cannot provide a better result than the MoE

structure in this case. Also, EGARCH method

becomes inferior to the MoE structure. We plan
to observe the prediction performance of SVM,

DBN structures on ISE data. We also plan to

study on intraday ISE data.
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