
Zigzag Fractal DNA in Forex Time Series

Technical Documentation

Concepts:
gg53
crodzilla
smallcat
Kilian19
go4it
emonts
burnssss
candero
and many others

Author:
flx23

February 22, 2014

Abstract

This document summarizes the main concepts of a swing point prediction approach for forex
time series using fractal patterns within zigzag legs which evolved from the "The Ultimate
Truth" thread1 on forexfacory.com. For further documentation and contributions please have
a look at the "FractalPattern, ZZ & the Pissing Dog" thread 2.

This document is - just as the approach itself - a work in progress. Some sec-
tions may be erroneous or incomplete or may even be conflicting with the initial
approach. However, the goal is to describe all preliminary findings as precise and
unambiguous as possible. For this reason all advices and improvement suggestions
are highly welcome. If you like to improve this document please feel free to contact
me3.

Particular thanks to all contributors!

1http://www.forexfactory.com/showthread.php?t=440372
2http://www.forexfactory.com/showthread.php?t=464948
3http://www.forexfactory.com/flx23

http://www.forexfactory.com/showthread.php?t=440372
http://www.forexfactory.com/showthread.php?t=464948
http://www.forexfactory.com/flx23

Contents
1 Introduction 2

1.0.1 References . 2

2 Historical Data 2

3 Fractals 3
3.0.2 References . 3

4 Zigzag Indicator 4
4.0.3 References . 4

5 Data sets 4
5.1 Set 1 . 5

5.1.1 References . 5
5.2 Set 2 . 6

5.2.1 References . 7
5.3 Set 3 . 8

5.3.1 References . 8
5.4 Set Data Statistics . 8
5.5 Implementation Aspects . 9

5.5.1 Characteristics of Sets 1-3 . 9
5.5.2 Hash Tables and the C# / Java Dictionary 9
5.5.3 Binary Tries / Prefix Trees . 10

6 Model Logic without Error Prediction & Adaptability 11
6.1 Processing States - Overview . 11
6.2 Set Queries . 12
6.3 State Transitions . 14

6.3.1 Initial State S0 . 14
6.3.2 FractalPrediction S1 . 14
6.3.3 TotalLengthPrediction S2 . 15
6.3.4 NextBarOppositePrediction S3 . 15
6.3.5 References . 16

1

1 Introduction

"Unlike gambling, lottery, Coin toss, etc. which are (hopefully) purely random - the Forex
market is biased. It does have a "memory" and it’s based on needs, speculation, and human
behavior. [...] We know that the zigzag indicator (ZZ) best describe those swing points, but
it does it in retrospect. For real-time trading it is lagging and repainting itself making it quite
useless for accurate entries and exit in trading. We came out with an idea to analyze each ZZ
leg by its fractals and regular bars in an attempt to find consistent, repeatable patterns. If we
can find those patterns - we can predict where the ZZ leg will, or should be. [...]
Why fractals? The whole idea of fractals is about patterns that repeat themselves on larger and
smaller scales. If the fractals, or DNA, theories are valid - the DNA sequences should represent
themselves within any shape and form. Since the smallest sequences that we can analyze are the
1 Min. bars - we need to compare their sequences to larger patterns and "filter out" the wrong
sequences that doesn’t exist in the larger patterns. Hence the choice of the ZZ leg - to represent

the larger pattern that have smaller "sequences" - its fractals. [...]" - gg53

1.0.1 References

• Entire introduction: http://www.forexfactory.com/showthread.php?p=7188904#post7188904

2 Historical Data
Although the approach described in this article should work on different currency pairs and
with different time frames we focus for reasons of comparability on M5 data of EURUSD within
the two year period 2011 - 2012. Smallcat provided a zip file4 containing detailed instructions
on how to obtain historical data. This file also includes modified zigzag and fractal indicators
which are required for this approach and will be presented in detail later on. Historical data
can be exported using JForex5 just as well as suggested by killerno.

4http://www.forexfactory.com/attachment.php?attachmentid=1341201&d=1389043789
5https://www.dukascopy.com/europe/deutsch/forex/jforex/

2

http://www.forexfactory.com/showthread.php?p=7188904#post7188904
http://www.forexfactory.com/attachment.php?attachmentid=1341201&d=1389043789
https://www.dukascopy.com/europe/deutsch/forex/jforex/

3 Fractals
FractalPattern in terms of this approach are reversal points indicated by candle patterns of
lengths 5-9. A series of at least five candles is called an up fractal if it has the highest high
in the middle and two lower highs on both sides. A series with the lowest low in the middle
of two higher lows is called a down fractal respectively. Therefore a fractal appears two bars
lagged. The following definition is acausal which means that the indexes i − 1 and i − 2 refer
to future bars or - interpreted differently - an indicator using this definition is repainting. In
order to obtain a causal - or non-repainting - implementation incoming bars must be delayed
for two time steps.

Definition 1 Up fractals

// l e n g t h 5
High [i]>High [i +1] && High [i]>High [i +2] &&
High [i]>High [i −1] && High [i]>High [i −2]
// l e n g t h 6
High [i]==High [i +1] && High [i]>High [i +2] && High [i]>High [i +3] &&
High [i]>High [i −1] && High [i]>High [i −2]
// l e n g t h 7
High [i]>=High [i +1] && High [i]==High [i +2] && High [i]>High [i +3] &&
High [i]>High [i +4] &&
High [i]>High [i −1] && High [i]>High [i −2]
// l e n g t h 8
High [i]>=High [i +1] && High [i]==High [i +2] && High [i]==High [i +3] &&
High [i]>High [i +4] && High [i]>High [i +5] &&
High [i]>High [i −1] && High [i]>High [i −2]
// l e n g t h 9
High [i]>=High [i +1] && High [i]==High [i +2] && High [i]>=High [i +3] &&
High [i]==High [i +4] && High [i]>High [i +5] && High [i]>High [i +6] &&
High [i]>High [i −1] && High [i]>High [i −2]

On the analogy of up fractals, down fractals are defined by the low prices and hence only
specified for length 5.

Definition 2 Down fractals

// l e n g t h 5
Low [i]<Low [i +1] && Low [i]<Low [i +2] &&
Low [i]<Low [i −1] && Low [i]<Low [i −2]

. . .

3.0.2 References

• Why using fractals? http://www.forexfactory.com/showthread.php?p=7188904#post7188904

• MT4 fractals implementation: http://ta.mql4.com/indicators/bills/fractal

Note: Does anyone use other / modified / additional fractal definitions?

3

http://www.forexfactory.com/showthread.php?p=7188904#post7188904
http://ta.mql4.com/indicators/bills/fractal

4 Zigzag Indicator
The zigzag indicator is a series of trend lines connecting significant peaks and foundations.
Minimum price change parameter determines the percentage for the price to move in order
to form a new "Zig" or "Zag" leg. This indicator eliminates those changes that are less than
the given value. Therefore the Zigzag reflects "significant" changes only. It is important to
note that this indicator is repainting undetermined in terms of lag. I.e. the last section of
the indicator may vary depending on the changes of data. In our approach we use the zigzag
indicator for the decomposition of our historical data retrospectively. A zigzag leg connects
by definition two major swing points and can thus be a characteristic, higher level unit of
candle data. Since we intend to analyze fractal patterns (which will be introduced in the next
section) within zigzag legs the standard implementation must be synchronized with fractal bars.
Therefore we delay an arising leg endpoint until the next fractal is emerging. A different method
has been introduced by Kilian19. It has been considered appropriate to choose depht = 13,
deviation = 8 and backstep = 5 as zigzag parameter set.

4.0.3 References

• Background - Zigzag http://www.forexfactory.com/showthread.php?p=7188904#post7188904

• MT4 zigzag implementation: http://codebase.mql4.com/265

• Zigzag indicator by Kilian19 http://www.forexfactory.com/attachment.php?attachmentid=

1341201&d=1389043789

5 Data sets
Initially, the historical bar series must be sequenced in a long bit string, for instance {0101011...}.
Each bar is stored as "0" or "1" depending on if it is a down bar, a up bar or a neutral doji6 bar.
In the latter case the current bar is treated as the previous one. The following code specifies
the procedure for a bar at position i.

Algorithm 3 Bar sequencing

i f (C l o s e [i] < Open [i])
b i t S t r i n g . Add (1) ; // Up bar

e l s e i f (C l o s e [i] > Open [i])
b i t S t r i n g . Add (0) ; // Down bar

e l s e
{

i f (Abs (Open [i] − High [i]) > Abs (Open [i] − Low [i]))
b i t S t r i n g . Add (1) ; // Up d o j i bar

e l s e i f (Abs (Open [i] − High [i]) < Abs (Open [i] − Low [i]))
b i t S t r i n g . Add (0) ; // Down d o j i bar

e l s e
b i t S t r i n g . Add(b i t S t r i n g . Las t) ; // Neu t r a l d o j i bar

}

6http://en.wikipedia.org/wiki/Doji

4

http://www.forexfactory.com/showthread.php?p=7188904#post7188904
http://codebase.mql4.com/265
http://www.forexfactory.com/attachment.php?attachmentid=1341201&d=1389043789
http://www.forexfactory.com/attachment.php?attachmentid=1341201&d=1389043789
http://en.wikipedia.org/wiki/Doji

5.1 Set 1

Set 1 consists of all continuous sub-strings of lengths 4-13 occurring in the original bit string,
henceforth referred to as (4-13)-sub-strings.
These sub-strings can be found by iterating over each index i of the original bit string with length
of N and storing all sub-strings (i, j) where j = i+ length− 1 < N for each length ∈ [4; 13].

Given an original bit string {011001}. All possible (4-13)-sub-strings are then:
0110, 1100, 1001 - length 4
01100, 11001 - length 5
011001 - length 6

If an encountered sub-string is already stored in Set 1 its occurrence counter must be increased.
Therefore the structure of Set 1 can be described as a dictionary mapping (4-13)-sub-strings
keys to their frequency of occurrence within the original bit string:

Definition 4 Set 1 data structure

Set1 := D i c t i o n a r y <Key : B i t S t r i n g , Va lue : I n t e g e r >

The following code illustrates the procedure.

Algorithm 5 Generating (4-13)-sub-strings

f o r (va r i = 0 ; i <= b i t S t r i n g . Count − 4 ; i++)
{

f o r (va r l e n g t h = 4 ; l e n g t h <= 13 ; l e n g t h++)
{

i f (i + l e n g t h − 1 >= b i t S t r i n g . Count)
b reak ;

va r s u bB i t S t r i n g = new B i t S t r i n g (l e n g t h) ;

f o r (va r j = 0 ; j < l e n g t h ; j++)
s u bB i t S t r i n g [j] = b i t S t r i n g [i + j] ;

i f (Set1 . Conta insKey (s u bB i t S t r i n g))
Set1 [s u bB i t S t r i n g]++; // Inc r ement o c cu r r e n c e coun t e r

e l s e
Set1 . Add(s ubB i t S t r i n g , 1) ; // Add new sub−s t r i n g w i th v a l u e = 1

}
}

Since a bit string with length of k can represent 2k distinct patterns there are
∑13

k=4 2
k = 16368

(4-13)-sub-strings at the maximum.

5.1.1 References

• Set 1 http://www.forexfactory.com/showthread.php?p=7188904#post7188904

5

http://www.forexfactory.com/showthread.php?p=7188904#post7188904

5.2 Set 2

Set 2 will store bit string keys as well but unlike Set 1 these keys are now the fractal patterns
of each zigzag leg in the historical bar series. Fractal patterns are defined as a ternary-encoded
sequence of up and down fractals encountered within each zigzag leg. Down fractals are marked
as "0", up fractals as "1" and up and down fractals both occurring at the same bar are marked
as "2". Suppose a leg contains two down fractals followed by one up fractal and a twin fractal.
The fractal pattern is then encoded as {0012}. Since we like to use a binary encoding, equally
to sub-string patterns, twin fractals must be unfold to a sequence {01} or {10} depending on
which fractal occurred earlier. Crodzilla suggested the following method:

Algorithm 6 Unfolding twin fractals

i f (f r a c t a l S e q u e n c e [i] == 2) // Twin f r a c t a l ?
{

i f (b i t S t r i n g [i] == 0) // Down bar i n o r i g i n a l bar b i t s t r i n g ?
f r a c t a l P a t t e r n . Add ({1 , 0}) ;

e l s e
f r a c t a l P a t t e r n . Add ({0 , 1}) ;

}

For each zigzag leg we store a data record addressed by the its fractal pattern. This record
contains both the length of the leg measured in original bars and the information if it is an up
or down leg. Hence the structure of Set 2 is defined as follows:

Definition 7 Set 2 data structure

Set2 := D i c t i o n a r y <Key : B i t S t r i n g , Va lue : L i s t <Tuple<I n t e g e r , Bool>>>

Algorithm 8 Generating Set 2

// Get f r a c t a l and z i g z a g s equence s
va r f r a c t a l s S e q u e n c e = F r a c t a l S e qu en c e r . P r o c e s sA l l (OHLCBars) ;
va r z i g zagSequence = ZzSequencer . P r o c e s sA l l (OHLCBars , depth ,

d e v i a t i o n , back s t ep) ;

va r l a s t L egEnd I d x = 0 ;
f o r (va r i = 0 ; i < b i t S t r i n g . Count ; i++)
{

i f (z i g zagSequence [i] == −1)
c on t i n u e ; // Sk ip ba r s t ha t a r e not s t a r t i n g po i n t o f a new l e g

va r f r a c t a l P a t t e r n = new B i t S t r i n g () ;
f o r (va r j = l a s t L egEnd I d x ; j < i ; j++)
{

i f (f r a c t a l S e q u e n c e [j] == −1)
con t i n u e ; // Sk ip non− f r a c t a l b a r s

i f (f r a c t a l S e q u e n c e [j] == 2) // Twin f r a c t a l ? −> {01} or {10}
{

i f (b i t S t r i n g [j] == 0) // Down bar i n o r i g i n a l bar b i t s t r i n g ?
f r a c t a l P a t t e r n . Add ({1 , 0}) ;

e l s e

6

f r a c t a l P a t t e r n . Add ({0 , 1}) ;
}
e l s e

f r a c t a l P a t t e r n . Add(f r a c t a l S e q u e n c e [j]) ; // Add up or down f r a c t a l
}

i f (f r a c t a l P a t t e r n . Count > 0)
{

va r barCount = i − l a s t L egEnd I d x ; // C a l c u l a t e l e g l e n g t h
va r upOrDown = z igzagSequence [i] ; // Up or down l e g ?

i f (Set2 . Conta insKey (f r a c t a l P a t t e r n))
Set1 [f r a c t a l P a t t e r n] . Add(new Tuple (barCount , upOrDown)) ;

e l s e
Set1 . Add(f r a c t a l P a t t e r n , new L i s t (new Tuple (barCount ,

upOrDown))) ;
}

l a s t L egEnd I d x = i ;
}

5.2.1 References

• Set 2 http://www.forexfactory.com/showthread.php?p=7189894#post7189894

7

http://www.forexfactory.com/showthread.php?p=7189894#post7189894

5.3 Set 3

Set 3 is the key-wise set-theoretic intersection of Set 1 and the (4-13)-sub-strings of all keys
within Set 2. I.e. we create all (4-13)-sub-strings of each fractal pattern key contained in Set 2.
For fractal patterns longer than 13 only the 13 right-most bits are relevant. Suppose a fractal
pattern {110010101101010} with length of 15. The first two bits are ignored meaning that only
{0010101101010} is used for (4-13)-sub-string generation. These sub-strings are then stored in
an auxiliary filtering set. All record stored in Set 1 with keys matching those in the auxiliary
filtering set are copied to Set 3. Or alternatively Set 3 can be seen as a copy of Set 1 where all
records with keys not contained in the filtering set must be removed. Hence the structure of
Set 3 is identical to that of Set 1. The following code illustrates the second method.

Algorithm 9 Generating Set 3

va r a u x F i l t e r i n g S e t = new Set1 () ;
f o r e a c h (va r f r a c t a l i n Set2 . Ge tA l lKey s ())
{

// Take r i g h t−most f r a c t a l b i t s on l y
va r r i g h tMo s t F r a c t a l = f r a c t a l . TakeLast (13) ;

// Add a l l new sub−s t r i n g s w i t h i n r i g h tMo s t F r a c t a l to a u x F i l t e r i n g S e t
f o r e a c h (va r s u bS t r i n g i n C r e a t eSubS t r i n g s (r i g h tMo s tF r a c t a l , 4 , 13))

i f (! a u x F i l t e r i n g S e t . Conta insKey (s u bS t r i n g))
a u x F i l t e r i n g S e t . Add(s u bS t r i n g) ;

}

Set3 = Set1 . C lone () ; // Copy Set 1

// F i l t e r i n g : Set3 = key−wi s e i n t e r s e c t i o n (Set1 , a u x F i l t e r i n g S e t)
f o r e a c h (va r key i n Set1 . Ge tA l lKey s ())

i f (! a u x F i l t e r i n g S e t . Con ta i n s (key))
Set3 . Remove (key) ;

It should be noted that this method is also a filtering in terms of the theory of fractals. Set 1
consists of all sub-strings encountered in the historical raw data whereas Set 3 only contains
those patterns occurring both on a bar level within the raw data and additionally on a higher
fractal level within zigzag legs. Therefore we expect Set 3 to contain relevant patterns filtered
from noises, overshooting and other mismatches occurring in the raw data.

5.3.1 References

• Set 3 http://www.forexfactory.com/showthread.php?p=7189951#post7189951

5.4 Set Data Statistics

For reasons of comparability the sizes of Sets 1-3 generated from historical EURUDS data (M5,
2011/01/01 - 1012/12/31) using the zigzag standard parameters (13, 8, 5) are listed below:

• Set 1: 16368 distinct bar patterns / keys

• Set 2: ca. 990 distinct fractal patterns / keys, ca. 8000 zigzag legs total

• Set 3: ca. 2000 distinct filtered bar patterns / keys

8

http://www.forexfactory.com/showthread.php?p=7189951#post7189951

5.5 Implementation Aspects

Please note that the foregoing data structures and algorithms are not necessarily much sophisti-
cated or efficient. However, this subsection is primary concerned with aspects of implementation
and efficiency.
Go4it provided documents, tools7 and interfaces8 for accessing a SQL database from MT4. It
should be mentioned that this method is - although it might be convenient - extremely inefficient
and thus consumptive of time. Whenever possible, data structures should be kept internally
within the storage area of a single application. In the case of an external SQL database the total
delay is caused by the query synthesis, the communication delay between the application and
the data base server, the search request itself and the decoding of the results. Since databases
are internally organized as tree structures a search request taken by itself must consume at
least time O(log(n)) where n is the number of stored records. We will later see that we can
achieve search times within O(1) meaning a constant delay independent of the number of stored
records. However, in this particular case, substantial delays caused by the communication with
the database might even outweigh this fact.
With respect to efficiency the implementation of the complete algorithm in an autonomous
programming environment is clearly the optimal solution. But if we store data internally how
can we overcome the disadvantage that the storage area of an application obviously is non-
persistent9? Programming languages such as C# and Java provide convenient serialization
methods that allow us to export objects (thus data structures as well) and store them as binary
files persistently on hard-disks. With the next initialization they can be read in again.

5.5.1 Characteristics of Sets 1-3

Before a specific data structure is used or implemented requirements should be identified. Set
1, Set 2 and Set 3 share the property of bit string keys addressing potentially several data
records. Hence, a data structure that will suffice all sets can be generalized as follows.

Definition 10 Generic set data structure

Set<T> := D i c t i o n a r y <Key : B i t S t r i n g , Va lue :T>
// where T can be any data type , e . g . i n t e g e r , l i s t , a r r ay , . . .

As the definition indicates data structures mapping a unique key to a value (or any abstract
data type) are called dictionaries. Since our data structure is basically generated from historical
data and only changed or extended due to prediction errors the majority of accesses will be
non-modifying search requests. Therefore we declare the dictionary as quasi-static and should
draw our attention to the efficiency of those requests. Efficiency means in that case to find
at least better search routines than comparing each data record’s key with the requested one
which would take time O(n).

5.5.2 Hash Tables and the C# / Java Dictionary

Hash tables are a highly efficient implementation of dictionaries and also used for the standard
C# / Java dictionaries. A hash table is an array mapping indexes to (lists of) values. Suppose
we have 128 key-value-pairs with consecutive keys from {0} to {111111}. We can now allocate
an array of that size and store each record at a different position. But which position to choose
for a given key and how to find them again? We can interpret the key’s bit string as an integer.

7http://www.forexfactory.com/showthread.php?p=7197052#post7197052
8http://www.tradingapi.net/mt4-mssql-api
9I.e. changes of the database f.i. due to prediction errors are lost after the application’s running time.

9

http://www.forexfactory.com/showthread.php?p=7197052##post7197052
http://www.tradingapi.net/mt4-mssql-api

The position of key k = {b0, b1, ..., bn−1} with b ∈ {0; 1} of length n is then pos(k) =
∑n−1

k=0 bk2
k.

Whenever we search for this specific key we can find it by accessing the array at pos(k). Note
that this is independent of the number of records, so search time is O(1).
pos(k) is a very simple hash function mapping a key to an index. Obviously, if the keys to
be stored are not consecutive a hash function cannot be as simple as pos(k). Furthermore if
we intend to store "a few" (say 1000) keys of a potentially large range (say [0; 10000000]) it is
impracticable to allocate an array of the size of the range. Therefore a hash function must map
keys of a potentially large range to a much smaller table and ensure a good distribution in order
to avoid conflicts, i.e. two different keys map to the same position. However, there are hash
functions that guarantee an averaged constant search time even under these circumstances.
Back to the basics: dictionaries as provided by C# or Java are very efficient. A single search
request on a dictionary based Set 1 should take about hundreds to a few thousands of nanosec-
onds. The keys of Sets 1-3 should not be stored as strings but rather as bit vectors.

5.5.3 Binary Tries / Prefix Trees

[coming soon]

10

6 Model Logic without Error Prediction & Adaptability
Note: @gg53, crodzilla, killerno, emonts, burnssss, candero & everyone who implemented the
logic:
Please look closely at the transition conditions mapping one state to another and the invoked
procedures. Please let me know if you find errors or ambiguous descriptions or if you use alter-
native methods (and like to share them).

In this section we will describe the actual business logic or the model of our approach which is
based on the Set 1-3 data structures and three consecutive parts plus an initial state. These
are:

• InitialState (S0)

• FractalPrediction (S1)

• TotalLengthPrediction (S2)

• NextBarOppositePrediction (S3)

We treat these parts as processing states of the model. The model itself handles incoming
real-time candles provided by MT4 or directly by a broker and executes a processing step for
each newly formed candle. A method called Process(OHLCCandle) receives the candle, adds
it to an internal list OHLCCandles and extends the OHCLBitString pattern depending on
if it is an up or down candle. Likewise, the FractalSequence list is extended depending on if
the new candle forms a twin, up or down fractal (2, 1, 0) or no fractal at all (-1). Note that
this requires a causal (delayed), thus non-repainting, fractal indicator as introduced before. In
contrast, the FractalPattern list contains only true fractals (ignoring -1 values) and represents
the current fractal pattern. Twin fractals (2) must be unfold as described within the fractals
section before. All these internal variables - or model properties - are initially empty. In their
entirety the model properties represent an internal model state in terms of a certain time step.
After that the Process(OHLCCandle) method will delegate the additional processing to the
Process() method of the model’s intitial processing state. Figure 1 illustrates the concept.

6.1 Processing States - Overview

Below we describe the processing states and their transition conditions. Before going into detail
we give a short overview of the individual state’s objectives:
(S0): We start with the initial state waiting for a new incoming candle. If so, i.e Process() has
been invoked, we move to FractalPrediction.
(S1): In the FractalPrediction state we wait for new fractals, i.e an updating of FractalPattern.
If a true new fractal has formed, we inspect the probabilities of more incoming fractals, i.e if Set
2 contains a more probable fractal pattern longer than the current FractalPattern otherwise
back to the initial state. If the current fractal pattern is the most probable the processing state
is changed to NextTotalLengthPrediction.
(S2): Within this state we test the probability if the current FractalPattern has already evolved
into a complete zigzag pattern, i.e if it’s length, allowing a [-3;+3]-tolerance, matches the lengths
of identical historical Set 2 patterns. If so we move to the NextBarOppositePrediction state
and if not we go back to the initial state.
(S3): This last consecutive state now queries Set 3 whether the next candle probably will be
opposite to the current zigzag’s direction or not. That means, if we expect a bearish candle,
we see for each length l ∈ [4; 13] if there are more patterns beginning with the last l − 1

11

bits of CandleBitString extended by 0 than patterns beginning with the last l − 1 bits of
CandleBitString extended by 1. If there is consensus on all length levels our entire signal
conditions are met and we draw a trading signal opposite to the current zigzag leg’s direction.
Otherwise we go back to the initial state. Therefore a signal requires successful consecutive
transitions through all processing states.
Figure 2 shows this concept by use of a state transition graph annotated with condition action
tuples {C, A}.

6.2 Set Queries

There are two basic Set queries implicitly mentioned above: We need a query method called
P (pattern) for both Set 2 and Set 3 to get the probability (the frequency of occurrence) of
a specific pattern. Also we need a second method called Q(pattern) for Set 2 to count data
records addressed by a specific pattern key and a given candle length which is necessary for
TotalLengthPrediction.

Algorithm 11 P(pattern) Query for Set 2

i n t Set2 .P(B i t S t r i n g p a t t e r n)
{

i f (p a t t e r n == n u l l)
r e t u r n 0 ;

i f (! Set2 . Conta insKey (p a t t e r n))
r e t u r n 0 ;

// Return number o f r e c o r d s s t o r e d i n the g i v en pa t t e rn ’ s l i s t
r e t u r n Set2 [p a t t e r n] . Count ;

}

Algorithm 12 P(pattern) Query for Set 3

i n t Set3 .P(B i t S t r i n g p a t t e r n)
{

i f (p a t t e r n == n u l l)
r e t u r n 0 ;

i f (! Set3 . Conta insKey (p a t t e r n))
r e t u r n 0 ;

// Return f r e qu en c y o f o c cu r r e n c e f o r g i v e n p a t t e r n
r e t u r n Set3 [p a t t e r n] ;

}

12

Algorithm 13 Q(pattern) Query for Set 2

i n t Set2 .Q(B i t S t r i n g pa t t e rn , i n t l e n g t h F i l t e r)
{

i f (p a t t e r n == n u l l)
r e t u r n 0 ;

i f (! Set3 . Conta insKey (p a t t e r n))
r e t u r n 0 ;

// Return number o f r e c o r d s w i th zz−l e g l e n g t h == l e n g t h F i l t e r
// s t o r e d i n the g i v e n pa t t e rn ’ s l i s t
r e t u r n Set2 [p a t t e r n]

. Where (r e c o r d . cLength => r e c o r d . cLength == l e n g t h F i l t e r)

. Count () ;
}

Additionally, the FractalPrediction state requires a method to estimate a probable fractal
pattern’s length with respect to the historical data within Set 2. Crodzilla introduced this
ProjectCandleLen method in the following way:

Algorithm 14 ProjectCandleLen - crodzilla’s version

i n t P ro j e c tCand l eLen (B i t S t r i n g f r a c t a l P a t t e r n)
{

con s t i n t t h r e s h o l d = 0 . 5 0 ;
// Get maximum l e n g t h o f a l l r e c o r d s (l e g s) a d r e s s e d by

f r a c t a l P a t t e r n
va r maxCandleLength = Set2 . Get (f r a c t a l P a t t e r n) .Max () ;

f o r (va r i = 1 ; i <= maxCandleLength ; i++)
{

va r inLengthCount = 0 ; // # r e c o r d s w i th l e n g t h s \ i n [i −3; i]
v a r outLengthCount = 0 ; // # r e c o r d s w i th l e n g t h s \ i n [i ; i +3]

f o r (va r t o l e r a n c e = −3; t o l e r a n c e <= 0 ; t o l e r a n c e++)
inLengthCount += Set2 .Q(f r a c t a l P a t t e r n , i + t o l e r a n c e) ;

f o r (va r t o l e r a n c e = 0 ; t o l e r a n c e <= 3 ; t o l e r a n c e++)
outLengthCount += Set2 .Q(f r a c t a l P a t t e r n , i + t o l e r a n c e) ;

// Accept i i f i i s quas i−gauss peak o f l o c a l c l u s t e r
i f (inLengthCount / (inLengthCount + outLengthCount) > t h r e s h o l d)

r e t u r n i ;
}

r e t u r n 0 ;
}

Note: @crodzilla: Is this equivalent to your current projected length method?

In contrast to this a second version similar to the length estimation used within the Total-
LengthPrediction state introduced by gg53 is also conceivable:

13

Algorithm 15 ProjectCandleLen - based on gg53’s total length estimation

i n t P ro j e c tCand l eLen (B i t S t r i n g f r a c t a l P a t t e r n)
{

// Get maximum l e n g t h o f a l l r e c o r d s (l e g s) a d r e s s e d by
f r a c t a l P a t t e r n

va r maxCandleLength = Set2 . Get (f r a c t a l P a t t e r n) .Max () ;

f o r (va r i = 1 ; i <= maxCandleLength ; i++)
{

va r maxInLengthCount = 0 ;
f o r (va r t o l e r a n c e = −3; t o l e r a n c e <= 3 ; t o l e r a n c e++)
{

va r to lLengthCount = Set2 .Q(F r a c t a l P a t t e r n , i + t o l e r a n c e) ;
i f (to lLengthCount > maxInLengthCount)
maxInLengthCount = to lLengthCount ;

}

va r outLenghtCount = Set2 .Q(f r a c t a l P a t t e r n , i + 4) ;

// Accept i i f maximum p r o b a b i l i t y w i t h i n t o l e r a n c e s
[i −3; i +3] > p r o b a b i l i t y i+4

i f (maxInLengthCount > outLenghtCount)
r e t u r n i ;

}

r e t u r n 0 ;
}

Note: @gg53: Do you use such an additional criterion ProjectCandleLen(longerFractalPattern) >
currentFractalPattern.Length within the FractalPrediction state at all? If so which method
do you use?

6.3 State Transitions

In this section we describe the transitions between consecutive states. A transition is a mapping
from one state S to the next state S∗ subject to a certain condition. F.i in Figure 2 condition
C3 changes the NextBarOppositePrediction state to the InitialState while drawing a Signal.
The conditions transferring one state to another will be discussed precisely in two ways. Once
by use of pseudo code and later on formally using an abstract but compact notation.

6.3.1 Initial State S0

For the initial state there is only one trivial transition, namely S0 7→ S1 triggered by the
Process() method and invoked in case of a new incoming candle.

6.3.2 FractalPrediction S1

In the FractalPrediction state S0 there are two transitions: S1 7→ S2 subject to C1 and S1 7→ S0
subject to the logical opposite of C1. C1 is true if the probability - or frequency of occurrence
- of the current fractal pattern regarding Set 2 is greater than zero and neither a longer fractal
pattern extended by 0 nor a pattern extended by 1 is more likely then the current one. A longer
fractal pattern is more probable than the current one if it occurs more often in Set 2 and if it’s

14

projected (expected) length is also longer than the current fractals length. Therefore we can
write C as follows:

Algorithm 16 C1: S1 7→ S2 and C6: S1 7→ S0

va r expLonger0 = Set2 .P(F r a c t a l P a t t e r n . Add (0)) > Set2 .P(F r a c t a l P a t t e r n)
&& Pro j e c tCand l eLen (F r a c t a l P a t t e r n . Add (0)) >

F r a c t a l P a t t e r n . Length ;

va r expLonger1 = Set2 .P(F r a c t a l P a t t e r n . Add (1)) > Set2 .P(F r a c t a l P a t t e r n)
&& Pro j e c tCand l eLen (F r a c t a l P a t t e r n . Add (1)) >

F r a c t a l P a t t e r n . Length ;

va r c1 = Set2 .P(F r a c t a l P a t t e r n) > 0 && ! (expLonger0 | | expLonger1) ;
va r c6 = ! c1 ;

i f (c1) Model . ChangeState (To t a l L e n g t hP r e d i c t i o n) ;
e l s e i f (c6) Model . ChangeState (I n i t i a l S t a t e) ;

6.3.3 TotalLengthPrediction S2

TotalLengthPrediction branches to the NextBarOppositePrediction via C2 or to the initial state
via C5. C2 is true if the current fractal’s length is more probable regarding Set 2 than a longer
fractal’s length with a [-3;+3]-tolerance in mind. Gg53 suggested the following method:

Algorithm 17 C2: S2 7→ S3 and C5: S2 7→ S0

va r pCur rFracLen = 0 ;
f o r (va r k = −3; k <= 3 ; k++)
{

va r kFracLen = Set2 .Q(F r a c t a l P a t t e r n , F r a c t a l P a t t e r n . Length + k) ;
i f (kFracLen > pCurrFracLen)

pCurrFracLen = kFracLen ;
}

va r pLongerFracLen = Set2 .Q(F r a c t a l P a t t e r n , F r a c t a l P a t t e r n . Length + 4) ;

va r c2 = pCurrFracLen > pLongerFracLen ;
va r c5 = ! c2 ;

i f (c2) Model . ChangeState (Nex tBa rOppo s i t eP r ed i c t i o n) ;
e l s e i f (c5) Model . ChangeState (I n i t i a l S t a t e) ;

6.3.4 NextBarOppositePrediction S3

The final state NextBarOppositePrediction leads back to the initial state either via C3 triggering
a signal or directly via C4. In case of an expected bearish signal C3 is true if for all lengths
k ∈ [4; 13] the candle bit strings built from the last k − 1 bits of the current CandleBitString
in addition to "0" are more probable than the particular ones extended by "1". Also all the
actual CandleBitString sub-strings built from the last k bits must be more probable than

15

those that are changed at their last position (i.e flipping the last bit). C3 is defined analogously
for expected bullish signals.

Algorithm 18 C3: S3 7→ S0 and C4: S3 7→ S0

va r s i g n a l = n u l l ;
v a r nextBarConsensus = t r u e ;
va r cu r r en tBa rConsen su s = t r u e ;

i f (e x p e c tB e a r i s h)
{

s i g n a l = S i g n a l . B ea r i s h ;
f o r (va r k = 4 ; k <= 13 ; k++)
{

nextBarConsensus = nextBarConsensus &&
Set3 .P(Cand l eB i t S t r i n g . TakeLast (k − 1) . Add (0) >
Set3 .P(Cand l eB i t S t r i n g . TakeLast (k − 1) . Add (1) ;

}
}
e l s e i f (e x p e c t B u l l i s h)
{

s i g n a l = S i g n a l . B u l l i s h ;
f o r (va r k = 4 ; k <= 13 ; k++)
{

nextBarConsensus = nextBarConsensus &&
Set3 .P(Cand l eB i t S t r i n g . TakeLast (k − 1) . Add (1) >
Set3 .P(Cand l eB i t S t r i n g . TakeLast (k − 1) . Add (0) ;

}
}

f o r (va r k = 4 ; k <= 13 ; k++)
{

cu r r en tBa rCons en su s = cu r r en tBa rCon sen su s &&
Set3 .P(Cand l eB i t S t r i n g . TakeLast (k) >
Set3 .P(Cand l eB i t S t r i n g . TakeLast (k) . F l i p L a s t () ;

}

va r c3 = nextBarConsensus && cu r r e n t b a rCon s en s u s ;
va r c4 = ! c3 ;

i f (c3)
{

Model . ChangeState (I n i t i a l S t a t e) ;
Model . S i g n a l (s i g n a l) ;

}
e l s e i f (c4) Model . ChangeState (I n i t i a l S t a t e) ;

The equivalent formal definitions are consolidated in a state transition table, see Table 1.

6.3.5 References

• Model Logic http://www.forexfactory.com/showthread.php?p=7190111#post7190111

16

http://www.forexfactory.com/showthread.php?p=7190111#post7190111

Figure 1: Model

Model

MetaTrader / Broker

Internal Model State

111 1

OHLCCandles

CandleBitString
1 1 0 1 0 1 1

FractalSequence
-1 1 -1 -1 0 -1 -1

FractalPattern
1 0

time

Process (OHCLCandle)

Process ()

ProcessingMode

FractalPrediction

TotalLengthPrediction

NextBarOppositePrediction

Figure 2: Processing States

S2: Total
Length

Prediction

S3: NextBar
Opposite

Prediction

{C1, - } {C2, - }Process ()

{C5, - }

{C4, - }

S1: Fractal
Prediction

S0: Initial
State

{C6, - }

{C3, Signal}

17

Table 1: State Transition Table

S Condition Action S*

S0 Process() - S1

S1 C1 := Set2.P (FractalPattern) > 0 ∧ ¬ (expLonger0 ∨ expLonger1)

where expLonger0
:= Set2.P (FractalPattern.Add(0)) > Set2.P (FractalPattern)
∧ ProjectCandleLen(FractalPattern.Add(0)) > FractalPattern.Len

and expLonger1
:= Set2.P (FractalPattern.Add(1)) > Set2.P (FractalPattern)
∧ ProjectCandleLen(FractalPattern.Add(1)) > FractalPattern.Len

- S2

C6 := ¬ C1 - S0

S2 C2 := pCurrFracLen > pLongerFracLen

where pCurrFracLen
:= maxk∈[−3;3]{Set2.Q(FractalPattern, FractalPattern.Len+ k)}

and pLongerFracLen
:= Set2.Q(FractalPattern, FractalPattern.Len+ 4)

- S3

C5 := ¬ C2 - S0

S3

C3 :=

 nextBarConsensus0 ∧ currBarConsensus, if expectBearish

nextBarConsensus1 ∧ currBarConsensus, if expectBullish

where nextBarConsensus0
:=

∧
∀k∈[4;13]{ Set3.P (CandleBitString.TakeLast(k − 1).Add(0)

> Set3.P (CandleBitString.TakeLast(k − 1).Add(1) }

and nextBarConsensus1
:=

∧
∀k∈[4;13]{ Set3.P (CandleBitString.TakeLast(k − 1).Add(1)

> Set3.P (CandleBitString.TakeLast(k − 1).Add(0) }

and currBarConsensus
:=

∧
∀k∈[4;13]{ Set3.P (CandleBitString.TakeLast(k)

> Set3.P (CandleBitString.TakeLast(k).F lipLast() }

Signal S0

C4 := ¬ C3 - S0

18

	Introduction
	References

	Historical Data
	Fractals
	References

	Zigzag Indicator
	References

	Data sets
	Set 1
	References

	Set 2
	References

	Set 3
	References

	Set Data Statistics
	Implementation Aspects
	Characteristics of Sets 1-3
	Hash Tables and the C# / Java Dictionary
	Binary Tries / Prefix Trees

	redModel Logic without Error Prediction & Adaptability
	Processing States - Overview
	Set Queries
	State Transitions
	Initial State S0
	FractalPrediction S1
	TotalLengthPrediction S2
	NextBarOppositePrediction S3
	References

