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Abstract 
Investigation of multiphase systems generally requires the solution of the 
population balance equation; bubble columns, crystallisation and 
precipitation reactors are some examples of important industrial 
applications. As mixing also plays an important role in determining phase 
interactions, often the population balance has to be included in a 
Computational Fluid Dynamics (CFD) code. This can be accomplished only 
if the source term is provided in an adequate way. Several methods have 
been proposed; one of the most popular is the Discretised Population 
Balance (DPB) which presents the disadvantage of requiring an elevate 
number of scalars to be solved, leading to high computation times. A 
promising alternative is the Quadrature Method of Moment (QMOM) in 
which the population balance is written in terms of the transport equation of 
the moments of the number density function, and all the integrals involving 
this function are solved through an ad-hoc quadrature approximation. The 
method has been validated and extended to breakage in previous works, 
while in this work its performance is compared with those of a DPB 
approach. The comparison is made in terms of accuracy of prediction, 
computational time and simplicity of implementation in a CFD code. 
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1. Introduction 

The solution of the population balance equation by using Moment Methods 
(MMs) has been first proposed by Hulburt and Katz [1]. In their work they 
highlighted the promising possibilities but also the strong limitations of the 
method. MMs are based on the solution of the population balance equation 
through the moments of the Particle Size Distribution (PSD). Thus if 

is the PSD in terms of the particle length , the kx( ; , )n L t L th moments of the 
PSD is defined as follows: 
 

 
The main advantage of this method stands in the possibility of defining the 
PSD only by tracking a few lower-order moments. However, the method is 
not suitable when modelling size-dependent molecular growth, and size-
dependent aggregation and breakage. 
Different methods have been proposed in order to solve the closure 
problem raised by Hulburt and Katz and the subject is extensively 
discussed in [2]. One of the most promising is the QMOM that was first 
proposed by McGraw [3] for studying aerosol evolution. The method is 
based on the solution of the integrals involving the PSD through a 
quadrature approximation: 
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where abscissas  and weights w  are calculated from the lower-order 
moments by using the Product-Difference (PD) algorithm [4]. 

jL j

The method has been validated in the case of molecular growth and 
aggregation through comparison with analytical solutions and Monte Carlo 
simulations [5] and compared with other available approaches, such as 
Laguerre quadrature approximation and the finite element method, for the 
solution of the aerosol general dynamic equation [6]. Moreover, lately the 
QMOM has been extended to the description of bivariate population 
balances [7, 8], where the PSD is written in terms of more than one internal 
coordinate (e.g., particle volume and surface area). The QMOM can be also 
used for modelling breakage and extension and validation of the model for 
this case can be found in [9]. The aim of this work is to compare its 
performances with those of a Classes Method. 



 
2. The Quadrature Method of Moments 

The Reynolds averaged transport equation of the kth moment is as follows:  
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where iu  is the Reynolds-averaged velocity in the i th direction, Γt is the 
turbulent diffusivity, and the source term is 
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In this expression, ( )x,J t  is the nucleation rate, G(L) is the molecular 

growth rate, and ( )x,tkB  and (x,k t )D  are the birth and death term due to 
aggregation and breakage, that can be expressed as follows: 
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and 
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where (β λ,u  is the aggregation kernel, ( )λa  is the breakage kernel, and 

( )λb L  is the fragment distribution function. 
When the QMOM is used, all the integral terms included in the above 
equations are calculated through a quadrature approximation leading to 
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The number of nodes N used in the quadrature approximation determines 
the number of moments to be tracked. In fact, in order to calculate a 
quadrature approximation of order N, the first 2N moments have to be 
calculated. For example if N=2 then k=(0,…,3) or if N=3 then k=(0,…,5) or if 
N=4 thus k=(0,…,7).   

The number of nodes N used in the quadrature approximation determines 
the number of moments to be tracked. In fact, in order to calculate a 
quadrature approximation of order N, the first 2N moments have to be 
calculated. For example if N=2 then k=(0,…,3) or if N=3 then k=(0,…,5) or if 
N=4 thus k=(0,…,7).   
The role of this parameter on the model performance has been already 
investigated in a previous work [9], and a quadrature approximation with 
three nodes (N=3) was found to be a good trade off between accuracy and 
computational costs. 
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A number of discretised population balances (DPBs) or classes methods 
(CMs) have been proposed for simultaneous modelling of nucleation, 
growth and aggregation and breakage; recently Vanni [10] reviewed and 
compared a wide variety of zero-order CMs. 
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Here we consider the method proposed by Hounslow and co-workers [11]. 
Hounslow's approach is based on the idea that aggregates are formed of 
particles of 2i-1 monomers (as if only particles composed 1, 2, 4, 8,... 
monomers exist). As already mentioned, by using this method the internal 
coordinate is discretised, and thus in terms of length-based expressions, it 
becomes
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Hounslow's approach is based on the idea that aggregates are formed of 
particles of 2i-1 monomers (as if only particles composed 1, 2, 4, 8,... 
monomers exist). As already mentioned, by using this method the internal 
coordinate is discretised, and thus in terms of length-based expressions, it 
becomes + = 1 3

1 2i iLL . 
In the original formulation the discretisation was fixed and the model was 
proposed only for molecular growth and aggregation. The model is derived 
by defining 4 binary interaction mechanisms that produce a birth or a death 
in the i th interval. Aggregation between a particle in the (i-1)th and of a 
particle in the first to (i-2)th interval produces a new particle in the i th interval. 
Aggregation between two particles both in the (i-1)th interval results in the 
formation of a particle in the i th interval. Death occurs to a particle in the i th 



interval should it aggregate with a particle of sufficient size for the resultant 
aggregate to be larger than the upper size limit of the i th interval. If a 
particle in the i th interval aggregates with a particle from that or a higher 
interval, a death occurs in the i th interval.  
The final model consists of the following set of transport equations: 
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where is the population of the class of particles of size L  and lN l

+= 1lr L lL . From the function N , it is possible to derive the moments of the 
PSD by using the following expression: 

l

 

( ) ( )
=

= ∑x x
1

, ,
C

k
k l l

l
m t L N t  

 
where k

lL  is the appropriate mean size and C is the total number of classes. 
It is interesting to notice here that differently from the QMOM, using a CM 
the PSD is known but generally only two of the moments of the PSD can be 
tracked correctly [usually k=0 (total particle number density) and k=3 (total 
particle volume)], whereas using the QMOM all the tracked moments are 
known with very small errors [5,6,9]. In this formulation of the model the 
total number of classes C has to be chosen (with Lo), in order to cover the 
entire range of particle length.  
More recently, a revised version of the model has been proposed [12] using 
an adjustable discretised population balance, by means of a parameter q, 
and thus the discretisation scheme becomes:  
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This modified version of the original model has been also extended to 
breakage problems [10] and in this case the total number of classes is C·q. 
Hounslow’s approach gives quite good performances in the case of 
aggregation with simultaneous nucleation and growth. Other methods exist, 
but give good performances only in the case of purely aggregation, or 
purely nucleation and growth. 
In general, in order to work with good accuracy, an elevated number of 
classes is needed (e.g., 20-30 for simple problems, and 100-200 for 
complex problems) and as already mentioned for CFD applications this 
would result in an enormous amount of calculations, since this elevate 
number of transport equations has to be solved in every cell of the 
computational domain. 
 
4. Operating conditions and computational details 

As already mentioned, simulations using the DPB for modelling the solid 
evolution is computationally expensive, whereas the QMOM proposed here 
presents the main advantage of requiring much less computational 
resources; however both approaches must be coupled with CFD codes. By 
using CFD every cell of the computational domain can be seen as a 
perfectly mixed reactor that exchanges mass and energy with the 
surrounding cells because of mean velocities and turbulent diffusion. Since 
both the approaches are linked with the CFD code, use of one of the two 
affects model predictions locally.  
The aim of this work is the investigation of this local difference of accuracy. 
Both simulations are carried out in a simple fluid dynamic system: the 
perfectly mixed reactor (i.e., a single cell of the computational domain). In 
this ideal reactor no spatial macro-gradients exist, and therefore the 
properties of the system are constant throughout the domain.  
The QMOM has been already validated through comparison with analytical 
solutions and Monte Carlo simulations, leading to the conclusion that three 
nodes are sufficient to track the first six moments (m0,...,m5) with very small 
errors [5]. For this reason in what follows the QMOM will be considered the 
exact solution of the problem. 
The implementation of the models requires the solution of a system of 
ordinary differential equations (ODE) and the solution of the eigenvalues 
problem. The first one was solved by using the ODE package ODEPACK 
(LSODE Fortran double precision subroutine), whereas for the second one 
the linear algebra package EISPACK (IMTQL2 Fortran double precision 
subroutine) was used. 



In this work only aggregation is considered, and the comparison is carried 
out in three different conditions:  
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The three cases were tested with different initial PSDs and here results for 
monomodal and a bimodal initial PSDs are presented. 
 
5. Results and discussion 

The monomodal PSD is shown in Fig. 1 and in the same figure is also 
reported the PSD at different time steps after aggregation with constant 
kernel (βo = 10-17 m3/s) by using the DPB proposed by Hounslow. As it is 
possible to see aggregation causes the disappearance of smaller particles 
to form bigger particles. The evolution of the moments is reported in Fig. 2. 
Results clearly show that m3 remains constant, since during aggregation 
total particle volume is conserved. The moments of order lower than three 
decrease whereas the others increase.  
In order to quantify the ability of the model to predict system properties it is 
useful to define the intensity of aggregation [13]. 
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aggI  is 0 when the number of aggregation events is null and goes to 1 as 

this number increases. In the case under investigation (constant kernel) the 
QMOM was proved to predict moment evolutions with errors lower than 
0.01% [5]. For this reason the QMOM will be considered as exact solution, 
and the DPB predictions will be compared. From the comparison an error of 
4% was detected when I  is equal to 0.95. In Fig. 3 the error committed by 
using DPB (assuming the prediction of the QMOM to be exact) is reported 
against . As it is possible to see the error on moments of order lower 
than three is less than 2%, whereas the third moment is perfectly predicted. 

agg

aggI



For moments of order greater than three the error is still less than 10% for 
close to one. Note that in normal crystallisation/precipitation reactors 
 typically falls in the range between 0.5-0.6, where the errors are lower. 

aggI

aggI
The behaviour of the bimodal PSD in case of aggregation with constant 
kernel is shown in Fig. 4. In Fig. 5 the percentage errors for the first six 
moments are reported. As it is possible to see the situation is slightly 
different, in fact the error on m0 is quite high and when I   is equal to 0.5 
becomes stable at about 10%. All the other moments behave in a similar 
way, but the errors are greater than for the monomodal case. 

agg

The previous results are obtained by using 20 classes; only after adopting 
the modification proposed by Lister [12] with q=5 the prediction is as good 
as the QMOM. Thus for equivalent accuracy, the QMOM requires six 
scalars while the DPB requires 100 for the constant kernel case. 
In the case of Brownian aggregation, the PSD at different time steps is 
reported in Fig. 6 using the same initial conditions, but with βo = 2.5 10-18 
m3/s. This different value of βo  was used in order to have comparable 
values of I . As it is possible to see, the evolution is slightly different, 
especially for smaller particles that seem to aggregate faster. The errors 
(always calculated assuming the QMOM to be exact) are of the same order 
of magnitude of the previous case (see Fig. 7). Moreover, results confirm 
that in this case (and generally for the monomodal distribution) the case of 
Brownian aggregation can be treated with constant kernel: in fact, under the 
hypothesis of aggregating particles of the same size  

agg
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For the bimodal distribution, results are very similar. In Fig. 8 the PSD at 
different time steps is reported. Again in this case smaller particles 
aggregate faster, but their weight on the final mean crystal size is small. 
Also in this case the error in m0 is quite high, but remains lower then 10% 
until I <0.5 (see Fig. 9). agg

In the case of hydrodynamic kernel, the same initial conditions were used 
with βo = 1.5 106 m3/s. This value of βo was used in order to obtain 
comparable values of . The evolution of the PSD predicted by the DPB 
is reported in Fig. 10. As it is possible to note, the tail of the PSD increases 
faster with time as a proof of the increased ability of bigger particles to 
collide and aggregate. In this case agreement between the two models is 
not as good as in the previous cases. However, it is useful to highlight that 

aggI



for moderate aggregation rates ( I <0.5) errors are around 10-15% (see 
Fig. 11). The presented results were obtained using 30 classes. 
Comparison with the QMOM showed that only using q=5 are the errors of 
the same order of magnitude as QMOM for the hydrodynamic kernel. 

agg

In Fig. 12 the PSD at different time steps, in the case of initial bimodal 
distribution for the hydrodynamic kernel, is reported. Note that in this case 
in order to obtain the same range of I  a different βagg o was used (βo = 5.0 
104 m3/s). Up to I < 0.25 all the errors are lower than 10%, but for   
close to one the m

agg aggI

4 error goes up to 800% (see Fig. 13).  
 
 
 
 
 

 
Fig. 1. Aggregation with constant kernel (βo = 10-17 m3/s): PSD at different 
time steps calculated with the DPB approach. 
 
 
 
 
 
 
 
 
 

 



 
Fig. 2. Aggregation with constant kernel (βo = 10-17 m3/s): time evolution of 
the normalized moments of the PSD predicted by the DPB. 
 
 
 

 
Fig. 3. Aggregation with constant kernel (βo = 10-17 m3/s): percent errors of 
the first six moments calculated with the DPB (m3 is not reported since the 
error is lower than 10-5%). 
 
 
 
 
 



 

 
Fig. 4. Aggregation with constant kernel (βo = 10-17 m3/s): PSD at different 
time steps calculated with the DPB approach. 
 
 
 

 
Fig. 5. Aggregation with constant kernel (βo = 10-17 m3/s): percent errors of 
the first six moments calculated with the DPB (m3 is not reported since the 
error is lower than 10-5%). 
 

 



 
Fig. 6. Aggregation with Brownian kernel (βo = 2.5 10-18 m3/s): PSD at 
different time steps calculated with the DPB approach. 
 
 
 

 
Fig. 7. Aggregation with Brownian kernel (βo = 2.5 10-18 m3/s): percent errors 
of the first six moments calculated with the DPB (m3 is not reported since 
the error is lower than 10-5%). 
 
 
 



 
Fig. 8. Aggregation with Brownian kernel (βo = 2.5 10-18 m3/s): PSD at 
different time steps calculated with the DPB approach. 
 
 

 
Fig. 9. Aggregation with Brownian kernel (βo = 2.5 10-18 m3/s): percent errors 
of the first six moments calculated with the DPB (m3 is not reported since 
the error is lower than 10-5%). 
 
 
 



 
Fig. 10. Aggregation with hydrodynamic kernel (βo = 1.5 106 1/s): PSD at 
different time steps calculated with the DPB approach. 
 
 

 
Fig. 11. Aggregation with hydrodynamic kernel (βo = 1.5 106 1/s): percent 
errors of the first six moments calculated with the DPB (m3 is not reported 
since the error is lower than 10-5%). 
 
 
 



 

 
Fig. 12. Aggregation with hydrodynamic kernel (βo = 5.4 104 1/s): PSD at 
different time steps calculated with the DPB approach. 

 
Fig. 13. Aggregation with hydrodynamic kernel (βo = 5.4 104 1/s): percent 
errors of the first six moments calculated with the DPB (m3 is not reported 
since the error is lower than 10-5%). 
 
 
 



6. Conclusions and further developments 

The comparisons presented above lead us to the conclusion that in the 
case of constant or Brownian kernel, the DPB proposed by Hounslow in the 
original formulation (q=1) works quite well by tracking only 15-20 classes, 
but in order to have errors as low as the QMOM, 75-100 classes have to be 
used. 
Nevertheless, even for this simple case some limitations were detected. For 
example, the model performance in the case of initial bimodal PSD was 
worse than with a monomodal PSD. 
The DPB used in this work can be applied also in case of hydrodynamic 
aggregation for moderate aggregation rates, but in order to predict the 
moments with the same accuracy of the QMOM, the number of classes has 
to be increased at least to 150. 
The comparison between the QMOM and the DPB proposed by Hounslow 
showed that the QMOM method is indeed fascinating for several reasons. 
The method is very fast, in fact the reduction of the number of scalars to be 
tracked is drastic (from 50-100 to 6) and in general does not depend on the 
width of the PSD. This reduction of scalars has a strong impact on CPU 
time, in fact by using the QMOM method a reduction of 150-200 times was 
detected with respect to the DPB. In addition, as mentioned before, the 
QMOM does not present the problem of fixing the intervals to be considered 
in the simulations. Thus, unlike the DPB approach, it can be used without 
any modification for different PSDs. 
The QMOM has been already implemented in a commercial CFD code for 
modelling aggregation-breakage problems in solid-liquid systems [14] and 
its applications can be easily extended to other practical cases, such as 
solid-gas, gas-liquid and liquid-liquid systems. The currently available 
treatment for the bivariate case [7,8] has an implicit formulation that requires 
an optimisation procedure for its solution and seems to be too heavy for 
CFD applications. For this reason we are currently working on an explicit 
formulation of the problem (Direct Quadrature Method of Moments) that will 
be reported in a future communication [15]. 
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Notation 

a  breakage kernel 
b fragment distribution function 
Bk birth rate 
C total number of classes 
Dk death rate 
G molecular growth rate 
Iagg intensity of aggregation 
J nucleation rate 
L particle length 
Lj abscissa of quadrature approximation 
mk kth moment of the PSD 
n  PSD in term of the particle length 
N number of modes in quadrature approximation 
Nl population of the class 
q Hounslow’s parameter 
Sk source term 
t time 
〈ui〉 Reynolds-averaged velocity 
wj weight of quadrature approximation 
x coordinate vector 
 
β aggregation kernel 
Γt turbulent diffusivity 
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