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Common Factors in Prices, Order Flows and Liquidity 

Abstract 

 

How important are cross-stock common factors in the price discovery/liquidity provision 

process in equity markets?  We investigate two aspects of this question for the thirty Dow 

stocks.  First, using principal components and canonical correlation analyses we find that 

both returns and order flows are characterized by common factors.  Commonality in the 

order flows explains roughly two-thirds of the commonality in returns.  Second, we 

examine variation and common covariation in various liquidity proxies and market depth 

(trade impact) coefficients.  Liquidity proxies such as the bid-ask spread and bid-ask 

quote sizes exhibit time variation which helps explain time variation in trade impacts.  

The common factors in these liquidity proxies are, however, relatively small. 
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1. Introduction 

 An open issue in the microstructure of equity markets is the role of common 

cross-firm variation in short-horizon returns, order flows and liquidity.   Since order 

flows are generally held to contain informed components, does common covariation in 

stocks’ orders account for the covariance structure of short-term returns?  Furthermore, is 

liquidity driven by strong common factors?  The equity market breaks of 1987 and 1989, 

as well as the debt market crisis of 1998, for example, are widely perceived as systematic 

breakdowns in liquidity. 

 These issues are important for both microstructure theory and for institutional 

trading practice.  Subrahmanyam (1991), Chowdhry and Nanda (1991), Kumar and Seppi 

(1994), Caballe and Krishnan (1994) have all extended the work of Kyle (1984, 1985) to 

multiasset markets by adding investors who are informed about macroeconomic factors 

and/or who have portfolio-wide liquidity shocks (e.g., portfolio substitution).  In such 

environments intermarket price discovery and order flow dynamics are obviously more 

subtle than when private information and/or trading noise is purely idiosyncratic.  

 Until recently, however, little direct empirical research has been conducted on the 

magnitudes of cross-stock interactions at the microstructure level.  Given the sheer size of 

the Fitch, ISSM, TAQ and TORQ databases, it is perhaps not surprising that previous 

work has tended to focus on individual stocks in isolation from each other. This focus on 

stocks in isolation has, however, left us ignorant of even the most basic facts about cross-

sectional interactions between stocks.   

 This paper answers these questions in two ways.  First, we use principal 

components analysis to show that common factors exist in the order flows and returns of 

the 30 stocks in the Dow Jones Industrial Average (DJIA).  In addition, canonical 

correlation analysis documents that the common factor in returns is highly correlated with 

the common factor in order flows.  Second, we find some evidence of a common factor in 
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quote-based proxies for liquidity, and to a lesser degree, in inferred price impact 

coefficients, after controlling for previously documented time-of-day seasonalities. 

We choose the thirty Dow stocks as our sample because the rapid pace of trading 

there allows us to construct high-frequency trading measures which approximate the idea 

of contemporaneous (i.e. simultaneous) order flow across stocks (as in Subrahmanyam 

(1991) and op. cit.) as well as giving us frequently updated prices.  In particular, we 

aggregate trading for each stock over fifteen minute intervals and measure price changes 

using the quote mid-points at the beginning and end of each interval. 

 Our investigation of cross-stock interactions builds on a foundation of prior work 

on the price, volume, and liquidity properties of individual stocks viewed in isolation 

(surveyed in O'Hara (1995) and Hasbrouck (1996a)).  The study of common factors in 

stock returns is a classic theme in financial economics.  Although the standard asset 

pricing models (e.g., CAPM, APT) do not assign a significant role to trading per se, Lo 

and Wang (2000) show that, under certain assumptions,  portfolio rebalancing and 

liquidation imply a factor structure for trading volume. 

 The approach in our paper, in contrast to Lo and Wang (2000), is more descriptive 

and statistical, and assigns no distinctive role to factor portfolios.  This last difference 

may be justified by noting that modern microstructure theory ascribes a prominent 

informational role to trading.  Hence, cross-firm commonalities in order flows may be 

influenced by the differential liquidity of individual stocks as well as by the factor 

structure of valuation fundamentals. 

 Another line of research on cross-sectional price/order flow interactions is the 

work on index arbitrage and the cash/futures basis.1  In this case, however, strong 

interactions across markets are expected a priori, since, after all, it is exactly the same 

                                                 
1 See MacKinlay and Ramaswamy (1998),  Chan, Chan, and Karolyi (1991), Chan 
(1993), Hasbrouck (1996b), Harris, Sofianos, and Shapiro (1994), and Miller, 
Muthuswamy, and Whaley (1994). 
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portfolio which is traded in different locations. In contrast, the Dow stocks in our study, 

while closely related, are far from perfect substitutes. 

 Several forms of time-varying liquidity have been previously documented. First, 

Wood, McInish, and Ord (1985), Jain and Joh (1988) and Foster and Viswanathan (1990) 

study deterministic (e.g., time-of-day) components.  Second, variation has been studied 

around earnings reports (Lee, Mucklow, and Ready (1993)), dividends (Koski (1996)), 

stock splits (Desai, Nimalendran, and Venkataraman (1998)), take-over announcements 

(Foster and Viswanathan (1995b)) and other identifiable events.  In contrast, we are 

interested in stochastic variation in liquidity and, in particular, in possible co-variation 

due to common components rather than largely idiosyncratic firm-specific events.   

 An important paper which does look at stochastic liquidity is Foster and 

Viswanathan (1995a).  They use simulated method of moments to estimate a repeated 

one-period Kyle model with time-varying parameters.  Caballe and Krishnan (1994) 

extend their approach by adding a second stock to look at interaction effects.  In contrast, 

ours is a less structural approach distinguishing between common and idiosyncratic 

factors for a broader cross-section of stocks. 

 Chordia, Roll, and Subrahmanyam (2000) also explore cross-sectional interactions 

in liquidity measures using quote data.  Like Lo and Wang (2000), they too assign a 

special role to the market portfolio.  In contrast, our study characterizes relationships 

involving returns and order flows as well as liquidity.  However, while we study a cross-

section of just the thirty (actively traded) Dow firms, Chordia et al. use a cross-section of 

roughly one thousand stocks.  Huberman and Halka (1999) estimate time series models 

for quotes and depths for market capitalization-weighted portfolios.  They find evidence 

of commonality in liquidity in that the estimated model residuals are correlated across 

portfolios. 

This paper is organized as follows.  Section 2 establishes the economic framework 

for the study and outlines the initial analyses.  Section 3 describes the data.  The joint 
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statistical properties of returns and signed order flows are analyzed in Section 4; those of 

absolute returns and unsigned order flows, in Section 5.  Section 6 explores variation and 

covariation in liquidity proxies derived from quote data.  Section 7 attempts to relate 

variation in these proxies to the price impacts of trades.  A brief summary concludes the 

paper in Section 8. 

2. Economic Framework 

The starting point for our analysis is the hypothesis that a set of common and 

idiosyncratic variables underlies both stock returns and order flows.  These variables 

represent, on the one hand, information about economic fundamentals and, on the other, 

non-informational demands for liquidity/immediacy.  In particular, we assume that the 

cross-section of orders for a set of n stocks can be represented statistically by the linear 

factor model: 

 t t tx F! "# $  (1)  

where xt is a column n-vector of the order flows arriving at time t; Ft is a column vector of 

order flow common factors; ! is a conformable matrix of factor loadings; and "t is a 

vector of idiosyncratic disturbances where 0 and 0 for t t it jtE F E i j" " "% # # & .  With the 

normalizations 0tEF #  and ' (tCov F I#  these imply that ' (tCov x "! ! %# $) , where 

") is diagonal, i.e., the covariance structure of the order flows is explained by the 

common factors and their loadings.  The model is parsimonious if the number of factors 

(rows of Ft) is smaller than the number of firms (n).  A similar factor model describes 

returns tr  in terms of a vector of factors Gt: 

 t t tr G* +# $  (2) 

 From an economic perspective, the order flow model (1) allows for both liquidity- 

and information-motivated components in both common factors and idiosyncratic 
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disturbances.  For example, dynamic hedging strategies, tax- and calendar-related effects 

and naïve momentum trading could all plausibly lead to correlated liquidity trading, 

whereas private forecasts about macroeconomic variables would cause correlated 

informed trading.  Similarly, commonalities in innovations to discount rates and 

expectations of future cash flows will give rise to common return components in (2). 

 In contrast to the statistical representations in (1) and (2), microstructure models 

establish causal links by decomposing returns into a portion due to a stock’s own order 

flow and a non-trade component, e.g., for the ith return, it i it itr x u,# $ where ,i is a 

liquidity or price-impact coefficient.  In this paper, we specifically consider a multivariate 

extension of the standard univariate price/order flow relationship:2 

 t t tr x u# - $  (3) 

where - is an n n.  matrix of price impact coefficients and the ut are disturbances with 

0t tE x u% # .  (- is initially assumed constant; it is generalized to a time-varying stochastic 

process in Sections 6 and 7.)   The first term on the right in (3) captures the portion of 

returns due to conditioning on the cross-section of order flows.  The residual reflects 

public non-trade information.  The model, in particular, allows for the possibility that 

quote-setters observe and learn from the order flows of other stocks, as well their own. 

 It is clear from (3) that a factor structure for the xt can induce a factor structure for 

rt.  In addition, the non-trade disturbance may have its own factor structure: 

 t t tu H/ 0# $  (4) 

                                                 
2 The standard univariate model is a special case of (3) where - is diagonal.  Note also 

that, even if -1is diagonal, common factors in the “own” order flows can pass through 

into returns as described below. 
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Common factors here could arise from announcements with common effects (e.g., 

monetary policy). 

 Substituting equations (1) and (4) into (3) yields ' ( ' (t t t t tr F H! " / 0# - $ $ $ .  

The correspondence between this and the return factor model (2) then implies  

 t t tG F H* ! /# - $  (5) 

This says that the factor structure for returns may have a microstructure foundation in 

either or both order flows (e.g., if market makers condition on realized orders xt) as well 

as from the non-trade residuals ut.  However, the factor structure of orders does not 

automatically pass through into returns.  For example, if a particular order flow factor 

(component of Ft) is observable and uninformative, market makers could, if they chose, 

purge that factor by choosing - so that the kth column of -! is zero. 

 We ask a variety of questions of this model.  Are cross-stock commonalities in 

returns and order flows significant?  Are the return and order flow factors correlated?  

How much of the commonality in returns can be attributed to order flow commonalities 

versus common factors in the non-trade residuals ut?  Do the common factors in order 

flows represent information or cross-stock liquidity shocks?  Do other stock’s order flows 

have additional explanatory power for pricing beyond a stock’s own order flow?   

3. Data 

 The data for this study are from the NYSE’s TAQ database, which contains all 

trades and quotes for stocks listed on the NYSE, the AMEX and NASDAQ’s National 

Market System.  Our sample is limited to the thirty Dow stocks.  This selection is 

motivated by 1) our intention to include firms for which common factors in liquidity 

trading (e.g., because of indexation) and information are plausible a priori and 2) the fact 

that we need actively traded stocks to construct approximately concurrent order flows at 
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high frequencies.  The sample covers the 252 trading days in 1994.  Table 1 gives 

summary statistics for market activity in the sample. 

We establish a common time-frame for the data series using fifteen-minute 

intervals covering 9:30 to 9:45, 9:45 to 10:00, . . . 15:45 to 16:00 for a total of 26 

intervals per trading session on the NYSE.  Hereafter, the time subscript t indexes these 

intervals.  A fifteen-minute time resolution represents a compromise between, on the one 

hand, needing to look at correlations in contemporaneous order flows across stocks (e.g., 

at a one-second resolution few trades are contemporaneous) and, on the other, seeking to 

minimize return/order flow simultaneity problems.  In particular, at shorter horizons there 

is less time for feed-back effects from prices into subsequent order submissions due to 

portfolio insurance and other positive feed-back strategies.  In addition, specification (3) 

ignores transitory mid-point dynamics.  Using intervals shorter than fifteen minutes 

would exacerbate these omitted dynamics. 

 We calculate the log quote midpoint return as 

 ' (, , , 1logi t i t i tr m m 2#  (6) 

where mi,t is the midpoint of the NYSE bid and offer quotes for firm i prevailing at the 

end of interval t.    

 Unsigned order flow measures are derived from the consolidated trade data. 

Denote the number of trades for firm i in interval t by nit.  For the jth trade, 1,..., itj n# , in 

interval t, let ijp  and ijv  be the price per share and share volume.  The total share volume 

in the interval is 
1

itn
ijj

v
#3 , and the total dollar volume is 

1
itn

ij ijj
p v

#3 .   
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Studies of short-term price-trade dynamics suggest that the trade impact is 

concave in size.3  We therefore also examine the cumulative square-root of the dollar 

volume (“SRD volume”)
1

itn
ij ijj

p v
#3 .  We also explore size effects by constructing order 

flow measures based on small (42,000 shares), medium (2,001-10,000 shares) and large 

(>10,000 shares) trades. 

Signed order flow measures, ' (ij ijsign v v , corresponding to the above are derived 

by letting the imputed direction of a trade be the sign of the difference , 1ij i jp m 22 .  Thus, 

a trade at the ask price is positive; a trade at the bid is negative.  The individual signed 

trades are then summed over period t to obtain cumulative signed number, share volume, 

dollar volume and square-root dollar volumes.  Trades occurring at the quote midpoint 

are dropped from the sum (effectively assigned a sign of zero). 

 To differentiate stochastic sources of common time-variation from deterministic 

sources, the series are standardized to remove the time-of-day effects documented in 

Wood, McInish, and Ord (1985) etc.  For a representative variable “z”, let zi,d,k denote the 

observation for firm i for fifteen-minute subperiod k on day d.  The standardized value is 

' (*
, , , , , ,i d k i d k i k i kz z 5 6# 2 where 5i,k and 6i,k1 are the mean and standard deviation for firm i 

and subperiod k, estimated across days. 

4. Returns and signed volume measures 

 In this section we estimate the factor and regression models for order flows and 

returns discussed in Section 2.  To investigate the factor structures we rely on the 

standard techniques of principal component and canonical correlation analysis.  These 

                                                 
3 See Madhavan and Smidt (1991) and Hasbrouck (1991).  A concave price-order flow 

relation is predicted by models of reputation, stealth trading and counterparty search in 

Seppi (1990), Barclay and Warner (1993) and Keim and Madhavan (1996). 
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procedures model the factors as linear compounds (i.e., functions) of order flows and 

returns, e.g.,  axt and brt where a and b are fixed coefficient vectors. 

 Briefly, a principal components analysis constructs factors to maximize 

explanatory power within a set of related variables.  For example, given an order flow 

factor axt , we can use n regressions (linear projections) of the form  

 ' (  for 1,...jt j t jtx ax e j n7# $ #  (7) 

to decompose the total order flow variance as follows: 

 ' ( ' ( ' (2

1 1 1

n n n

it j t jt
j j j

Var x Var a x Var e7
# # #

8 9
# $: ;
< =

3 3 3  (8) 

where the first term on the right is the total variation attributable to (i.e., explained by) the 

factor.  If the vector a is chosen (up to a normalization) to maximize the explanatory 

power in (8), then axt is called the first principal component of xt.  Computationally, the 

first term on the right, ' ( ' (2
1

n
j tj

Var a x7
#3 , is the first eigenvalue of ' (tCov x , and a is 

the first eigenvector.  Up to n principal components may be constructed successively, 

subject to the restriction that the ith component is uncorrelated with the i-1 components 

already extracted. 

 Principal component analyses are generally sensitive to the units in which the 

underlying variables are measured.   It is customary, therefore, to standardize variables to 

unit variances, or equivalently to extract the eigenvalues and eigenvectors from the 

correlation matrix.  This is not a major concern here because the elements of xt and rt are 

all order flows or all returns, and so are in consistent units.   Our motivation for 

standardizing the variables is to remove deterministic time-of-day effects, as described in 

the previous section.  Standardization moreover facilitates certain comparative analyses.  

For these reasons, the present analyses are based on standardized variables, except where 

noted. 
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 The need to summarize the explanatory power of a panel of regressions (such as 

equation (7)) arises frequently in this paper.  For the sake of consistency, we use the 

metric underlying the principal components analysis, the proportion of explained total 

variation of the standardized variables.  In most cases, this summary R2 was virtually 

identical to the average of the individual regression R2s, which is a possible alternative 

measure. 

 Whereas principal components maximize explanatory power within one set of 

variables, factors constructed using canonical correlation analysis maximize the power of 

the factors to explain the covariance between two sets of variables.  Specifically, given 

the order flow and return vectors, the first canonical variates are the pair of linear 

compounds axt and brt that maximize ' (,t tCorr a x b r .  Succeeding pairs of canonical 

variates are determined subject to the restriction that they be uncorrelated with the 

canonical variates previously constructed.4 

 Since the models given in equations (1)-(4) are factor models it would seem 

logical to estimate them directly using factor analysis.  We chose to use principal 

component and canonical correlation analyses because factor models are generally 

                                                 
4 One might incorrectly conjecture that principal components and canonical variates must 

necessarily be virtually identical.  By way of counterexample, consider a panel sample of 

two variables ' ( and  for 1,...,  firmsit itx y i n# .  Suppose that the underlying factor 

structure reflects three independent standard normal variables, F F zt
x

t
y, . and  All but the 

last pair of  and it itx y depend on the first two factors: x
it tx F#  and y

it ty F#  for 

1,..., 1i n# 2 .  The last pair are driven by z: nt ntx y z# # .  A principal components 

analysis will determine that (n-1)/n of the total variation in the x’s can be attributed to a 

single principal component, and similarly for the y’s.  These (first) x and y components 

are independent.  In contrast, the first canonical variates are  and nt ntx y , which are 

perfectly correlated but independent of the principal components. 
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estimated via maximum likelihood, which necessitates distributional assumptions 

(usually normality) that are implausible in the present application. 

a. Principal components 

Table 2 first reports means and standard deviations for the various unstandardized 

series (pooled across the 30 stocks) to indicate the scale and variability of the raw data.  

For reasons noted above, however, the principal component analysis is based on the 

covariance matrix of the standardized variables. 

Since the variance of a standardized variate is unity, the total variation on the left 

hand side of equation (8) is simply the size of the variable set, n.  Hence if the variables 

were perfectly positively correlated, the first eigenvalue of this covariance matrix would 

be n, i.e., a single factor would suffice to explain all of the variation.  If instead the n 

variates were uncorrelated, the covariance matrix would have a single eigenvalue (unity) 

with a multiplicity of n. 

Commonalities in returns, of course, are long-established results.  We report them 

here as a reference point for assessing the other commonalities in our sample.  The first 

eigenvalue of (standardized) returns in Table 2 is 6.32.  This implies that 

6.32 / 30 21%# of the total variation in fifteen-minute returns can be explained by a 

single common factor.  The second and third eigenvalues are close to one, however, 

indicating that additional common factors are of negligible importance.   

The first eigenvalues for the signed volume measures also suggest commonality.  

This is most evident for small trades (42,000 shares) and medium trades (2,001-10,000 

shares), and less so for large block trades (>10,000 shares).5  The weakness of the 

                                                 
5 Although we do not identify the sources of the order flow common factors, Edelen and 

Warner (1999) find that mutual fund flows are highly correlated with returns at a daily 
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common factor in large-sized trades is not particularly surprising.  Even if two block trade 

orders for different stocks arrived simultaneously, it is unlikely, given the mechanics of 

how blocks are shopped in the upstairs market, that counterparties would be located and 

the trades executed within the same fifteen minute interval. 

Although the standard sampling results for principal components presuppose 

multivariate normality, they provide at least some guidance in assessing statistical 

significance.  In particular, if the data were multivariate normal, then the eigenvalues of 

the sample covariance matrix would have a known asymptotic distribution (Morrison 

(1976)): with n observations on ' (~ ,
d

z N 5 > , ' ( ' (
. .

2~ 0, 2
asy dist

i i in l N? ?2  where ?i and 

li are the population and sample values of the ith eigenvalue.  Here we are working with 

an estimated correlation matrix and normality is doubtful.  Nevertheless, direct 

application of the asymptotic approximation for returns with n @ 6,000  yields an 

estimated standard error for the first eigenvalue of ' (22 6.32 6,000 0.12# .  The 

analogous standard error for the first eigenvalue of signed square-root dollar volume is 

0.074.  Even allowing for substantial understatement due to violation of the distributional 

assumptions, these calculations are highly suggestive of statistical significance for the 

first eigenvalues of both returns and order flows. 

As an aside, one might wonder if the common factor in orders is simply 

measuring program trading. The first order flow principal component explains 

2.36 30 7.8%@ of the total variation.  The NYSE reports that in 1994, 11.6% of total 

volume was attributable to program trades (New York Stock Exchange (1996)).  Despite 

the closeness of the two numbers, however, the measurements are conceptually quite 

different.  Since volume is the absolute value of signed order flow, volume proportions 

reflect ratios of standard deviations (not variances).  Thus, index arbitrage and other 

                                                                                                                                                 

level.  To the extent that they constitute broadly diversified portfolios, the commonality 

that we find in order flows may well derive, at least in part, from mutual fund flows. 
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reported program trading does not fully account for all of the observed commonality in 

signed order flow from principal component analysis.6 

b. Canonical correlations 

Given the presence of common factors Ft in order flows and Gt in returns, the next 

question is whether they are statistically correlated with each other.  We temporarily defer 

the causal question of whether the common factor in orders is “informative” in a 

microstructure sense until the next section.  For brevity we limit our analysis to the signed 

square-root dollar (SSRD) volume.  We chose this variable because, among all of the 

signed volume measures, it is generally the most highly correlated with returns at the 

individual firm level. 

Table 3 reports the canonical correlation analyses.  Panel A reports the 

correlations between successively constructed canonical variates (factors).  The first entry 

says that it is possible to construct linear compounds of standardized returns and order 

flows for which the correlation is maximized at 0.829.  By way of contrast, if each rit 

were perfectly correlated with its own order flow xit, but returns and order flows were 

uncorrelated across firms, this correlation would be 1 0.183n #  (ignoring sampling 

error).  Thus the commonalities in returns and order flows are statistically interrelated.  

                                                 
6 Suppose that the signed order flow for the ith stock is P N

it t itx x x# $ where P
tx is a zero-

mean program order flow (common across stocks) with ' ( 0.078P
tVar x #  and N

itx is a 

zero-mean nonprogram order flow, i.i.d. across stocks with ' ( 0.922N
itVar x # .  The 

proportion of program trading in total volume, however, is ' ( ' (P
t itn x x3 . 

For a standard normal variate z, 2E z A# , so 0.078 2P
tE x A# . and 2itE x A# .  

The expected proportion of program trading therefore converges to 0.078 28%@ , 

which is much larger than 11.6%. 
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A canonical variate can be described by the proportion of variation it explains 

within its own variable set (like a principal component), but also by the proportion of 

variation explained in the other variable set.  These values, comprising a canonical 

redundancy analysis, are reported in Panel B of Table 3.  The first canonical variate for 

returns, for example, explains 20.6% of the return variation and 9.1% of the signed order 

flow variation.  For comparison purposes, the table also reports variation explained by the 

principal components.  In the case of returns, this is 21.0%, which suggests that the first 

return canonical variate and the first principal component are functionally equivalent.  

The corresponding analysis of signed order flows is similar. 

The statistical similarity of the order flow factors constructed by principal 

components and those obtained from canonical correlation has a natural economic 

interpretation. It suggests that investors with macroeconomic information and those 

motivated by systematic liquidity shocks both trade roughly the same basket of stocks. In 

other words, it is not possible to identify particular waves of orders arriving in the market 

as purely liquidity-motivated simply by looking at the amounts (i.e., loadings) of the 

different stocks traded. This would be the case, for example, if both types of investors 

trade indices. 

 

c. Residual commonality 

From equation (5) it is clear that commonality in returns can arise either from 

order flows or the return residuals.  How much covariability remains in returns after 

accounting for the part associated with the common factor in order flow?  Let x
tP denote 

the first principal component of order flow and consider the following regressions: 

  for 1,...,common x
it i t itr P u i n,# $ #  (9) 
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After removing the order flow factor, we perform a principal components analysis on the 

residuals from (9) to assess the strength of the remaining commonality.  Denote by u
tP  

the first principal component of the residuals.  If the uit are projected onto this component, 
u

it i t itu P7 "# $ , we can decompose the total return variation as follows: 

 ' ( ' ( ' ( ' ( ' ( ' (
2 2common x u

it i t j t itVar r Var P Var P Var, 7 "B C# $ $D E3 3 3 3  (10) 

where the first term on the right is due to order flow commonality and the second is due 

to residual commonality.  The two components are orthogonal by construction.  This 

mode of analysis is termed partial principal components since it involves a principal 

components analysis on the rit after controlling for x
tP . 

 Panel A of Table 4 reports the results of this analysis.  x
tP explains 14.6% of the 

total variation, and u
tP explains another 7.1% for a cumulative total of 21.7%.  To put 

these numbers in perspective, the first principal component of returns explains 21.0% of 

the total variation.  Thus, roughly two-thirds of the common variation in returns may be 

accounted for by the order flow commonality. 

 This attribution suggests that both order flow and residual commonality contribute 

to return commonality.  The existence of two prominent (and uncorrelated) sources of 

commonality might seem to suggest that returns have at least two prominent factors.  The 

principal components analysis of returns, however, displays only one dominant 

component (cf. Panel B of Table 3).  These two results can be reconciled by considering 

equation (5), which expresses the return commonality ' (tG*  in terms of commonalities 

in order flows ' (tF!-  and residuals ' (tH/ , and considering the conditions under which 

the latter two components will be indistinguishable in a principal components analysis. 

 One possibility is that Ft and Ht are perfectly correlated.  If t tH cF# , where c is a 

coefficient of proportionality, then ' (t t t tG F H c F* ! / ! /# - $ # - $ .  By construction, 

however, this is impossible.  The principal component of the regression residuals in 
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equation (9) is a linear combination of the uit, which are each orthogonal to the order flow 

principal component. 

 A second possibility is that the proportionality occurs in the loadings, i.e., that 

c/ !# - .  In this case, ' (t t t t tG F H F cH* ! / !# - $ # - $ , where the term in 

parentheses will be indistinguishable from a single factor.  Examination of the estimated 

parameters shows that the elements of -! and / are in fact moderately positively 

correlated, so this appears to be the most probable explanation. 

d. The explanatory power of common and firm-specific order flow 

Having documented a statistical relation between the dominant common factors of 

returns and order flows, we next turn to a more detailed modeling of this relationship.  

The return model in equation (3) is a flexible structure that allows the return on the ith 

stock to depend on the full set of order flows.  Yet within that set, economic logic 

suggests an importance ordering.  A stock’s own order flow xit should be a primary 

determinant, followed by the common factor of order flow, and then by the other 

idiosyncratic order flows.  This view suggests a linear model such as: 

 ,
1

n
own common other

it i it i xt i j jt it
j
j i

r x P x u, , ,
#
&

# $ $ $3  (11) 

where x
tP is the first principal component of order flows, taken as a proxy for the order 

flow common factor. 

 One likely source of misspecification (or at least misattribution of effects) arises 

from the connections between the common component of order flow and the futures 

market.  Two important mechanisms here are index futures arbitrage and positive-

feedback trading on index futures returns. 

 The index arbitrage story says that if macroeconomic news is first incorporated in 

the futures price, this induces index arbitrage trades in the cash market which then causes 

adjustments in the individual stock prices (see Kumar and Seppi (1994) and references in 
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footnote 1).   The positive feedback story says that trend-chasers, portfolio insurers, and 

other positive-feedback investors respond to a positive futures return by buying stocks, 

even after any inter-market arbitrage is gone.  To investigate these possibilities, we 

expand the explanatory variable set to include the contemporaneous futures return over 

the fifteen-minute interval. 

Since the explanatory variables are multicollinear, we compute their incremental 

explanatory power by adding the variables sequentially.  This is tantamount to 

orthogonalizing the later variables with respect to the variables earlier in the ordering.  

Since different economic stories suggest different causal ordering, we perform these 

calculations for two alternative orderings. 

Table 4 presents these results.  The variable ordering in Panel B corresponds to 

that given in equation (11), plus the futures return.  The explanatory power of own-order 

flow is a substantial 24.9%, the incremental explanatory power of the order flow principal 

component x
tP is lower but still appreciable at 4.3%.  The vector of order flows in all 

other stocks adds little (0.5%).  The futures return adds 2.6%.  The ordering in Panel C 

moves the futures return earlier in the specification.  Once own order flow and the futures 

return are included, x
tP  and other order flows contribute little explanatory power (a total 

of only 0.9%). 

 In interpreting these results, the question is not whether the futures price is a 

source of common factor pricing information.  Clearly it is.  Rather we are asking 

whether the common factor in orders is a significant independent source of price 

covariability taking into account the role of the futures market.  Comparing the bounds of 

0.5 and 4.3 percent on the incremental explanatory power of x
tP   (i.e., given the own 

order flow) with the bounds of 2.6 and 6.5 percent for futures
tr  suggests that, while the 

order flow common factor may indeed play a role in the price discovery process for 

common factor (macroeconomic) pricing information, that role is likely dominated by the 
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futures market. The multicollinearity of x
tP  and futures

tr  is consistent with both index 

arbitrage and positive-feedback trading. 

As an aside, if the lower bound of 0.5 percent is closer to the truth – that is, if the 

common factor in orders plays no causal role in pricing and its apparent explanatory 

power in Panel B is simply “spurious correlation” due to positive feed-back trading – this 

would have important implications for institutional trading practices.  For example, 

mutual funds and pensions could follow multi-stock portfolio rebalancing strategies 

which would simply aggregate the solutions from  separate optimization problems for 

each individual stock (see Bertsimas and Lo (1998)) without worrying about cross-stock 

interactions of orders. 

e. Intraday patterns 

Our intent in standardizing the data is to isolate stochastic commonalities, the 

focus of our paper, from the well-known time-of-day effects.  Intraday patterns in the 

commonalities themselves are, however, of interest.  To investigate such patterns, we 

performed a principal components analysis of returns, signed SRD volume, and the log 

quote slope (described in Section 6) for each fifteen-minute period within the day.  The 

eigenvalues are plotted in Figure 1. 

The noise in the plots is largely due to sampling error.  The eigenvalues for all 

three series display a peak around 11:00AM.  This peak is attributable to a single day’s 

activity, Thursday, March 31, 1994.  Media commentary on the following day note 

contemporaneous volatility in the stock and bond markets, but do not attribute this to any 

obvious new information. 7  Nevertheless, the concurrent bond market activity is 

                                                 
7 The Wall Street Journal (April 1, 1994) reports, “STOCKS RECOVERED after a 

rollercoaster ride that included a sharp morning drop F Long-term bond prices rose in a 

wild day of trading.” 
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consistent with a commonality related to interest rates.  Aside from this irregularity, 

return commonality is slightly elevated at the beginning and end of trading (a “U” shape).  

The order flow commonality exhibits an upward trend throughout the day.  This might 

arise from program trading activity.  Madhavan and Cushing (2000) find that portfolio 

return variances are concentrated near the end of the day, which they attribute to 

institutional trading interest.  Orders to unwind futures-linked stock positions on 

expiration days would generally appear as market-on-open orders, which are not included 

here.  Finally, the commonality in liquidity (discussed further in Section 6) is relatively 

low and constant over the day. 

5. Absolute returns and trading volume 

In this section we redo parts of the above analysis for the unsigned (absolute 

value) counterparts of the signed variables.  There are two reasons for this.  First, 

although equations (1) through (4), the motivation for our analysis, involve signed order 

flows; as a practical matter, the signing of trades by reference to the prevailing quote is 

subject to error.  For example, roughly one third of the trades are typically priced at the 

quote midpoint and, therefore, cannot be signed.  Secondly, our analysis of the unsigned 

variables is a logical extension of the “volume/volatility” literature for individual 

securities and indexes.   Trading volume and absolute price change are generally found to 

be positively correlated (see Karpoff (1987) and Gallant, Rossi, and Tauchen (1992)).  

The present analysis can be viewed as a multifirm extension, asking whether the 

price/volume correlation extends to common factors in prices and volumes. 

Table 5 reports statistics for the absolute returns and unsigned volume measures 

(corresponding to the signed variables in Table 2).  The first eigenvalue of absolute 

returns is smaller than that of signed returns (3.64 vs. 6.32).  In contrast, the first 

eigenvalues for the unsigned volume measures are generally larger than the corresponding 
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values for signed volumes.  This may, in part, be a consequence of errors in signing 

trades. 

Table 6 summarizes the canonical correlations for the absolute measures.  The 

general pattern is similar to Table 3.  The first canonical variates are moderately highly 

correlated (0.726) and are also closely related to their corresponding principal 

components.   Thus, the comovements in absolute intraday price changes also have a 

strong microstructure foundation in absolute SRD volume. 

6. Time-varying liquidity measures and their common factors 

Leaving orders and returns for now, we turn next to investigate time-variability 

and cross-sectional commonality in market liquidity.  This section looks at aggregate 

liquidity – including both permanent and transitory price impacts – as measured by posted 

bid and ask quotes and depths.  In the following section we focus specifically on the 

permanent (or informational) component of liquidity. 

 Traders can estimate their trading costs ex ante (i.e., prior to submission of an 

order) on the basis of the displayed quotes and sizes of the quotes.  Suppressing the firm 

subscript i for the sake of notational economy, let Bk and Ak denote the per share bid and 

ask for quote record k, and let B
kN and A

kN denote the respective number of shares posted 

at these quotes.  Thus, a prospective purchaser knows that, if hers is the first market buy 

order to arrive, she can buy at least A
kN  shares at the ask price Ak.  In our analysis, we 

employ the following measures of quoted liquidity.  

Spreadk k kA B# 2  

' (Log Spread logk k kA B#  

' ( ' (Log Size log logA B
k k kN N# $  

' ( ' ( ' (' (Quote Slope log logA B
k k k k kA B N N# 2 $  

' ( ' ( ' (' (Log Quote Slope log log logA B
k k k k kA B N N# $  
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The first three of these are standard.  The last two, which combine both price and 

quantity information, may be viewed as summary measures of the quoted liquidity supply 

curve.  As depicted in Figure 2, the quote slope is the slope of the dotted line connecting 

the bid and ask price/quantity pairs.  If more quantity is added at either the bid or ask, or 

if either quote is moved closer to the other, the line flattens and the market is more liquid.  

As drawn here, the line joining the quote/quantity pairs for any particular observation 

need not intersect the vertical axis at the quote midpoint.  The log quote slope is defined 

in a similar fashion, except that log prices are used on the vertical axis. 

To align these liquidity measures with the transaction-based data, we examine 

averages over the fifteen-minute time intervals.  The averages are time-weighted, 

according to the number of seconds that the quote prevailed. 

 Liquidity can also be measured by the effective spread.  The transaction price, pj , 

on trade j may be expressed as the quote midpoint, mj, prevailing immediately prior to 

trade j plus a disturbance: 

 j j jp m s# $  (12) 

Intuitively, js  is the effective half-spread, an approximate measure of the trading cost to 

the active side of the transaction.   For each fifteen-minute interval, we compute the 

volume-weighted average of the js .  The effective spread is smaller than the quoted 

half-spread for a trade that receives price improvement, and (rarely) larger for a block 

trade that is crossed outside of the posted quotes.  This quantity is easy to compute, but 

some care must be taken with its economic interpretation.  Being the difference between 

the transaction price and the pre-trade quote midpoint, sj impounds the information 

inferred from the trade.   The purely transient component of the transaction price is the 

difference between the transaction price and the quote midpoint immediately post-trade, 

i.e., ' (j j j j j j jp m x s x, ,2 $ # 2 . 
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Table 7 presents descriptive statistics on the liquidity proxies and the eigenvalues 

of their standardized covariance matrices.  Because spreads and related quantities are 

likely to be strongly affected by the relative tick size, stocks that split during the year 

were dropped from the liquidity analysis.  The sample here is the remaining Dow stocks 

(n=24) that did not split in 1994.  Therefore, the eigenvalues in Table 7 are constructed 

from “standardized” covariance matrices of dimension twenty-four. 

 Among the liquidity measures, our log quote slope measure exhibits the most 

commonality, with a first eigenvalue of 3.07.  Under a normality assumption this is 

statistically significant, and implies that 3.07 24 13%@ of the total variation can be 

attributed to the first common factor.  Commonalities in the other quoted depth and 

spread measures appear weaker.  Furthermore, we find little evidence of economically 

significant common liquidity factors in the effective spreads calculated from realized 

transactions.  One interpretation of this finding is that liquidity providers at the NYSE 

appear to offset the weak commonality in quoted liquidity.  Taken together, our results 

suggest that the strong common liquidity shocks suggested by the brief (but intense) 

market crises (e.g., 1987, 1989) do not exist in “normal” trading regimes. 

Chordia, Roll, and Subrahmanyam (2000) also find only weak commonality in 

liquidity.  Their methodology, however, differs from ours in several respects.  First, our 

intervals of observation are shorter (fifteen-minutes vs. daily).  Secondly, our liquidity 

variables are in levels form, whereas Chordia et al. work with changes.  Generally, 

variables are differenced when one suspects that they may contain unit-root (i.e., random-

walk) components.  Spreads and other liquidity measures are usually not so characterized.  

Overdifferencing (i.e., differencing series that are already stationary) induces 

autocorrelation in computed residuals.  For these reasons, we believe that analysis of 

levels is more economically meaningful and statistically appropriate.  Thirdly, the 

multivariate techniques used here do not impose any a priori restrictions on the common 

factor, while Chordia et al. use a market-capitalization weighted average, analogous to the 
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market return, as their factor.  Unlike returns in the CAPM, however, there is no theory 

motivating a capitalization-weighted liquidity factor.  A fourth difference is that we also 

look, in the next section, specifically at the permanent component of aggregate liquidity. 

7. Time-varying price impacts 

Bid-ask spreads can be decomposed into permanent (informational) and transitory 

(immediacy-related) components (Glosten (1987)).  In this section we allow the price 

impact of orders on quote midpoints, a standard measure of the informational component 

of liquidity, to time-vary stochastically so that it it it itr x u,# $ . 

Since ,it is not directly observable, inferences about this parameter are necessarily 

indirect.  We try two simple approaches to circumvent this problem.  First, we use the 

quote-based liquidity measures from Section 6 (and their common factors) as instruments 

for the ,it.  Secondly, we use daily dummy variables as instruments for a common daily 

liquidity shock to the ,it.  Both approaches let us examine time- and common-variation 

within a linear multivariate statistical framework. 

 To manage the complexity of the analysis, we employ a basic specification in 

which the only order variable is the firm’s own: 

 it it it itr x u,# $ . (13) 

The time-varying liquidity parameter here is in turn parameterized as a linear function: 

 LQS
it i i t i it i t itd LQS h P, G H 7 "# $ $ $ $  (14) 

where dt  is a vector of time-of-day dummy variables; LQSit is the standardized loq-quote 

slope (a liquidity proxy); and LQS
tP is the first principal component (across firms) of the 

LQSit (a proxy for the common factor of liquidity).  For the sake of brevity, just the log 
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quote slope results are reported.8  Results using other quoted liquidity proxies were 

similar.  When this expression for ,it is substituted in equation (13), we have: 

 ' (LQS
it i it i t it i it it i t it it it itr x d x LQS x h P x x uG H 7 "# $ $ $ $ $  (15) 

This is a linear specification in which returns are regressed against order flow xit and 

order flow/liquidity interaction terms ,  and LQS
i it it it t itd x LQS x P x .   In light of the concave 

relation between orders and price changes described in Section 3, we use signed square-

root dollar volume for our order flow variable xit .  

 We are primarily interested in the explanatory power of the liquidity/signed order 

flow term, LQSitxit and the liquidity common factor LQS
t itP x .  Time-of-day dummy 

variables are included because, even though rit and xit are standardized to remove time-of-

day effects, this need not pick up time-of-day variation in ,it. 

 To estimate equation (15) via least squares, the composite residual ' (it it itx u" $  

must be uncorrelated with the explanatory variables.  Since xit appears in both the residual 

and the explanatory variable set, a sufficient condition for least squares consistency is that 

the "it are zero-mean and independent of , ,  and LQS
it t it it it t itx d x LQS x P x .9 

                                                 
8 Intuitively, the log quote slope reflects the permanent price impact, ,it , plus the 

transitory price impact excluding any price improvement from the floor.  Thus, the 

question we are asking is whether time-variation in quoted liquidity LQS is informative 

about (i.e., related to) time-variation in the permanent/informational component of 

effective liquidity. 
9 The dummy variable coefficients Hi in equation (15) are not identified without further 

restrictions (e.g., that one of them is zero).  Present purposes require, however, 

identifying only the explanatory power associated with a set of variables (for which 

coefficient identification is not necessary). 
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 Table 8 summarizes the explanatory power of the specification.  We use two 

alternative orderings of the variables that effectively attribute the joint explanatory power 

of the common-factor liquidity term LQS
t itP x  and the own-firm liquidity term it itLQS x to 

one variable or the other.  In Panel A, the ordering is , ,  and LQS
it t it t it it itx d x P x LQS x , 

which attributes any joint power to the common factor term LQS
t itP x .  In Panel B, the 

ordering is , ,  and LQS
it t it it it t itx d x LQS x P x , which attributes the joint power to it itLQS x .  

The sum of the two terms, 4.7%, is unaffected by their ordering.  The decomposition of 

the sum, of course, differs between the two panels.  The principal component term 

explains at most 1.0% of the variance, leaving 3.7% explained by the own-firm term 

(Panel A).  When the principal component term is added last, however, its incremental 

explanatory power is a mere 0.1%.  Even taking the higher figure, however, the common 

covariation in the permanent (informational) component of liquidity appears to be 

dominated by firm-specific variation.10 

 We extend this analysis in several respects.  First, we estimate specifications 

parallel to those reported in Table 8 where the total signed order flow is replaced by the 

three separate small/medium/large signed order flow variables described in Section 3.  

Our intent is to allow for the possibility that the liquidity proxy coefficients are not 

constant across different order size categories.  The full results are not presented for the 

sake of brevity, but may be summarized as follows.  When the size-based order flow 

measures are used in lieu of the total, the explanatory power of the specification increases 

somewhat, from 0.292 (in Table 8) to 0.353.  However, virtually all of this increase 

                                                 
10 The composite specification does not constrain ,it to be nonnegative.  This does not 

appear to be a significant problem, however.  As a check, we computed the fitted values 

I J LQS
it i i t i it i tE d LQS h P, G H 7# $ $ $  from equation (14).  These were positive for over 

99% of the observations. 
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results from the order flow variables per se, not from the components that impound the 

liquidity proxies. 

 The composite specification (15) also admits stochastic variation in ,it via the "it 

term.  However, since this variation is confounded with other sources of residual 

variation, it is not econometrically identified.   To test for this possibility we use a panel 

regression to estimate a variant of equation (15) based on a liquidity parameterization: 

 
iit i i t it t itd LQS D, G H 7 + "# $ $ $ $  (16) 

where Dt is a vector of date dummy variables (i.e., one for each day).  The associated 

coefficient vector + is the same for all firms.  The coefficients +1 (for day 1), +2 (for day 

2), . . . can be interpreted as estimates of the daily realizations of a random (daily) 

common liquidity factor.  In other words, on a given day k, liquidity is partially driven by 

a realized factor +k common to all firms. 

The new composite specification for returns (corresponding to equation (15)) is: 

 ' (              it i it i t it i it it t it it it itr x d x LQS x D x x uG H 7 + "# $ $ $ $ $  (17) 

Because the + coefficient vector is common across all firms, this specification is 

estimated jointly as a panel regression for all twenty-four firms.  The results (not reported 

for brevity) are similar to the regressions in Table 8.  The incremental explanatory power 

of the date dummy terms is sensitive to the ordering of the variables, but is always 

dominated by the own-firm liquidity term.  (The incremental R2 of the date dummies is at 

most 0.002, while that of LQSitxit is at least 0.044.)  As before, time variation in the 

informational component of liquidity seems to be largely firm-specific. 

 Why is it important whether liquidity is correlated or idiosyncratic? Amihud and 

Mendelson (1986) and Brennan and Subrahmanyam (1996) have argued that predictable 

differences in liquidity lead to cross-sectional differences in expected returns.  A natural 

extension of this argument is that if liquidity is random and covaries across stocks, then a 
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stock's sensitivity to systematic liquidity randomness could potentially play the role of a 

priced risk factor.  If our results – namely, that randomness in effective liquidity (and its 

permanent price impact component) is idiosyncratic – are correct, however, then random 

liquidity risk can be diversified away at the portfolio level and, hence, is unlikely to be a 

priced source of risk.  Thus, any liquidity-linked differences in expected returns are most 

likely due to predictable differences in the level of liquidity, rather than to variability in 

liquidity per se. 

8. Conclusions 

Taking as our starting point a linear microstructure specification in which returns 

are driven by signed order flows and public news, this paper assesses the extent and role 

of cross-firm common factors in returns, order flows and market liquidity.  We 

implement the analysis for the thirty Dow stocks in 1994 using time-aggregated trade and 

quote date over fifteen-minute intervals. 

We find that common factors exist in both signed and absolute order flow.  These 

explain part, but not all, of the common variation in signed and absolute returns.  This 

conclusion does not depend on whether the common factors were constructed using 

principal components or canonical correlations.  However, multicollinearity of the S&P 

500 futures return with the common factor in order flows complicates the economic 

interpretation of this result.  At a fifteen-minute sampling frequency we cannot 

distinguish futures-induced positive feedback trading from index arbitrage. 

Our findings are less supportive of economically significant common factors in 

liquidity.  After removing time-of-day effects, the strength of any common factors in 

spreads and related liquidity measures, as judged by the first principal components, is 

modest.  This is confirmed by cross-sectional regressions in which price impact 

coefficients are projected on various explanatory variables.  Own-firm variables dominate 

the principal component (common factor) and daily liquidity shock estimates.  Thus, the 
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systematic liquidity fluctuations visible during market crises such as 1987 and 1998 do 

not appear to characterize normal trading.  

While we do find common factors in the microstructure of equity markets, it is 

perplexing that these variables do not, on balance, play a more prominent and 

unambiguous role given the importance traders attach to proximity to other traders. 

Clearly further study is needed. For example, “event studies” tracing through the impact 

at a transactional level of macroeconomic news (as opposed to idiosyncratic corporate 

events) on order flows, individual stock prices and S&P 500 futures prices might be 

helpful in distinguishing between the various causal explanations for return covariability.   

In terms of liquidity, it would be interesting to see whether liquidity is more strongly 

correlated for stocks with lower market capitalizations (i.e., than the Dow stocks used 

here) or, perhaps, for stocks traded by the same specialist firm. 
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Table 1.  Descriptive Statistics 

The sample is the thirty Dow stocks for all trading days in 1994.  The daily return is 
computed as the first difference of the log end-of-day quote midpoint. 

 

Symbol Name 

Mean 
Price 

($/Share) 

Mean Bid-
Ask Spread 
($/Share) 

Average 
Daily 

Trades 

Std. Dev. of Daily 
Return x100 

(percent) 

 Cross-stock mean: 51 0.16 608 1.5 

AA            Alcoa 78 0.21 200 1.4 
ALD          Allied Signal 44 0.18 191 1.5 
AXP          American Express 29 0.15 501 1.6 
BA             Boeing  45 0.16 554 1.2 
BS             Bethlehem Steel 20 0.15 211 2.4 
CAT          Caterpillar 90 0.21 333 1.6 
CHV          Chevron 63 0.17 408 1.1 
DD            DuPont 57 0.15 447 1.2 
DIS            Disney 43 0.15 780 1.4 
EK             Eastman Kodak 47 0.15 519 1.8 
GE             Gen'l Electric 68 0.16 1,238 1.1 
GM            Gen'l Motors 51 0.16 1,226 1.8 
GT             Goodyear 38 0.19 260 1.5 
IBM           IBM 63 0.16 1,251 1.7 
IP               Int'l Paper 72 0.19 232 1.3 
JPM           JP Morgan 63 0.17 362 1.1 
KO            Coca Cola 45 0.14 902 1.1 
MCD         McDonalds 43 0.15 737 1.3 
MMM       MMM 67 0.18 363 1.1 
MO            Phillip Morris 56 0.15 1,200 1.4 
MRK         Merck 33 0.14 1,707 1.4 
PG             Proctor Gamble 58 0.16 503 1.3 
S                Sears 48 0.16 425 1.6 
T                ATT 53 0.14 1,152 1.0 
TX             Texaco 63 0.16 342 0.9 
UK            Union Carbide 28 0.15 382 2.0 
UTX          United Tech 64 0.19 159 1.3 
WX           Westinghouse 13 0.13 548 1.7 
XON         Exxon 61 0.14 698 1.0 
Z                Woolworth 18 0.15 400 2.4 
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Table 2.  Returns and Signed Volume Measures 

The sample is the thirty Dow stocks for all trading days in 1994.  Trades are signed by 

reference to the quote midpoint prevailing at the time of the trade. The signed volume 

measures are cumulated over fifteen-minute intervals.  Small trades are 2,000 shares or 

less; medium trades are 2,001-10,000 shares; large trades are >10,000 shares.  The means 

and standard deviations are for the raw data, pooled across firms and time. 

  
Eigenvalues 

Variable  

Mean  
(not standardized 
by time-of-day) 

Std. Dev.  
(not standardized 
by time-of-day) First  Second Third 

Return  -0.001 0.266 6.32 1.04 1.00 

Total 0.635 8.784 3.36 1.44 1.27 
Small 0.521 7.831 2.75 1.61 1.36 
Medium 0.071 1.975 3.60 1.14 1.07 

Signed trades 

Large 0.043 0.771 1.67 1.09 1.08 

Total 16.259 334.253 2.36 1.08 1.07 
Small 0.542 42.607 3.92 1.15 1.11 
Medium 5.556 103.557 3.03 1.12 1.09 

Signed share 
volume 
(100-shr lots) 

Large 10.161 290.502 1.48 1.11 1.10 

Total 9.123 153.406 2.38 1.09 1.07 
Small 0.057 21.103 3.90 1.11 1.11 
Medium 3.356 52.483 2.99 1.12 1.08 

Signed dollar 
volume 
($10,000) 

Large 5.711 130.690 1.48 1.11 1.10 

Total 1.206 19.798 4.06 1.08 1.05 
Small 0.229 10.517 3.51 1.32 1.20 
Medium 0.489 9.545 3.36 1.13 1.08 
Large 0.488 8.278 1.64 1.10 1.08 

Signed 
square root of 
dollar 
volume 
' (2102.   
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Table 3.  Canonical and Principal Factors of Returns  

and Signed Square-root Dollar Volume 

The sample is the thirty Dow stocks for all trading days in 1994.  Panel A reports the 

correlations between the return and order flow (signed SRD volume) canonical variates.  

Panel B reports a canonical redundancy analysis: the proportion and cumulative 

proportion of total variation in returns and order flow that is explained by the canonical 

variates and (for comparison purposes) the principal components. 

 
Panel A: Canonical correlations       
First 0.829          
Second 0.578          
Third 0.556          

Panel B: Canonical redundancy analysis 
      

Total variation in returns explained by: 
      

Return principal components  Return canonical variates 
 Signed square-root dollar 

volume canonical variates 
 Prop. Cum.   Prop. Cum.   Prop. Cum. 

First 0.210 0.210  First 0.206 0.206  First 0.142 0.142 
Second 0.034 0.244  Second 0.028 0.234  Second 0.009 0.151 
Third 0.033 0.277  Third 0.029 0.262  Third 0.009 0.160 

Total variation in signed square-root dollar volumes explained by:   

Signed square-root dollar 
volume principal components 

Signed square-root dollar 
volume canonical 

variates   Return canonical variates 
 Prop. Cum.   Prop. Cum.   Prop. Cum. 

First 0.135 0.135  First 0.132 0.132  First 0.091 0.091 
Second 0.036 0.171  Second 0.031 0.163  Second 0.010 0.101 
Third 0.035 0.205  Third 0.031 0.193  Third 0.009 0.111 
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Table 4.  Explained return variation. 

The sample is the thirty Dow stocks for all trading days in 1994.  The proportional and 

cumulative measures of incremental explanatory power are analogous to R2s.  They are 

derived from a set of regression specifications in which the dependent variables are the 

standardized fifteen-minute returns  for 1,...,30itr i #  firms.  Entries are of the form 

' ( ' (' (30 30

1 1
Explained variancefor stock iti i

i Var r
# #3 3 .  Regression variables are defined as 

follows: xit is a stock’s own order flow; xjt (for j=1,…,30; j& i) are the order flows for 

other stocks; x
tP is the first principal component of order flows; u

tP is the first principal 

component of the regression residuals; futures
tr  is the return on the near-maturity S&P 500 

futures contract. 

 

 Variable Ordering Proportional  Cumulative 
Panel A: Common order flow, x

tP  0.146  0.146 
 Residual common factor, u

tP  0.071  0.217 
Panel B: Own order flow, xit 0.249  0.249 

 Common order flow, x
tP  0.043  0.292 

 Other order flow, 
,  for 1,...,30;jtx j j i# &  

0.005  0.296 

 futures
tr  0.026  0.322 

Panel C: Own order flow, xit 0.249  0.249 
 futures

tr  0.065  0.313 
 Common order flow, x

tP  0.005  0.318 
 Other order flow, ,  for jtx j i&  0.004  0.322 

Panel D: futures
tr  0.134  0.134 

 Own order flow, xit 0.179  0.313 
 Common order flow, x

tP  0.005  0.318 
 Other order flow, ,  for jtx j i&  0.004  0.322 
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Table 5.  Absolute Returns and Unsigned Volume 

The sample is the thirty Dow stocks for all trading days in 1994.  Data series are 

aggregated over 15-minute intraday intervals.  The means and standard deviations are for 

the raw series pooled across firms and time.  Eigenvalues are based on series standardized 

to remove time-of-day effects.  The return is the log quote-midpoint return (using only 

NYSE quotes); trades, share volume, dollar volume and (cumulative) square root dollar 

volume are computed for all trades.  Small trades are 2,000 shares or less; medium trades 

are 2,001-10,000 shares; large trades are >10,000 shares. 

  
Eigenvalues 

Variable  

Mean  
(not standardized 
by time-of-day) 

Std. Dev.  
(not standardized 
by time-of-day) First  Second Third 

|Return|  0.161 0.211 3.64 1.10 1.09 

Total 22.581 14.713 5.00 1.78 1.44 
Small 19.344 12.672 4.61 1.82 1.47 
Medium 2.626 2.737 4.43 1.21 1.19 

Number 
of Trades 

Large 0.610 0.968 1.78 1.29 1.14 

Total 388.823 501.121 3.41 1.29 1.17 
Small 87.706 64.724 4.97 1.39 1.25 
Medium 127.992 143.251 3.81 1.20 1.18 

Share Volume 
(100-shr lots) 

Large 173.124 421.857 2.21 1.22 1.16 

Total 188.941 233.844 3.60 1.23 1.15 
Small 43.528 32.304 5.55 1.51 1.14 
Medium 65.417 73.138 3.94 1.27 1.18 

Dollar 
Volume 
($10,000) 

Large 79.996 194.405 2.23 1.18 1.14 

Total 44.164 32.036 5.53 1.36 1.25 
Small 25.169 16.783 5.35 1.44 1.21 
Medium 12.564 13.311 4.27 1.22 1.15 

Square root of 
dollar volume 
' (21002.  

Large 6.431 10.535 2.16 1.24 1.13 
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Table 6.  Canonical and Principal Factors of Absolute Returns 
 and Unsigned Square-root Dollar Volume 

The sample is the thirty Dow stocks for all trading days in 1994.  Data series are 

aggregated over 15-minute intraday intervals and then standardized to remove time of day 

effects. 

Panel A: Canonical correlations       
First 0.726          
Second 0.525          
Third 0.502          

Panel B: Canonical redundancy analysis  
     

Total variation in absolute returns explained by:      

Absolute return 
principal components 

Absolute return 
canonical variates 

Square-root dollar volume 
canonical variates 

 Prop. Cum.   Prop. Cum.   Prop. Cum. 
First 0.120 0.120  First 0.116 0.116  First 0.061 0.061 
Second 0.037 0.157  Second 0.036 0.152  Second 0.010 0.071 
Third 0.036 0.193  Third 0.032 0.184  Third 0.008 0.079 

Total variation in square-root dollar volume explained by: 
   

Square-root dollar volume 
principal components 

Square-root dollar volume 
canonical variates  

Absolute return 
canonical variates 

 Prop. Cum.   Prop. Cum.   Prop. Cum. 
First 0.171 0.171  First 0.159 0.159  First 0.084 0.084 
Second 0.046 0.217  Second 0.034 0.193  Second 0.009 0.093 
Third 0.042 0.259  Third 0.032 0.225  Third 0.008 0.101 
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Table 7.  Liquidity Measures 

The sample is the twenty-four Dow stocks that did not split during 1994 for all trading 

days in 1994.  The bid and ask for quote record k are denoted by Bk and Ak (dollars per 

share);  and B A
k kN N are the numbers of shares (in 100-share round lots) posted at the bid 

and ask.  The spread is k kA B2 ; the log spread is ' (log k kA B ; the log size is 

' ( ' (log logA B
k kN N$ ; the quote slope is ' ( ' ( ' (' (log logA B

k k k kA B N N2 $ ; the log quote 

slope is ' ( ' ( ' (' (log log logA B
k k k kA B N N$ .  For all of the preceding, we employ time-

weighted averages over the fifteen-minute intervals.  For trade j at price pj, the effective 

spread is defined as j jp m2  where mj is the prevailing quote midpoint.  These are 

averaged by trade size over the interval.  Small trades are 2,000 shares or less; medium 

trades are 2,001-10,000 shares; large trades are >10,000 shares.  The means and standard 

deviations are for the raw data pooled across firms and time. 

  Eigenvalues 

Variable  

Mean  
(not standardized 
by time-of-day) 

Std. Dev.  
(not standardized 
by time-of-day) First  Second Third 

Spread  0.15746 0.03830 2.00 1.10 1.07 

Log Spread  0.00394 0.00224 2.84 1.67 1.32 

Log Size  9.36776 1.91521 2.20 1.40 1.36 

Quote Slope  0.01811 0.00844 2.58 1.27 1.15 

Log Quote 
Slope  0.00043 0.00024 3.07 1.55 1.16 

Total 0.05932 0.01967 1.13 1.12 1.10 
Small 0.05726 0.01657 1.14 1.13 1.09 
Medium 0.05828 0.02416 1.17 1.14 1.11 

Effective 
Spread 

Large 0.06077 0.03129 1.38 1.32 1.29 
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Table 8.  Price Impact Regressions 

The sample is the twenty-four Dow stocks that did not split during 1994 for all trading 

days in 1994.  For each stock the estimated specification is 
LQS

it i it i t it i it it i t it itr x d x LQS x h P x eG H 7# $ $ $ $  where rit is the standardized log quote 

midpoint return for firm i, xit is the standardized order flow (signed square root dollar 

volume), dt is a vector of time-of-day dummies; LQSit is the (standardized) log quote 

slope (a liquidity proxy); and LQS
tP is the first principal component of the loq quote slope 

(across firms). 

 
 Variable Ordering Proportion  Cumulative 

Panel A: Xit 0.240  0.240 
 dt xit 0.005  0.245 
 LQS

t itP x  0.010  0.255 
 LQSit xit 0.037  0.292 

Panel B: xit 0.240  0.240 
 dt xit 0.005  0.245 
 LQSit xit 0.046  0.291 
 LQS

t itP x  0.001  0.292 
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Figure 1.  Intraday Commonality 

The sample is the thirty Dow stocks in 1994, over fifteen-minute intraday intervals.  

Return is the log quote-midpoint return; order flow is signed square-root dollar volume; 

liquidity is the log quote slope.  Figure depicts the first eigenvalue (an indication of the 

strength of the first principal component) for each of the three series by time of day. 
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Figure 2.  The Quote Slope 

For quote record k, the bid and ask prices are Bk and Ak .  
B
kN  and A

kN  are the numbers of 

shares sought at the bid and available at the ask.  The quote slope is the slope of the heavy 

dotted line in the figure. 
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