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Abstract

We propose that imitation between traders and their herding behaviour not only lead
to speculative bubbles with accelerating over-valuations of financial markets possibly
followed by crashes, but also to “anti-bubbles” with decelerating market devaluations fol-
lowing all-time highs. For this, we propose a simple market dynamics model in which the
demand decreases slowly with barriers that progressively quench in, leading to a power
law decay of the market price decorated by decelerating log-periodic oscillations. We
document this behaviour on the Japanese Nikkei stock index from 1990 to present and
on the Gold future prices after 1980, both after their all-time highs. We perform simul-
taneously a parametric and non-parametric analysis that are fully consistent with each
other. We extend the parametric approach to the next order of perturbation, comparing
the log-periodic fits with one, two and three log-frequencies, the latter one providing a
prediction for the general trend in the coming years. The non-parametric power spectrum
analysis shows the existence of log-periodicity with high statistical significance, with a
prefered scale ratio of A =~ 3.5 for the Nikkei index A ~ 1.9 for the Gold future prices,
comparable to the values obtained for speculative bubbles leading to crashes.
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1 Introduction

Since our first suggestion of the existence of specific log-periodic price patterns associated
to the speculative accelerating power law bubble leading to the worldwide Oct. 1987 stock
market crash [, more evidences have accumulated [1-11]. They include the Oct. 1929 US
crash [, B, the May 1962 US market correction of 15% discovered in a systematic blind-
testing procedure [}, H], the Hong-Kong Oct. 1997 crash [, f], the Oct. 1997 US market
correction [6-9] (see also the prediction communicated on sept. 17, 1997 to the French office
for the protection of proprietary softwares and inventions under number registration 94781
and footnote 13 of Ref.[[ld]) and the Aug. 1998 US market correction of 19% [[L1].

Recently, the same log-periodic signatures with similar prefered scaling ratios and power
law exponents have been found to describe the speculative behaviour in the Reagan’s years of
the US dollar against other major currencies, such as the German Mark and the Swiss Franc
up to the maximum of the bubble in March 1985 [L1]. It is remarkable to find that very
similar structures describe both the behaviour of entire markets quantified by their indices
and the behaviour of the Foreign exchange (Forex). The two are generally believed to obey
different dynamics [[[J], since on the Forex only a few major banks perform the trading and
only a few currencies (the US$ against the DEM now replaced by the Euro and the YEN)
account for most (more than 80%) of the trading.

This strengthens the concept that these structure are characteristic of very fundamental
and robust properties of financial markets, which we have proposed to be the herding be-
haviour of traders [, [T, [[J]. Furthermore, it supports the view according to which the stock
markets present self-organising properties similar to those of microscopic models in statistical
physics, with the potential for cooperative behaviour [[4] leading to critical points [0, [5] (for
criticism, see [[L6]).

In addition, these results suggest that the prefered scale ratio A of the underlying discrete
scale invariance [|L7] of the market dynamics is remarkably robust with respect to changes in
what is traded and when it is traded. These results are at odds with the standard random walk
null-hypothesis and the efficient market hypothesis. This hypothesis leads to the conclusion
that stock and currency markets are unpredictable.

The question we address here is whether the cooperative herding behaviour of traders
might also produce market evolutions that are symmetric to the accelerating speculative
bubbles often ending in crashes. This symmetry is performed with respect to a time inversion
around a critical time ¢. such that t. — ¢ for ¢ < t. is changed into ¢ — ¢, for ¢ > t.. This
symmetry implies to look at decelerating devaluations instead of accelerating valuations. A
related observation has been reported in our first paper [III] showing that the implied volatility
of traded options, which is a measure of the perceived market risk, has relaxed after the Oct.
1987 crash to its long-term value, from a maximum at the time of the crash, over a time-scale
of about a year, according to a decaying power law with decelerating log-periodic oscillations.
It is this type of behaviour that we document now but for real prices.

We show that there seems to exist critical times t. at which the market culminates,
with either a power law increase with accelerating log-periodic oscillations or a power law
decrease with decelerating log-periodic oscillations. We have not found a market for which
both phenomena are simultaneously observed for the same t.. The main reason is that
accelerating markets with log-periodicity almost always end-up in a crash, a market rupture
that thus breaks down the symmetry (t.—t for ¢t < t. into t—t, for t > t.). The main message



that we draw here is that herding behaviour can progressively occur and strengthen itself in
“bearish” (decreasing) market phases, even if the preceding “bullish” phase ending at t. was
not characterised by a strengthening imitation. The symmetry is thus statistical or global and
holds in the ensemble rather than for each single case individually. The breakdown of local
symmetry around the critical point ¢, is not unknown in thermodynamic phase transitions.
Let us mention the A—transition in  He, so named because of the asymmetric shape of the
specific heat around T3 with a more abrupt decay above T than below [[I§] qualitatively
similar to a market price time series around a crash.

The organisation of the paper is as follows. We first present the Landau expansion and
its extension to third-order. The three derived log-periodic formulas are used to fit the
Japanese Nikkei index drop since 1990. They agree very well in the domains where they
overlap, not only in their shape but also in the coherence of their parameters. The new
third-order formula gives an excellent fit up to the end of 1998 and provides a prediction
for the general trend of 1999 and 2000. Further empirical evidence is presented on the Gold
devaluation a few months after its peak in 1980 over a period of more than two years. From
parametric fits with log-periodic formulas and a non-parametric log-periodic power spectrum
analysis, we find strong evidence of structures very similar to those found previously prior
to crashes. We then propose a simple dynamical model of imitative “bearish” market, which
using the empirical tests, lead to the prediction that the relative strength of the optimistic
phase in an otherwise pessimistic bearish market is stronger than the occasional pessimism
in an otherwise speculative bullish bubble.

2 Data analysis: Nikkei and Gold

2.1 Landau expansion and log-periodic formulas

A very powerful and general tool used in the studies of critical phase transitions is that of
Landau expansions. They amount to assuming some functional relationship F' (1) between
the relevant observable F' and the corresponding governing parameter 7. With respect to the
financial markets, the observable can be the price (or some measure of it) and the governing
parameter is time (or some measure of it). In Ref.[fJ], we have proposed a general form for
an evolution equation for the complex variable F', obtained by expanding F' around 0 as

dlog F' (1)

dlog T =aF (1) + B|F (1) |2F(7')..., (1)

where in general the coefficients may be complex. In this expansion, only terms that ensure
that the equation remains invariant with respect to a change of phase ¢ — ¢ + C where

F = Be' (2)

are allowed since a phase translation corresponds to a change of time units [J].
A first (keeping only the aF (7) term in the r.h.s. of ([[)) and second order solution
(keeping the two first terms in the r.h.s. of ([l)) gives the following two equations for the

price (or some measure of it) evolution [f]

p(t) =~ A+ Br%+C71%cos[wlog (1) + ¢] (3)
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where 7 = t. — t. The log-periodic frequency w is related to the prefered scaling ratio by
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These two equations (i) describe the evolution of the price prior to a time ¢., where a large
crash may occur, i.e., t < t.. Equation fJ have been found to describe the price evolution up
to 3 years prior to large crashes [[[1] and eq. ] up to 8 years [J]. Observe that eq.(f]) predicts
the transition from the log-frequency w close to t. to w + A, far from t. (i.e. for 7 > Ay).

From the point of view of critical points and within Landau expansions, there is nothing
special about the direction of the “flow” or equivalently the sign of 7 in eq. [[. We thus propose
to use equations (B,d) replacing 7 with —7 (or t, —t with ¢ —t..), where now ¢ > t.. This novel
situation corresponds to the case of a (power law) decaying price, i.e., an “anti-‘bubble” or,
in financial colloquial terms, a “bearish” phase.

We will use below an extension of (J,) obtained from the Landau equation (f[) expanded
up to the next order

dlog F (7)

dlogr ~ F (M +BIF () 2E (1) +~|F (1) |*F (1) ... . (6)

Inserting () into () gives

dB
= a1 B B|’B B|*B
Jlog 7 a1B +01|BI"B + 1| B|"B (7)
do 2 4
= B B
Jlog 7 az + b2| B|* + 2| B|" (8)
where
a = ay+1ias, (9)
B = bi+iby, (10)
a = c]+icy. (11)

The solution of ([]) is given by the implicit equation

B?-B% B2
52 -\ 2¢1B2 B3 (B3 -B2)
B2 = —_ ) (12)
B2-p? |7+ 70
B2

where )
2 2
B:I: = _261 (—bl + \/ bl 4&161) . (13)

Certain conditions must hold for a solution to exist, in particular by/c; < 0 to ensure that
the first non-linear correction leads to another stable fixed point and b% > 4aqc¢1 for B to be
real.



Depending upon the values of the parameters, the solution B(7) of ([J) can take many
different functional shapes. This leads in general to the problem of model misspecification.
Here, for the purpose of simplicity, we choose the set of parameters such that the solution
can be approximated by

TC!{
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Eq.([[4) predicts the transition from the log-frequency w close to t. to w+A,, for Ay <7 < A}
and to the log-frequency w + A, + A/, for A} < 7. We stress that this corresponds to an
approzimate description of a log-frequency modulation and urge the reader to take the specific
functional form of eq. ([[4) with some caution. The purpose here is simply to parameterise
the data in order to acquire a prediction potential for the Nikkei.

p(t) = A’ +

2.2 Data analysis
2.2.1 The Nikkei “bearish” behaviour starting from 1st Jan. 1990

The most recent example of a genuine long-term depression comes from Japan, where the
Nikkei has lost close to 60 % of its all-time high achieved on 31 Dec. 1989. In figure [I], we
see the logarithm of the Nikkei from 31 Dec. 1989 until 31 dec. 1998. The fits are equations
(@), () and ([[4) respectively with all nonlinear variables free for the two first equations and
where the interval used for the first equation is until mid-1992 and for the second equation
until mid-1995. Not only do the equations (ff) and (f]) agree remarkably well with respect to
the parameter values produced by the fits, but they are also in good agreement with previous
results obtained from stock market and Forex bubbles with respect to the values of exponent
a [B, M. For the fit with (I4), due to the large number of free variables, we performed
differently. Of the 6 parameters t., a, A, w, A, and ¢’ determined from the fit with ({) we
kept the first 3 fixed and only A;, A}, A,, A/, and ¢’ where allowed to adjust freely. The
results are given in the caption of figure [[. What lends credibility to the fit with eq. ([[4) is
that despite it complex form, we get values for the two cross-over time scales A;, A} which
correspond very nicely to what is expected from the Landau expansion: A; has moved down
to 4.4 years, which is perfect with respect to the interval used for the two frequency formula
() and A} is approximately 7.8 years, which is also fully compatible with the nine year
interval of the fit. This does not mean that the cost-function space is not very degenerate,
it is, but the ranking of A; and A} is always the same and the values given does not deviate
much from the ones in the caption of figure 3, i.e., by 4 one unit.

The value obtained for w = 4.9 correspond to a scaling ratio A ~ 3.6, which is significantly
larger than the 2.2 < A < 2.7 previously obtained for the stock market [[lI]. An additional
difference between the Nikkei and previous results is the strength of the oscillations compared
to the leading behaviour. For the Nikkei, it is ~ 20%, i.e., 2 to 3 times as large as the
amplitude ~ 5 — 10% previously obtained for the stock market and the Forex [[[]]. We note
that the fit with eq. (B) only produced the solution shown, whereas equations (ff) and ([[4)
produce multiple solutions. The solutions of equations () and ([[4) shown in figure [ are the
best solutions found which satisfies the criteria discussed in [, f].
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2.2.2 The gold deflation price starting mid-1980

Another example of log-periodic decay is that of the Gold price after the burst of the bubble
in 1980 as shown in figure fl. The bubble has an average power law acceleration as shown
in the figure but without any visible log-periodic structureﬂ. Again, we obtain a reasonable
agreement with previous results for the exponent « but the value obtained for A =~ 1.9 is now
slightly lower than previously obtained. The strength of the oscillations compared to the
leading behaviour is again ~ 10% as previously found. The fit with eq. (f) only produced
the solution shown as for the Nikkei.

2.2.3 Non-parametric power spectrum analysis

In order to qualify further the significance of the log-periodic oscillations in a non-parametric
way, we have eliminated the leading trend from the price data by the following transformation

p(t) — (A+ Bt%)
p(t) — Cna

In figure B, we plot the remaining residue for the case of gold. We then analyse this
residual structure by using a so-called Lomb periodogram, which is nothing but a power
spectrum analysis using a series of local fits of a cosine (with a phase) with some user chosen
range of frequencies. The advantage of the Lomb periodogram over a Fourier transform is
that the points does not have to be equidistantly sampled. Applying this standard technique
[[9] to the two data sets shown in figures [, we construct in figure ] the power spectrum
as a function of the log-frequency f = w/27 and find a peak at f =~ 0.82 for the Nikkei and
[~ 1.59 for the gold in good agreement with the fits of eq.s (f) and (). The value f = 0.82
obtained from the periodogram of the Nikkei corresponds to A = 3.4, which is significantly
higher than previously obtained for crashes.

Since the nature of the “noise” is unknown, we cannot estimate the confidence interval
of the peak in the standard way [[J], but the relative level of the peak for each periodogram
should be regarded a measure of the significance of the oscillations.

. (15)

3 A simple dynamical model of “bearish” herding behaviour

We start from the formulation introduced in Ref.[2(] relating the price variation to the net
order size ) over all traders, through a market impact function. Assuming that the ratio p/p
of the price p at which the orders are executed over the previous quoted price p is solely a
function of € and using the condition that it is not possible to make profits by repeatedly
trading through a close circuit (i.e. by buying and selling with final net position equal to
zero), Farmer has shown that the market impact function is an exponential

g}

=el , (16)

IS

where L is the liquidity of the market. This equation is very intuitive: if Q > 0 (demand is
larger than supply), the price increases. The reverse occurs if supply is larger than demand.

LA pure power law fit will not lock in on the true date of the crash, but insists on an earlier date than the
last data point. This suggests that the behaviour of the price might be different in some sense in the last few
weeks prior to the burst of the bubble.



The exponential dependence is interesting because it predicts that the time evolution of the
logarithm of the price is given by the following equation
dlnp 1
—L— Za()., (7)
where the net order size ) over all traders is changing as a function of time so as to reflect
the information flow in the market and the evolution of the traders’ opinions and moods.

The simplest model is that the net order size ) is a random uncorrelated noise. This
is the limit where traders are heterogeneous, uncorrelated and the information flow occurs
stochastically with no memory. This retrieves the celebrated random walk description, since
the solution of ([[7]) is that Inp performs a random walk.

The next level of description of imitative decreasing markets is to assume that there is a
pessimistic spirit permeating the market such that the net order sizes €2(¢) at successive times
are biased negatively, so that there is a trend for investors to slowly exit the market and cut
down their overall positions. However, rather than assuming that the resulting dynamics of
In p is that of a (negatively) biased random walk, we posit that the negative “bearish” mood
appears in bursts of pessimism interspersed in otherwise more neutral states characterised
by (Q2) =~ 0 or even maybe slightly positive. Furthermore, it has often been observed that
investors often behave in response to what appears to be “psychological” thresholds, like
the Nikkei crossing 15.000. We will therefore introduce such thresholds in the dynamics,
which will be found essential for the generation of log-periodicity. A possible mechanism
for the existence of threshold and irreversible price behaviour is that, in a depression or in
a negatively oriented market, cash available for investment progressively disappears to pay
debt or in favour of other markets and, once realized from a sell, may no longer be available
for continuing investment. We model this behaviour by introducing a quenched structure
in the behaviour of the net order size. Finally, we note that prices are given in point units
(0.01%) and are thus discrete. We can thus see the log-price variation as the evolution of
a walker jumping from site to site along the axis measuring its level, where the mesh size
correspond to one point.

The transitions from one log-price to another are performed according to the two possible
scenarios :

1. with probability P, the log-price surely decreases to its neighbour below him. Further-
more, if this occurs, the price is unable to recover its previous level and remains for ever
below. This is the quenched structure of the model taken as a naive approximation of
the threshold effects in financial markets.

2. with probability 1 — P, the log-price can either decrease with rate u or increase with
rate v.

Thus formulated, the model is fully equivalent to the model studied by Bernasconi and
Schneider [R1]] of a frozen random lattice constructed by choosing a given configuration of
randomly distributed mixtures of the two bond species according to their respective average
concentration P and 1 — P. The exact solution of this problem has been given in 1] and
shows very clearly nice log-periodic oscillations in the dependence of ([Inp]?) as a function of
time. A simple scaling argument has been shown [, B2 to recover, in the limit P — 1, the
exact results according to which the prefered log-periodic ratio A is given by

A =log(v/u) (18)



and the local exponent is
a =log(l — P)/log(u/v) . (19)

The mechanism of log-periodicity in this model is the result of the interplay between
the discreteness of the log-price increments and the existence of rare occurrence of time
duration d; of optimisms in an otherwise “bearish” market, which occur with a probability
exponentially small in &; as (1 — P)% (see [[[7] for a general discussion and [[[0] for another
application in strongly biased random walks in 3-d percolating networks).

This model provides a prediction that can be tested by comparing empirically determined
values of A and psychological moods of traders in the manner investigated by Shiller [PJ].
Indeed, expression (|L§) predicts that a larger A\ corresponds to a larger ratio v/u. In words,
if A\ is larger from a devaluation than for a valuation bubble, this means that the relative
strength of the optimistic phase in an otherwise pessimistic bearish market is stronger than
the occasional pessimism in an otherwise speculative bullish bubble. (The reverse hold for
smaller X’s.) The study be Shiller et al [P4] confirm this and show that Japanese investors
are considerable more optimistic about future trends in a decreasing Japanese stock market
than in an increasing American stock market.

4 Conclusion

We have suggested that the analogy between financial crashes and critical phenomena can be
extended to include a qualitative ensemble symmetry with respect to the time direction. In
terms of the behaviour of the financial markets, this implies that power law decay of prices
possibly decorated by log-periodic oscillations can be found. We find this indeed to be the
case for the Nikkei stock market index and the price of gold futures. In both cases, a good
agreement is obtained between the values of the power law exponent for the decay of the two
fits and the values previously found for the power law increase in the market prices prior to
large financial crashes. Furthermore, the strength of the oscillations compared to the leading
behaviour indicates that they cannot be neglected. Indeed, the Nikkei case provides us with
the strongest log-periodic signature identified in financial markets to this date, as clearly
illustrated by the frequency analysis presented in figure [ (compare the size of the peak to
the background level).

However, the proposed time-symmetry operates only on an ensemble level, i.e., nowhere
have we found log-periodicity for an increasing market followed by a decreasing market around
the same critical time ¢.f. Furthermore, the values found for log-frequencies and the corre-
sponding prefered scale ratios A are found less universal than for speculative bubbles ending
in crashes. That A differs for the Nikkei and the gold is not surprising. Gold plays a rather
special role as a refuge in times of economic recession and strong pessimism, which was partly
the reason for its bubble of the late seventies. Hence, the decay of the gold price in the early
eighties does not coincide with a period of economic depression, but rather to the opposite
where this refuge is abandoned in favour of more profitable investments in bullish times.
In contrast, the decay of the Nikkei is the signature of an overall Japanese recession. It is
thus not surprising that a market with a single commodity with such special characteristics
displays more rapid oscillations with A =~ 1.9 than that of a global stock market.

2 Although the case of gold comes “close”.



The results published in [I]] for the 6 stock market and Forex bubbles indicates A\ =
2.5 + 0.3 with the exception of the bubble of the US$ against the CHF, which gave \ ~ 3.4.
However, the log-periodic signatures in this case were weaker than in the other 5 cases, i.e.,
only of ~ 6 % of the leading behaviour. Hence, the larger value presumably results from the
uncertainties in the parameter estimation.

In contrast, the log-periodic signatures seen for the decay of the Nikkei are the strongest
obtained for the stock market as well as the Forex. This indicates that the larger value
A = 3.4—3.6 is not accidental and suggests that depressions belong to a different universality
class for log-periodicity. This is maybe not surprising to find oscillations of a lower log-
frequency for a depression than for a speculative bubble: according to our model, a larger A
corresponds to a larger ratio v/u, which means that the relative strength of the optimistic
phase in an otherwise pessimistic bearish market is stronger than the occasional pessimism
in an otherwise speculative bullish bubble. The large A found for the depressed Nikkei then
reflect the fundamental psychological asymmetry between optimism and pessimism.
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Figure 1: Natural logarithm of the Nikkei stock market index after the start of the decline
1. Jan 1990 until 31 dec. 1998. The lines are eq. () (dotted line) fitted over an interval of
~ 2.6 years, eq. (f) (continuous line) over & 5.5 years and eq. ([[4) (dashed line) over 9 years.
The parameter values of the first fit of the Nikkei are A ~ 10.7,B ~ —0.54,C =~ —0.11,a =~
0.47,t. ~ 89.99, ¢ ~ —0.86,w ~ 4.9 for eq. (). The parameter values of the second fit of the
Nikkei are A’ ~ 10.8, B’ ~ —.70,C’ ~ —0.11,a ~ 0.41,t, ~ 89.97,¢' ~ 0.14,w ~ 4.8, A\; =~
9.5,A, ~ 4.9 for eq. (fl). The third fit uses the entire time interval and is performed by
adjusting only A, A}, A, and A/, while «, t. and w are fixed at the values obtained from
the previous fit. The values obtained for these four parameters are A; &~ 4.34, A} ~ 7.83,
A, ~ —3.10 and A}, ~ 23.4. Note that the values obtained for the two time scales A; and
A} confirms their ranking. This last fit predicts that the Nikkei should increase as the year
2000 is approached.
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Figure 2: Natural logarithm of the gold 100 Oz Future price in US $ after the decline of
the price in the early eighties. The line after the peak is is eq. (f]) fitted over an interval of
~ 2 years. The parameter values of the fit are A ~ 6.7, B ~ —0.69,C = 0.06,a =~ 0.45, ¢, =~
80.69, ¢ ~ 1.4,w ~ 9.8. The line before the peak is eq. (f]) fitted over an interval of ~ 3 years.
The parameter values of the fit are A = 8.5, B ~ —111,C ~ —110,a ~ 0.41,t. =~ 80.08, ¢ ~
—3.0,w ~ 0.05
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Figure 3: The residue as defined by the transformation ([[f) as a function of log (%) for
the 1980 gold crash.
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Figure 4: Lomb periodogram of the residue of the log(price) as definded by eq. ([[§) (as
shown in figure f for gold) of the data shown in figures [I] and f|. For each periodogram, the
significance of the peak should be estimated against the noise level.
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