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Summary. The notions of self-similarity, scaling, fractional processes and long
range dependence have been repeatedly used to describe properties of financial time
series: stock prices, foreign exchange rates, market indices and commodity prices.
We discuss the relevance of these concepts in the context of financial modelling,
their relation with the basic principles of financial theory and possible economic
explanations for their presence in financial time series.

1 Introduction

The study of statistical properties of financial time series has revealed a wealth
of interesting stylized facts which seem to be common to a wide variety of
markets, instruments and periods [15, 21, 30, 58]:

Excess volatility: many empirical studies point out to the fact that it
is difficult to justify the observed level of variability in asset returns by
variations in “fundamental” economic variables. In particular, the occur-
rence of large (negative or positive) returns is not always explainable by
the arrival of new information on the market [18].

Heavy tails: the (unconditional) distribution of returns displays a heavy
tail with positive excess kurtosis.

Absence of autocorrelations in returns: (linear) autocorrelations of
asset returns are often insignificant, except for very small intraday time
scales (~ 20 minutes) where microstructure effects come into play.
Volatility clustering: as noted by Mandelbrot [48], “large changes tend
to be followed by large changes, of either sign, and small changes tend
to be followed by small changes.” A quantitative manifestation of this
fact is that, while returns themselves are uncorrelated, absolute returns
|r¢] or their squares display a positive, significant and slowly decaying
autocorrelation function: corr(|r|,|r++-|) > 0 for 7 ranging from a few
minutes to a several weeks.
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e Volume/volatility correlation: trading volume is positively correlated
with market volatility. Moreover, trading volume and volatility show the
same type of “long memory” behavior [43].

The dependence properties of asset returns and the phenomenon of volatility
clustering have especially intrigued many researchers and oriented in a major
way the development of stochastic models in finance -GARCH models and
stochastic volatility models are intended primarily to model this phenomenon.
Also, it has inspired much debate as to whether there is long-range dependence
in volatility.

Since the 1990s we have witnessed a surge of interest in this topic with
the availability of new sources of financial data. A large number of empirical
studies on asset prices have investigated long range dependence properties
of asset returns. The concepts of self-similarity, scaling, fractional processes
and long range dependence have been repeatedly used to describe properties
of financial time series such as stock prices, foreign exchange rates, market
indices and commodity prices.

While there is a vast literature on long range dependence in asset prices,
most authors tackle the questions either from a purely theoretical perspective
or from a purely empirical one, rarely both. We will attempt to discuss the
relevance of these notions in the context of financial modelling both at a
conceptual level, in relation with the basic principles of financial theory, and
at an empirical level, by comparing them to properties of market data. Finally,
we will briefly discuss some possible economic explanations for the presence
of such properties in financial time series.

2 Dependence properties of financial time series

Denote by S; the price of a financial asset — a stock, an exchange rate or a
market index — and X; = In Sy its logarithm. Given a time scale A, the log
return at scale A is defined as:

S
r=Xipa — Xy = In( tbfA). (1)
t

A may vary between a minute (or even seconds) for tick data to several days.
Observations are sampled at discrete times t,, = nA. Time lags will be denoted
by the Greek letter 7; typically, 7 will be a multiple of A in estimations. For
example, if A =1 day, corr[ryy,,r¢] denotes the correlation between the daily
return at period ¢t and the daily return 7 periods later.

2.1 Empirical behavior of autocorrelation functions

A typical display of daily log-returns is shown in figure 1: the volatility cluster-
ing feature is seen graphically from the presence of sustained periods of high
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Fig. 1. Large changes cluster together: BMW daily log-returns. A = 1 day.

or low volatility. As noted above, the autocorrelation of returns is typically
insignificant at lags between a few minutes and a month. An example is shown
in figure 2 (left). This “spectral whiteness” of returns can be attributed to
the activity of arbitrageurs who exploit linear correlations in returns via trend
following strategies [49]. By contrast, the autocorrelation function of absolute
returns remains positive over lags of several weeks and decays slowly to zero:
figure 2 (right) shows this decay for SLM stock (NYSE). This observation is
remarkably stable across asset classes and time periods and is regarded as a
typical manifestation of volatility clustering [11, 16, 21, 30]. Similar behavior
is observed for the autocorrelation of squared returns [11] and more generally
for |ry|® [21, 22, 16] but it seems to be most significant for v = 1 i.e. absolute
returns [21].

GARCH models [11, 24] were among the first models to take into account
the volatility clustering phenomenon. In a GARCH(1,1) model the (squared)
volatility depends on last periods volatility:

r¢ = oyvare; op = ag + aor_, + bvare? 0<a+b<1 (2)
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Fig. 2. SLM stock, NYSE, A = 5 minutes. Left: autocorrelation function of log-
returns. Right: autocorrelation of absolute log-returns.

leading to positive autocorrelation in the volatility process o;, with a rate of
decay governed by a + b: the closer a + b is to 1, the slower the decay of the
autocorrelation of ;. The constraint ¢ + b < 1 allows for the existence of a
stationary solution, while the upper limit a +b = 1 corresponds to the case of
an integrated process. Estimations of GARCH(1,1) on stock and index returns
usually yield a+ b very close to 1 [11]. For this reason the volatility clustering
phenomenon is sometimes called a “GARCH effect”; one should keep in mind
however that volatility clustering is a “non-parametric” property and is not
intrinsically linked to a GARCH specification.

While GARCH models give rise to exponential decay in autocorrelations
of absolute or squared returns, the empirical autocorrelations are similar to a
power law [16, 30]:

c
Cyr (1) = corr(|re], [req-|) ~ 5

with an exponent 5 < 0.5 [16, 5], which suggests the presence of “long-range”
dependence in amplitudes of returns, discussed below.

2.2 Long range dependence

Let us recall briefly the commonly used definitions of long range dependence,
based on the autocorrelation function of a process:

Definition 1 (Long range dependence). A stationary process Y; (with
finite variance) is said to have long range dependence if its autocorrelation
function C(7) = corr(Yz, Yiyr) decays as a power of the lag T:

L(r)

1
C(T) = COI‘I‘(}/t,)/tJ,_T) 7-—>Noo E 0<d< 5 (3)
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where L is slowly varying at infinity, i.e. verifies Va > 0, LL((T;) —1ast — o0.

By contrast, one speaks of “short range dependence” if the autocorrelation
function decreases at a geometric rate:

3K > 0,c€l0,1], |O(r)] < K™ (4)

Obviously, (3) and (4) are not the only possibilities for the behavior of the
autocorrelation function at large lags: there are many other possible decays
rates, intermediate between a power decay and a geometric decay. However,
it is noteworthy that in all stochastic models used in the financial modeling
literature, the behavior of returns and their absolute values fall within one of
the two categories.

Although there had been considerable development of statistical meth-
ods for processes with long-range dependence in the physical sciences, espe-
cially hydrology and agronomy, it was Granger [29] in 1966 who alerted the
econometrics community to the ubiquity of time series with preponderance of
spectral power near the origin, referring to this property as determining ”the
typical spectral shape of an economic variable”.

2.3 Long range dependence and self-similarity

The long range dependence property (3) hinges upon the behavior of the auto-
correlation function at large lags, a quantity which may be difficult to estimate
empirically [9]. For this reason, models with long-range dependence are often
formulated in terms of self-similar processes, which allow to extrapolate across
time scales and deduce long time behavior from short time behavior, which is
more readily observed. A stochastic process (X;)¢>o is said to be self-similar
if there exists H > 0 such that for any scaling factor ¢ > 0, the processes
(Xet)e>0 and (¢ X;);>0 have the same law:

(Xet)iz0 2(c X¢)ez0- (5)

H is called the self-similarity exponent of the process X. Note that a self-
similar process cannot be stationary, so the above definition of long-range
dependence cannot hold for a self-similar process, but eventually for its incre-
ments (if they are stationary).

In 1968 Mandelbrot and Van Ness [53] provided the connection between
self-similar processes and long-range dependence in stationary time series
via fractional Gaussian noise, and produced its spectral density f(\) ~
cu|A'2# (3 < H < 1) with an integrable pole at the origin, leading to
the notion of “1/f-noise”. Fractional Brownian motion is a typical example of
self-similar process whose increments exhibit long range dependence: a frac-
tional Brownian motion with self-similarity exponent H €]0, 1] is a real cen-
tered Gaussian process with stationary increments (Bf);>¢ with covariance
function:
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1
cov(B/, BI) = g(ltle + s — [t — s*). (6)

For H = 1/2 we recover Brownian motion. For H # 1/2, the covariance of the
increments decays very slowly, as a power of the lag; for H > 1/2 this leads
to long-range dependence in the increments [53, 64].

But self-similarity does not imply long-range dependence in any way: a-
stable Lévy processes provide examples of self-similar processes with inde-
pendent increments. Nor is self-similarity implied by long range dependence:
Cheridito [13] gives several examples of Gaussian processes with the same
long range dependence features as fractional Brownian noise but with no self-
similarity (thus very different “short range” properties and sample path be-
havior).

Comparing fractional Brownian motions and a-stable Lévy processes
shows that self-similarity can have very different origins: it can arise from
high variability, in situations where increments are independent and heavy-
tailed (stable Lévy processes) or it can arise from strong dependence between
increments even in absence of high variability, as illustrated by the example
of fractional Brownian motion. These two mechanisms for self-similarity have
been called the “Noah effect” and the “Joseph effect” by Mandelbrot [50].
By mixing these effects, one can construct self-similar processes where both
long range dependence and heavy tails are present: fractional stable processes
(64, 3] offer such examples.
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processes
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Fig. 3. Self-similar processes and their relation to Lévy processes and Gaussian
processes.
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2.4 Are stock prices self-similar?

As noted above, the example of fractional Brownian motion is thus mislead-
ing in this regard, since it conveys the idea that these two properties are
associated. When testing for long range dependence in a model based on frac-
tional Brownian motion, we thus test the joint hypothesis of self-similarity
and long-range dependence and strict self-similarity is not observed to hold in
asset returns [15, 16]. One should therefore distinguish general tests for self-
similarity from tests of particular parametric models (such as a-stable Lévy
processes or fractional Brownian motions).

A consequence of selfsimilarity is that for any ¢, t > 0, X.; and ¢ X, have
the same distribution. Choosing ¢ = 1/t yields

V>0, X, X, (7)

so the distribution of X3, for any ¢, is completely determined by the distribu-
tion of X7:

x

Fi(z) =P(t"X, <z)= Fi(5)- (8)

In particular if the tail of F} decays as a power of x, then the tail of F; decays
in the same way:

P(Xlzl’) ~ %:> [Vt>0, ]P)(Xlzl‘) ~ Oﬁzc(t)] (9)

T—00 T T—00 e T

If F} has a density p; we obtain, by differentiating (8), the following relation
for the densities:

o) = (7). (10)

Substituting = 0 in (10) yields the following scaling relation:

Yt >0, py(0) = p;}f% (11)

Let us now consider the moments of X;. From (7) it is obvious that E[| X;|*] <
oo if and only if E[|X1[¥] < oo in which case

E[X:] =t"'E[X1], var(X;) = t*var(X,), (12)
E[|X|"] = t*7 B[ X1]"]. (13)

Assume that the log-price X; = In S; is a process with stationary incre-
ments. Since Xy A — Xy has the same law as X, the density and moments
of X A can be estimated from a sample of increments.

The relation (11) has been used by several authors to test for self-similarity
and estimate H from the behavior of the density of returns at zero: first one
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estimates p;(0) using the empirical histogram or a kernel estimator and then
obtains an estimate of H as the regression coefficient of In p;(0) on Int:

t

Applying this method to S&P 500 returns, Mantegna and Stanley [54] ob-
tained H ~ 0.55 and concluded towards evidence for an a-stable model with
a =1/H ~ 1.75. However, the scaling relation (11) holds for any self-similar
process with exponent H and does not imply in any way that the process is a
(stable) Lévy process. For example, (11) also holds for a fractional Brownian
motion with exponent H — a Gaussian process with correlated increments
having long range dependence! Scaling behavior of p;(0) is simply a necessary
but not a sufficient condition for self-similarity: even if (11) is verified, one
cannot conclude that the data generating process is self-similar and even less
that it is an a-stable process.

Another method which has often been used in the empirical literature to
test self-similarity is the “curve collapsing” method: one compares the aggre-
gation properties of empirical densities with (10). Using asset prices sampled
at interval A, one computes returns at various time horizons nA,n=1... M
and estimates the marginal density of these returns (via a histogram or a
smooth kernel estimator). The scaling relation (10) then implies that the den-
sities ppa(x) and n%, pa(75 ) should coincide, a hypothesis which can be tested
graphically and also more formally using a Kolmogorov—-Smirnov test.

Although self-similarity is not limited to a-stable processes, rejecting self-
similarity also leads to reject the a-stable Lévy process as a model for log-
prices. If the log-price follows an a-stable Lévy process, daily, weekly and
monthly returns should also be a-stable (with the same «). Empirical esti-
mates [1, 10] show a value of o which increases with the time horizon. Fi-
nally, various estimates of tail indices for most stocks and exchange rates
[1, 35, 45, 33, 44, 46] are often found to be larger than 2, which rules out
infinite variance and stable distributions.

2.5 Dependence in stock returns

The volatility clustering feature indicates that asset returns are not indepen-
dent across time; on the other hand the absence of linear autocorrelation
shows that their dependence is nonlinear. Whether this dependence is “short
range” or “long range” has been the object of many empirical studies.

The idea that stock returns could exhibit long range dependence was first
suggested by Mandelbrot [49] and subsequently observed in many empirical
studies using R/S analysis [52]. Such tests have been criticized by Lo [42] who
pointed out that, after accounting for short range dependence, they might
yield a different result and proposed a modified test statistic. Lo’s statistic
highly depends on the way “short range” dependence is accounted for and
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shows a bias towards rejecting long range dependence [66]. The final empirical
conclusions are therefore less clear [67].

However, the absence of long range dependence in returns may be compat-
ible with its presence in absolute returns or “volatility”. As noted by Heyde
[32], one should distinguish long range dependence in signs of increments,
when sign(r;) verifies (3), from long range dependence in amplitudes, when
|r¢| verifies (3). Asset returns do not seem to possess long range dependence
in signs [32]. Many authors have thus suggested models, such as Fractionally
Integrated GARCH models [6], in which returns have no autocorrelation but
their amplitudes have long range dependence [5, 23].

It has been argued [39, 7] that the decay of C|,|(7) can also be reproduced
by a superposition of several exponentials, indicating that the dependence
is characterized by multiple time scales. In fact, an operational definition of
long range dependence is that the time scale of dependence in a sample of
length T is found to be of the order of T": dependence extends over the whole
sample.! Interestingly, the largest time scale in [39] is found to be of the order
of...the sample size, a prediction which would be compatible with long-range
dependence!

Many of these studies test for long range dependence in returns, volatility;,..
by examining sample autocorrelations, Hurst exponents etc. but if time series
of asset returns indeed possess the two features of heavy tails and long range
dependence, then many of the standard estimation procedures for these quan-
tities may fail to work [9, 61]. For example, sample autocorrelation functions
may fail to be consistent estimators of the true autocorrelation of returns in
the price generating process: Resnick and van der Berg [62] give examples of
such processes where sample autocorrelations converge to random values as
sample size grows! Also, in cases where the sample ACF is consistent, its esti-
mation error can have a heavy-tailed asymptotic distribution, leading to large
errors. The situation is even worse for autocorrelations of squared returns [62].
Thus, one must be cautious in identifying behavior of sample autocorrelation
with the autocorrelations of the return process.

Slow decay of sample autocorrelation functions may possibly arise from
other mechanism than long-range dependence. For example, Mikosch & Star-
ica [56] note that nonstationarity of the returns may also generate spurious
effects which can be mistaken for long-range dependence in the volatility.
However, we will not go to the extreme of suggesting, as in [56], that the slow
decay of sample autocorrelations of absolute returns is a pure artefact due
to non-stationarity. “Non-stationarity” does not suggest a modeling approach
and it seems highly unlikely that unstructured non-stationarity would lead
to such a robust, stylized behavior for the sample autocorrelations of abso-
lute returns, stable across asset classes and time periods. The robustness of
these empirical facts call for an explanation, which “non-stationarity” does
not provide. Of course, these mechanisms are not mutually exclusive: a recent

! On this point, see also [51].
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study by Granger and Hyng [27] illustrates the interplay of these two effects
by combining an underlying long memory process with occasional structural
breaks.

3 Fractional processes and arbitrage constraints

A fallacy often encountered in the literature is that “long range dependence
in returns is incompatible with absence of arbitrage”, therefore ruled out by
financial theory. This idea is so widespread that it is worthwhile discussing it
here.

The problem stems from the fact that fractional Brownian motions and
several related fractional processes do not belong to the class of semimartin-
gales. We will review this notion briefly and discuss its implications for frac-
tional models in finance.

3.1 Stochastic integrals and trading gains

Let us consider a financial asset whose price is modeled by a stochastic process
Sy defined on a probability space (£2, F;,P). If an investor trades at times
To=0<Ty < - < T, <Thy1 =T, detaining a quantity ¢; of the asset
during the period |T;, T;11] then the capital gain resulting from fluctuations
in the market price is given by

Z¢i(STi+l - STi)' (15)
=0

This nonanticipative quantity, which represents the capital gain of the investor
following the strategy ¢, is called the stochastic integral of the process

o= ¢l 1) (16)
1=0

with respect to S and denoted by fOT ¢+dS;. Here the trading times 7T; can
be nonanticipative random times —buys or sells can be triggered by recent
price behavior— and ¢; are nonanticipative bounded random variables. ¢ is
then called a simple predictable process: such processes are the mathematical
representations of realistic trading strategies, which consist in buying and
selling a finite number of times in [0, 7]. Denote the set of simple predictable
processes by S([0,T7).

In the setting of Ito integration theory, stochastic integration is devel-
oped with respect to a class of stochastic processes known as semimartingales:
these processes can be defined via their decomposition as a bounded varia-
tion process (signal) plus a local martingale (noise) [20] or, alternatively, as
processes S for which the stochastic integral defined by (15) is continuous?

2 The fact that these two definitions of semimartingales coincide is a deep result,
due to Dellacherie-Mokobodski-Meyer, see [60].
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[55, 60] in the following sense: for any sequence of simple predictable processes

(¢") € ([0, T]) if

T T
sup |p7 (w) — p¢(w)| — O then / onds o ¢dS. (17)
(t,w)€[0,T]x 2 n—00 0 n=o0 Jo

This stability property of stochastic integrals then allows to extend the set
of integrands to processes ¢ which can be expressed as limits of nonanticipa-
tive Riemann sums —as in (15)— of simple predictable processes. This allows
to consider more general strategies in a set A larger than S([0,7]) and al-
low for “continuous trading”. An important point is that the Ito integral is
both nonanticipative and can be interpreted, as in (15), in terms of the gains
from trading. This important remark, first pointed out in [31], isolates Ito
integration theory as the appropriate one for use in financial modelling,.

Fractional Brownian motion with H # 1/2 is not a semimartingale. This
result can be shown in several ways, see [63]. The implication is that, in a
model where the stock price is described by a function of a FBM, one cannot
extend the construction of the gains process (15) to strategies beyond S([0, T)
in a continuous way. Alternative constructions of the stochastic integral do ex-
ist: various extensions have been proposed which allow to construct stochastic
integrals with respect to fractional Brownian motion and several authors have
attempted to construct financial models using them. But it should be noted
from the onset that such approaches are doomed to produce results whose
financial interpretation is dubious: the only integral which can be interpreted
in terms of the capital gain of a trading strategy is (15), and any other one will
either anticipate on the future and/or not coincide with the gains of simple
strategies.

However, it should be kept in mind that the set S([0,T7]) already contains
any reasonable trading strategy. And, for computing the gain foT ¢.dS of such
strategies there is no need for S to be a semimartingale. Thus fractional
processes with any sample path structure can be used as long as we limit
ourselves to constructive problems (as opposed to existence theorems such as
martingale representations) based on simple strategies.

In fact, S([0,T]) already contains too many unrealistic strategies, which
require to trade very frequently since the number of trades n can be arbitrarily
large. One can define restricted sets where such infinitely frequent trading is
excluded (see below).

3.2 Martingales, semi-martingales and arbitrage

An arbitrage strategy is defined as a strategy ¢ € A which realizes a possibly
non-zero gain by starting from a zero initial capital:

T
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Note that the definition of arbitrage depends on the set of possible strategies
A and on the definition of the stochastic integral.

Arbitrage pricing theory is based on a fundamental result of Harrison and
Pliska [31], who show a model of price evolution is arbitrage-free if and only
if the (discounted) price S; of any asset can be represented as the conditional
expectation of its final value Sy with respect to some probability measure

Q~P:
JQ ~ P, S, = EQSy|F] (19)

In particular, S; is a martingale under Q. A precise statement of this results
involves the specification of the set of admissible strategies A, which is taken to
be much larger than S([0, T]) [19], usually containing all predictable processes
¢ such that fot ¢dS is bounded.

Under the (real-world) model P, S; is not a martingale necessarily, but it is
a still a semi-martingale: this property is preserved under equivalent changes
of measure [60]. Since fractional Brownian motion is not a semimartingale, a
model in which the (log)-price are described by a fractional Brownian motion
is not arbitrage-free, in the sense that there exists a strategy ¢ € A verifying
(18).

But this result and the fact that fractional Brownian motions fail to be
semimartingales crucially depend on the local behavior of its sample paths,
not on its long range dependence property. Cheridito [12] and Rogers [63] give
several examples of Gaussian processes with the same long range dependence
features as fractional Brownian motion, but which are semimartingales and
lead to arbitrage-free models. A starting point for such constructions is the
moving average represenation for fractional Brownian motion:

BE =k [ (=97 = (o),

where W, is a Brownian motion, H € (0,1) is the self-similarity parameter
and k is a suitable normalizing constant. Rogers [63] proposes a model which
has the same long range dependence properties as Brownian motion but is a
semimartingale, in the following way:

- [ ; ot - s)aw. + [ OOO o(—5)dW,.

where ¢ € C%(R), $(0) = 1, ¢/(0) = 1 and limy_,, ¢” (£)t*/>~H# € (0,00). An
example of a kernel verifying this property is

Blt) = (e+ )20/

Also, a closer look shows that even fractional Brownian motion and frac-
tional processes are not ruled out by arbitrage considerations. The fact that
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FBM is not a semimartingale implied the existence of ¢ € A verifying (18):
Rogers [63] offers examples of such strategies. However, these strategies can
only be performed if it is possible to buy and sell within arbitrarily small
time intervals. Arbitrage can be ruled out from fractional Brownian models
by introducing a minimal amount of time h ; 0 that must lie between two
consecutive transactions i.e. considering strategies in

S"([0,7) = {3 éilyr, 1) €S0, 7)), inf(Tipa = T5) > b} (20)
1=0

As shown by Cheridito [12], no arbitrage can be constructed using strategies
in =0 S™([0,77), i.e. no matter how frequently one trades.

Thus, the semi-martingale property is more a question of theoretical con-
venience, allowing not to worry constantly about the class of admissible strate-
gies in theoretical developments, rather than a constraint on the models to
be used. Finally, we have noted that long-range dependence has no relation
with the semi-martingale property —which is a property of the fine structure
of sample paths— and only when it is coupled to self-similarity (in the case of
fractional processes) does it interfere with the semimartingale property.

But the main conclusion of this discussion is that the question of the
adequacy of stochastic processes with long range dependence, and in particular
models based on fractional Brownian motion, for modeling asset prices is
mainly an empirical one: theoretical restrictions imposed by arbitrage are
quite weak and cannot be used as arguments to exclude a family of stochastic
processes as possible models. On the empirical side, however, there is a lot of
evidence pointing to positive dependence over large time horizons in absolute
returns [5, 15, 16, 21, 43, 57] but not in the returns themselves, showing that
it is more interesting to use fractional processes as models of volatility rather
than for modeling prices directly [14, 6, 57].

4 Economic mechanisms for long range dependence

While fractional processes may mimick volatility clustering in financial time
series, they do not provide any economic explanation for it. The fact that
these observations are common to a wide variety of markets and time periods
[15] suggest that common mechanisms may be at work in these markets. Many
attempts have been made to trace back the phenomenon of long range depen-
dence in volatility to economic mechanisms present in the markets generating
this volatility.

Independently of the econometric debate on the “true nature” of the re-
turn generating process, one can take into account such empirical observations
without pinpointing a specific stochastic model by testing for similar behavior
of sample autocorrelations in such economic models and using sample auto-
correlations for indirect inference [26] of the parameters of such models.
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4.1 Heterogeneity in time horizons of economic agents

Heterogeneity in agent’s time scale has been considered as a possible origin for
various stylized facts [30]. Long term investors naturally focus on long-term
behavior of prices, whereas traders aim to exploit short-term fluctuations.
Granger [28] suggested that long memory in economic time series can be due
to the aggregation of a cross section of time series with different persistence
levels. This argument was proposed by Andersen & Bollerslev [2] as a pos-
sible explanation for volatility clustering in terms of aggregation of different
information flows.

The effects of the diversity in time horizons on price dynamics have also
been studied by Lebaron [38] in an artificial stock market, showing that the
presence of heterogeneity in horizons may lead to an increase in return vari-
ability, as well as volatility-volume relationships similar to those of actual
markets.

4.2 Evolutionary models

Several studies have considered modeling financial markets by analogy with
ecological systems where various trading strategies co-exist and evolve via a
“natural selection” mechanism, according to their relative profitability [4, 38].
The idea of these models, the prototype of which is the Santa Fe artificial stock
market [4, 40], is that a financial market can be viewed as a population of
agents, identified by their (set of) decision rules. A decision rule is defined
as a mapping from an agents information set (price history, trading volume,
other economic indicators) to the set of actions (buy, sell, no trade). The evo-
lution of agents decision rule is often modeled using a genetic algorithm. The
specification and simulation of such evolutionary models can be quite involved
and specialized simulation platforms have been developed to allow the user to
specify variants of agents strategies and evolution rules. Other evolutionary
models represent the evolution by a deterministic dynamical system which,
through the complex price dynamics it generate, are able to mimick some
“statistical” properties of the returns process, including volatility clustering
[34]. However due to the complexity of the models they are not amenable to
a direct comparison with financial data.

4.3 Switching between trading strategies

Another mechanism leading to long range dependence is switching of agents
trading behavior between two or more strategies. The economic literature con-
tains examples where switching of economic agents between two behavioral
patterns leads to large aggregate fluctuations [36]: in the context of financial
markets, these behavioral patterns can be seen as trading rules and the result-
ing aggregate fluctuations as large movements in the market price i.e. heavy
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tails in returns. Recently, models based on this idea have also been shown to
generate volatility clustering [37, 47].

Lux and Marchesi [47] study an agent-based model in which heavy tails
of asset returns and volatility clustering arise from behavioral switching of
market participants between fundamentalist and chartist behavior. Funda-
mentalists expect that the price follows the fundamental value in the long
run. Noise traders try to identify price trends, which results in a tendency to
herding. Agents are allowed to switch between these two behaviors accord-
ing to the performance of the various strategies. Noise traders evaluate their
performance according to realized gains, whereas for the fundamentalists, per-
formance is measured according to the difference between the price and the
fundamental value, which represents the anticipated gain of a “convergence
trade”. This decision-making process is driven by an exogenous fundamental
value, which follows a Gaussian random walk. Price changes are brought about
by a market maker reacting to imbalances between demand and supply. Most
of the time, a stable and efficient market results. However, its usual tranquil
performance is interspersed by sudden transient phases of destabilization. An
outbreak of volatility occurs if the fraction of agents using chartist techniques
surpasses a certain threshold value, but such phases are quickly brought to
an end by stabilizing tendencies. This behavioral switching is believed be the
cause of volatility clustering and heavy tails in the Lux-Marchesi model [47].

Kirman and Teyssiere [37] have proposed a variant of [36] in which the
proportion «(t) of fundamentalists in the market follows a Markov chain,
of the type used in epidemiological models, describing herding of opinions.
Simulation of this model exhibit autocorrelation patterns in absolute returns
with a behavior similar to those observed in returns.

Ghoulmie, Cont and Nadal [17] propose a model where agents compare a
common information (signal) to an individual threshold, whose value is hetero-
geneous across agents. These thresholds are dynamically updated based on re-
cent price volatility. It is shown in [17] that, without any chartist/fundamentalist
competition nor any direct interaction between agents, this model is capable
of generating volatility clustering while maintaining absence of linear corre-
lations in returns. This model points to a link between investor inertia and
volatility clustering and provide an economic explanation for the switching
mechanism proposed in the econometrics literature as an origin of volatility
clustering.

4.4 Investor inertia

As argued by Liu [41], though the presence of a Markovian regime switching
mechanism in volatility can lead to volatility clustering, is not sufficient to
generate long-range dependence in absolute returns. More important than the
switching is the fact the time spent in each regime —the duration of regimes—
should have a heavy-tailed distribution [59, 65]. By contrast with Markov
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switching, which leads to short range correlations, this mechanism has been
called “renewal switching”.

Bayraktar et al. [8] study a model where an order flow with random, heavy-
tailed, durations between trades leads to long range dependence in returns.
When the durations 7,, of the inactivity periods have a distribution of the
form P(7, >t) =t~ *L(t), conditions are given under which, in the limit of a
large number of agents randomly submitting orders, the price process in this
models converges to a a process with Hurst exponent H = (3 — «)/2 > 1/2.
In this model the randomness (and the heavy tailed nature) of the durations
between trades are both exogenous ingredients, chosen in a way that generates
long range dependence in the returns. However, as noted above, empirical
observations point to clustering and persistence in wvolatility rather than in
returns so such a result does not seem to be consistent with the stylized facts.

By contrast, as noted above, regime switching in wvolatility with heavy-
tailed durations could lead to volatility clustering. Although in the agent-
based models discussed above, it may not be easy to speak of well-defined
“regimes” of activity, but Giardina and Bouchaud [25] argue that this is indeed
the mechanism which generates volatility clustering in the Lux-Marchesi [47]
and other models discussed above. In these models, agents switch between
strategies based on their relative performance; Giardina and Bouchaud argue
that this (cumulative) relative performance index actually behaves in time
like a random walk, so the switching times can be interpreted as times when
the random walk crosses zero: the interval between successive zero-crossings
is then known to be heavy-tailed, with a tail exponent 3/2.

Ghoulmie, Cont and Nadal [17] show that investor inertia can also result
from a threshold behavior of agents: an agent will not trade in the market
unless the discrepancy between his anticipation of the value of the financial
asset and the current market price reaches a certain threshold, which may be
heterogeneous across agents. Figure 4 displays the evolution of the portfolio
m;(t) of a typical agent in this model: short periods of activity (trading) are
separated by long periods of inertia, where the portfolio remains constant.
Such “renewal switching” between periods of high and low activity, with long
durations of periods, can lead to long range dependence in volatilities [65].

5 Conclusion

Volatility clustering, manifested through slowly decaying autocorrelations for
absolute returns, is a characteristic property of most time series of financial
asset returns. Whether this “slow” decay corresponds to long range depen-
dence is a difficult question subject to an ongoing statistical debate. But is
definitely an empirical question: first principles of financial theory —such as
absence of arbitrage— cannot be invoked to give any response to it.

As noted by many econometricians [67, 56|, statistical analysis alone is
not likely to provide a definite answer for the presence or absence of long-
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Fig. 4. Investor inertia: the evolution of the portfolio of a typical agent shows long
periods of inactivity punctuated by bursts of activity.

range dependence phenomenon in stock returns or volatility, unless economic
mechanisms are proposed to understand the origin of such phenomena.

Agent-based models, which seek to explain volatility clustering in terms of
behavior of market participants, have been proposed in order to explain long
range dependence in volatility. A common feature of these models seems to be
the “switching” of the market between periods of high and low activity, with
long durations of periods. As we have noted, such “renewal switching” can
lead to long range dependence in volatilities if the market switches between
regimes of high and low volatility. The link between such economic models
and the realm of stochastic models in finance is intriguing and remains an
active topic of research at the time of writing.
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