
512 Chapter 12. Fast Fourier Transform

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with
isign = −1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms, each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numbered fj as
one data set, and the odd-numbered fj as the other. The beauty of this is that
we can take the original real array and treat it as a complex array hj of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking is required. In other words
hj = f2j + if2j+1, j = 0, . . . , N/2− 1. We submit this to four1, and it will give
back a complex array Hn = F e

n + iF o
n , n = 0, . . . , N/2 − 1 with

F e
n =

N/2−1∑

k=0

f2k e
2πikn/(N/2)

F o
n =

N/2−1∑

k=0

f2k+1 e
2πikn/(N/2)

(12.3.3)

The discussion of program twofft tells you how to separate the two transforms
F e
n and F o

n out ofHn. How do you work them into the transform Fn of the original
data set fj? Simply glance back at equation (12.2.3):

Fn = F e
n + e2πin/NF o

n n = 0, . . . , N − 1 (12.3.4)

Expressed directly in terms of the transform Hn of our real (masquerading as
complex) data set, the result is

Fn =
1

2
(Hn + HN/2−n*) − i

2
(Hn −HN/2−n*)e2πin/N n = 0, . . . , N − 1

(12.3.5)

A few remarks:
• Since FN−n* = Fn there is no point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

• Even so, we need valuesHn, n = 0, . . . , N/2 whereas four1 gives only
the values n = 0, . . . , N/2− 1. Symmetry to the rescue, HN/2 = H0.

12.3 FFT of Real Functions, Sine and Cosine Transforms 513

• The values F0 and FN/2 are real and independent. In order to actually
get the entire Fn in the original array space, it is convenient to put FN/2

into the imaginary part of F0.
• Despite its complicated form, the process above is invertible. First peel

FN/2 out of F0. Then construct

F e
n =

1

2
(Fn + F *

N/2−n)

F o
n =

1

2
e−2πin/N (Fn − F *

N/2−n)

n = 0, . . . , N/2 − 1 (12.3.6)

and use four1 to find the inverse transform of Hn = F
(1)
n + iF

(2)
n .

Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said:

#include <math.h>

void realft(float data[], unsigned long n, int isign)
Calculates the Fourier transform of a set of n real-valued data points. Replaces this data (which
is stored in array data[1..n]) by the positive frequency half of its complex Fourier transform.
The real-valued first and last components of the complex transform are returned as elements
data[1] and data[2], respectively. n must be a power of 2. This routine also calculates the
inverse transform of a complex data array if it is the transform of real data. (Result in this case
must be multiplied by 2/n.)
{

void four1(float data[], unsigned long nn, int isign);
unsigned long i,i1,i2,i3,i4,np3;
float c1=0.5,c2,h1r,h1i,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta; Double precision for the trigonomet-

ric recurrences.
theta=3.141592653589793/(double) (n>>1); Initialize the recurrence.
if (isign == 1) {

c2 = -0.5;
four1(data,n>>1,1); The forward transform is here.

} else {
c2=0.5; Otherwise set up for an inverse trans-

form.theta = -theta;
}
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
np3=n+3;
for (i=2;i<=(n>>2);i++) { Case i=1 done separately below.

i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
h1r=c1*(data[i1]+data[i3]); The two separate transforms are sep-

arated out of data.h1i=c1*(data[i2]-data[i4]);
h2r = -c2*(data[i2]+data[i4]);
h2i=c2*(data[i1]-data[i3]);
data[i1]=h1r+wr*h2r-wi*h2i; Here they are recombined to form

the true transform of the origi-
nal real data.

data[i2]=h1i+wr*h2i+wi*h2r;
data[i3]=h1r-wr*h2r+wi*h2i;
data[i4] = -h1i+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr; The recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
if (isign == 1) {

514 Chapter 12. Fast Fourier Transform

data[1] = (h1r=data[1])+data[2]; Squeeze the first and last data to-
gether to get them all within the
original array.

data[2] = h1r-data[2];
} else {

data[1]=c1*((h1r=data[1])+data[2]);
data[2]=c1*(h1r-data[2]);
four1(data,n>>1,-1); This is the inverse transform for the

case isign=-1.}
}

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero at the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

Fk =
N−1∑

j=1

fj sin(πjk/N) sine transform (12.3.7)

where fj , j = 0, . . . , N − 1 is the data array, and f0 ≡ 0.
At first blush this appears to be simply the imaginary part of the discrete Fourier

transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set
of functions in the interval from 0 to 2π, and, as we shall see, the cosine transform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them an
odd function about j = N , with fN = 0,

f2N−j ≡ −fj j = 0, . . . , N − 1 (12.3.8)

Consider the FFT of this extended function:

Fk =

2N−1∑

j=0

fje
2πijk/(2N) (12.3.9)

The half of this sum from j = N to j = 2N − 1 can be rewritten with the
substitution j′ = 2N − j

2N−1∑

j=N

fje
2πijk/(2N) =

N∑

j′=1

f2N−j′e
2πi(2N−j′)k/(2N)

= −
N−1∑

j′=0

fj′e
−2πij′k/(2N)

(12.3.10)

