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Abstract

We use the Tisean C++ package to quantify chaos around
Black Monday (crash of 1987). We calculate Lyapunov exponents
following the algorithm proposed by Rosenstein et al (1993). A
positive Lyapunov exponent correlates with chaos. The negative
exponent during the time period centered around Black Monday
suggests a lack of chaos surrounding the financial crisis. . How-
ever, further tests must be done to confirm this interpretation.
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1 Introduction

Although it sounds like an oxymoron, the concept of deterministic chaos
has been gaining popularity in many fields including economics and fi-
nance. Deterministic chaos is defined as the appearance of irregular
chaotic motion in purely deterministic dynamical systems. This phe-
nomenon is considered one of the most fundamental discoveries in the
theory of dynamical systems in the second part of the last century.
Lovejoy and Schetzer (1999) argue that nonlinear scale invariant dy-

namics lead to stochastic chaos (universal multifractals). One of the
differences between deterministic and stochastic chaos is in the degrees
of freedom; from few in the former to an infinite number in the latter.
Stochastic chaos allows for the presence of richer scale invariance, e.g.
multifractals produced in cascade processes.
In finance, Corcos et al. (2002) suggest that exponentially growing

bubbles cross over to a non-linear power-law growth rate leading to a
finite time singularity. Their model is based on imitative and contrarian
behaviors in a stock market with only two agents states - bullish or
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bearish. They assert that mimicry and contradictory behavior can lead
to chaotic prices.
Guanersdorfer (2000a) study the adaptive rational equilibrium dy-

namics in a simple asset pricing model, analyzing complicated dynamics
and bifurcation routes to chaos. Chen et al (2001) assert that market
dynamics should be tested for the presence of chaos and non-linearity.
Kyrtsou and Terraza (2002) test for stochastic chaos in the evolution of
price series.
As for a stochastic process, it may not be a chaos as a whole, however,

there may exist chaos in subset of the data. Here, we use the largest
Lyapunov exponent of a small data set to describe the dynamics of the
Dow Jones Index daily A positive largest Lyapunov exponent indicates
the existence of chaos. We want to detect chaos in Dow Jones Stock
return and find some pattern around the October 19, 1987 market crash.
The multifractal nature of the time series was demonstrated in our

previous paper and the generalized dimensions revealed the topology of
the series. We would like to examine the dynamics of the system in this
paper.

2 Dynamic Stability (level of chaos)

To quantify the stability of orbits around an attractor, it is necessary to
calculate the Lyapunov exponents, i. e. the rates at which those orbits
converge or diverge. Dechert and Gençay(1992) propose an algorithm
for estimation of the Lyapunov exponents when the equations generating
the chaos are unknown. A positive largest Lyapunov exponent indicates
chaos. Bask and Gençay (1998) propose a test statistic for the presence
of chaotic dynamics using the Lyapunov exponents.
To calculate the Lyapunov exponents from time series, it is first nec-

essary to reconstruct the state space from the experimental data record:

2.1 Reconstruction of the state space
The original time series data and its time-delayed copies determine the
topological structure of a dynamical system according to the Embedding
Theorem of Takens (1981).

Y (n) = [X(t), X(t+ T ), ..., X(t+ (d− 1)T )] (1)

where Y (n) is the reconstructed ddimensional state vector, X(t) is
the observed variable, T is a time lag, and d is the embedding dimension.
→ T is calculated from the first minimum of the Average Mutual

Information (AMI) function - Fraser and Swinney (1986), Abarbanel
(1996).
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Figure 1: Definition of Lyapunov exponent

→ d is computed with the Global False Nearest Neighbors (GFNN)
method described in Abarbanel (1996).
The dynamical properties of the system are the same in both the

original and reconstructed state spaces, providing multidimensional dy-
namic information from a unidimensional time series.

2.1.1 Methodology

The correlation dimension gives an estimate of a systems complexity,
while the Lyapunov characteristic exponent estimates the level of chaos
in the dynamical system.
There are different methods for calculation of the Lyapunov expo-

nents in time series data. Here, we followed the algorithm proposed by
Rosenstein et al (1993). The algorithm is fast, easy to implement, and
robust to changes in the embedding dimension, size of data set, recon-
struction delay, and noise level. The authors suggest that the existing
methods suffer from at least one of the following:
a) unreliable for small data sets
b) computationally intensive
c) relatively difficult to implement
Therefore, they propose an algorithm estimating the separation be-

tween pairs of neighboring points in state space.
1. Reconstruction of the phase space is implemented:
I. Find the lag d as the first minimum of delayed mutual information

(MI).
II. Estimate the minimum sufficient embedding dimension m using

false nearest neighbor (FNN) method.
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Figure 2: Delayed mutual information of data subset [10798 ~14804],
this plot indicates a lag of 2.

III. Phase space representation: (x(i), x(i+ d), ...x(i+md))
2. Estimation of the Lyapunov exponent of a small data set:
We employ Hegger and Kantz’s Tisean software package to calculate

Lyapunov exponents on a subset of the Dow Jones Industrial Average
Index return series from December 9, 1971 until October 19, 1987.

3 Results

The delayed mutual information is calculated as:

s = −
X
ij

pij(τ) ln
pij(τ)

pipj
(2)

where pi is the probability of finding value in the i−th interval; while
pij is the joint probability for points with value in the i−th interval and
the observation time j.
Figure 1 gives graphical representation of the results
The false nearest neighbor method is applied to determine the em-

bedding dimension. The best estimation is the value when the percent
of false nearest neighbor falls down to zero. However, in the stochastic
data set, the percent of false nearest neighbor does not decreases to zero.
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Figure 3: The percentage of FNN generally does not go to zero for non-
deterministic data. Here, we choose the global optimum, 13, as the
embedding dimension.

Figure 2 illustrates the FNN procedure results:
Following the algorithm of Rosenstein, we estimated the largest Lya-

punov exponent of the data subset. In Figure 3, the log(δx(t)) is plotted
versus t. The slope of the line is the largest Lyapunov exponent (after
normalization of the unit of x axis). Here, we use the slope to represent
Lyapunov exponent, leaving out normalization.
In order to detect some pattern around the period of the market

crash, we apply 5000 days moving window and steps of 300. We calculate
and report the Largest Lyapunov exponents on these subsets of Dow
Jones Industrial Average index return. The largest Lyapunov exponent
is plotted against time.

Before the crisis, the market is unstable as indicated by the con-
sistently positive largest Lyapunov exponents. The largest Lyapunov
exponent specifies the maximum average rate of divergence, or insta-
bility. The presence of a positive exponent is necessary for diagnosing
chaos and represents local instability in a particular direction. For the
existence of an attractor, the overall dynamics must be dissipative, i.e.
the sum across the entire Lyapunov spectrum is negative.
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Figure 4: By plotting the log of the divergence versus time,t he exponent
is estimated by a least squares fit to the linear region. The slope of
the line is the largest Lyapunov exponent. Blue: data points. Red:
best linear fit. Here the largest Lyapunov exponent of Data I is 1e-
4 (before normalization), which indicates a possible existence of chaos.
For comparison, I calculated the largest Lyapunov exponent following
the same methodology. Lorenz attractor: 0.95, which is aggreable with
established value. Random time series uniformly distributed between 0
and 1: -6e-6.
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Figure 5: The largest Lyapunov exponent of subset of Dow Jones Stock
return as a function of time. Red line: point of financial crisis (Pc); Blue
circle: LE of data set (no Pc); Magenta *: LE of data set (including PC);
Magenta line: indicating the window size.
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4 Conclusions

The fluctuation of the maximal Lyapunov exponents around the October
1987 indicates the existence of chaos before and after the crash, while no
such indication can be seen during the crash. Given the limited time and
data resources for this project we can not bring any conclusive evidence
of chaos but we would like to suggest few directions for further research:
1. Using time series patterns detected around 1987 crash as a starting

point, can stock market crashes be predicted?
2. What are the basic behaviors of individual investors leading to

fat-tail distributions in financial time series?
3. We need to understand the underlying economic principles for a

full understanding of the dynamics surrounding stock market crashes.
4. What is the relationship between multi-fractals and chaos?
This project involves methods with only limited current popular-

ity among finance researchers. Mathematicians and physicists have ad-
vanced chaos theory research in many fields, including economics and
finance. But empirical research on non-linear dynamics in finance is
falling behind because of missing linkages in research methods. Our ex-
perience navigating research of different areas shows that sometimes it
is hard to seize an analogous approach because of terminology and in-
terpretation differences. Loss of synergy and research benefits can be
enormous under such circumstances. Therefore, one of the goals of this
research is to bring a better understanding of chaos theory and research
methods to the finance area.
Deductive discovery comes whenmeaningful empirical evidence builds

toward a solid theory. There is no extant theory supporting the chaotic
dynamics of financial markets, therefore collecting empirical evidence
about the emergence of chaotic patterns is the first logical choice.
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