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FX Market

» FXis the largest and most liquid of all financial
markets — multiple trillions a day.

» FXisan OTC market, no central exchanges.

» The major players are:
Central banks
Investment and commercial banks
Non-bank financial institutions
Commercial companies
Retails



Electronic Markets

Reuters
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EBS (Electronic Broking Service)
» Currenex

FXCM

» FXall

Hotspot

Lava FX

v
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Fees

» Brokerage
» Transaction, e.g., bid-ask



Basic Strategies

» Carry trade
» Momentum
» Valuation



Carry Trade

» Capture the difference between the rates of two
currencies.

» Borrow a currency with low interest rate.

» Buy another currency with higher interest rate.
» Take leverage, e.g., 10:1.

» Risk: FX exchange rate goes against the trade.

» Popular trades: JPY vs. USD, USD vs. AUD

» Worked until 2008.



Momentum

» FX tends to trend.
Long when it goes up.
Short when it goes down.

» Irrational traders

» Slow digestion of information among disparate
participants



Purchasing Power Parity

» McDonald’s hamburger as a currency.

» The price of a burger in the USA = the price of a burger
in Europe

» E.g., USD1.25/burger = EUR1/burger
EURUSD =1.25
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FX Index

» Deutsche Bank Currency Return (DBCR) Index

» A combination of
Carry trade
Momentum

Valuation
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CAPM

» Individual expected excess return is proportional to
the market expected excess return.

» E(ry) — 1 = ¢ [E(rM) — rf]
1;, Ty are geometric returns
TF is an arithmetic return

» Sensitivity
__ Cov(ryrym)

Br =

Var(rpy)
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Alpha

» Alpha is the excess return above the expected excess
return.

»a=1r—E(r)

» For FX, we usually assume 7 = 0.
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Bayes Theorem

» Bayes theorem computes the posterior probability of a
hypothesis H after evidence E is observed in terms of
the prior probability, P(H)
the prior probability of E, P(E)
the conditional probability of P(E|H)

P(E|H)P(H
» P(H|E) = ZE0220
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Markov Chain

S2:
MEAN-
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15



Example: State Probability
» What is the probability of observing

()= {53,51,51,51}
» P(Q|Model) = P(s3, s1, 51, S;|Model)

» = P(s3|Model) X P(s;|s3,Model) X P(s;|s{,Model) X
P(s{|s{,Model)

» =1 X0.25X0.4X0.4
» = 0.04

16



Markov Property
» Given the current information available at time
(t — 1), the history, e.g., path, is irrelevant.

» P(qelqe—1,+,q1) = P(q¢|qe-1)
» Consistent with the weak form of the efficient market
hypothesis.
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Hidden Markov Chain

» Only observations are observable (duh).
» World states may not be known (hidden).

We want to model the hidden states as a Markov Chain.

» Two assumptions:
Markov property

P(w¢lqe—1,""")q1, We—1, "+, w1) = P(w¢lq: )
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Markov Chain

S2:
MEAN-
REVERTIN

19



Problems
» Likelihood

Given the parameters, A, and an observation sequence, (2,
compute P(Q|1).

» Decoding

Given the parameters, A, and an observation sequence, (2,
determine the best hidden sequence Q.

» Learning

Given an observation sequence, {2, and HMM structure,
learn A.
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Likelihood Solutions



Likelihood By Enumeration

» P(QA) = Z{q}'SP(Q»QM)

P = Z{q}rSP(QIQ,/l) X P(Q|1)

» P(Q]Q, 1) = [I{=1 P(w¢lqe, 1)

» P(QIA) =Ty, X ag.q, X Ag,q, X X Agr_ g7
» But... this is not computationally feasible.
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Forward Procedure

» ae(i) = P(wy, wg, "+, W, 4 = Si|1)
the probability of the partial observation sequence until
time t and the system in state s; at time t.

» Initialization
a1(i) = mib;(wq)

b;: the conditional distribution of w 2 o XS
J
%3 o o

» Induction
are1(j) = [ 1 at(i)aij]bj(wt+1) o 7 " o1

» Termination () we+1(7)
P(QA1) = YN, ar(i), the likelihood
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Backward Procedure

» Be(i) = P(wer1, Wiz, 07|qe = 53, 4)
the probability of the system in state s; at time t, and the
partial observations from then onward till time t

» Initialization

ET(I’) =1 o S1
» Induction . o o S2
. _ s3
Be(i) = ?I=1 a;; bj (@We41)Be+1 () ° N
G o SN
t t+1

Be(7) Bi+1(7)
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Decoding Solutions



Decoding Solutions

» Given the observations and model, the probability of
the system in state s; is:

» Ye(@) = P(q¢ = 5i|1Q, 1)

y — P(qt=si 8|2 )
PQI)
, — ar(i)Be(i)
PQI)
y — ac(i)Be(i)

YN ar(i)Be()
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Maximizing The Expected Number Of States

> q¢ = argmaxyi<y Ve (0]

» This determines the most likely state at every instant,
t, without regard to the probability of occurrence of
sequences of states.
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Viterbi Algorithm

» The maximal probability of the system travelling these
states and generating these observations:

4 5t — maX[P(ql' d2, """, 4t = Si, Wy, °°°'wt|}l)]
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Viterbi Algorithm

» Initialization
61(i) = m;b;(wq)
» Recursion
8¢ (j) = max |8, (Day;|bj(we)

the probability of the most probable state sequence for the first t
observations, ending in state j

()= argmax[(St_l(i)aij]
the state chosen at t
» Termination
P* = max|67(i)]
q"= argmax|&7(i)]
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Learning Solutions
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As A Maximization Problem

» Our objective is to find A that maximizes P(Q|A1 ).
» For any given A, we can compute P(Q|1 ).
» Then solve a maximization problem.

» Algorithm: Nelder-Mead.
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Baum-Welch

» the probability of being in state s; at time t, and state
sj at time (¢ + 1), given the model and the observation

sequence
r &c(i,)) = P(‘It = Sirqt+1 = Sle'/l)

ﬂ?’jbj(ot—l—l)

O
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X1

» (i, )) = P(Qt = Siyqt+1 = SjmJ)
— P(CIt=Si'qt+1=Ser|/1)

’ P(QID)
- ac(Daijbj(we+1)Be+1()
o P(QD)

» ye(i) = P(qr = 5; |Q, 1)
b = ?’=1 gt(l'])
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Estimation Equation

» By summing up over time,
» ¥+(i) ~ the number of times s; is visited

» &:(i,j) ~ the number of times the system goes from
state s; to state s;

» Thus, the parameters A are:
= y, (i), initial state probabilities

aj;; ZZ 5;((11)) transition probabilities
t
Zt 1a)t vkyt(j) o . oo, o
bi(vy) = , conditional probabilities

It ve()
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Estimation Procedure

» Guess what A is.

» Compute A; using the estimation equations.

» Practically, we can estimate the initial A by Nelder-
Mead to get “closer” to the solution.
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Conditional Probabilities

» Our formulation so far assumes discrete conditional
probabilities.

» The formulations that take other probability density
functions are similar.

But the computations are more complicated, and the
solutions may not even be analytical, e.g., t-distribution.



Heavy Tail Distributions

» t-distribution
» Gaussian Mixture Model

a weighted sum of Normal distributions
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Trading Ideas

» Compute the next state.
» Compute the expected return.
» Long (short) when expected return > (<) o.

» Long (short) when expected return > (<) c.
C = the transaction costs

» Any other ideas?



Experiment Setup

» EURUSD daily prices from 2003 to 2006.
» 6 unknown factors.
» A is estimated on a rolling basis.

» Evaluations:
Hypothesis testing
Sharpe ratio
VaR
Max drawdown
alpha
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Best Discrete Case
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Figure 4.2: Using only the cross as mput data with a 30 days window and 3 states.
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Best Continuous Case
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Figure 4.8: Using only the cross as input data with a 20 days window. 4 states and 2

mixture components.
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Results

» More data (the 6 factors) do not always help (esp. for
the discrete case).

» Parameters unstable.
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TODOs

» How can we improve the HMM model(s)? Ideas?
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