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Introduction to Stochastic Modeling

Prof. Peter W. Glynn

I. Review of Probability Theory

Our principal goal, in this section, is to quickly review the basic ideas and concepts of probability
theory. For additional background and examples, please consult the text used for your prerequisite
probability class and/or the following books:

• Introduction to Probability Models by Sheldon M. Ross, Academic Press (Chapters 1 to 3)

• Probability and Statistics with Reliability, Queueing, and Computer Science Applications by
Kishor S. Trivedi, Prentice-Hall (Chapters 1 to 5)

• Probability, Statistics, and Stochastic Processes by Peter Olofsson, John Wiley (Chapters 1
to 4)

1 What is Stochastic Modeling?

Stochastic modeling concerns the use of probability to model real-world situations in which un-
certainty is present. Since uncertainty is pervasive, this means that the tools of this course can
potentially prove useful in almost all facets of one’s professional life (and sometimes even in one’s
personal life):

• Gambling

• Personal Finances

• Disease Treatment Options

• Economic Forecasting

• Product Demand

• Call Center Provisioning

• Product Reliability and Warranty Analysis, etc.

The use of a stochastic model does not imply that the modeler fundamentally believes that the
system under consideration behaves “randomly”. (For example, the behavior of an individual may
appear “random”. But an interview with that individual may reveal a set of preferences under
which that person’s behavior is then revealed as totally predictable.) Use of a stochastic model
reflects only a pragmatic decision on the part of the modeler that such a model represents the
best currently available description of the phenomenon under consideration, given the data that is
available and the universe of models known to the modeler.
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3 ELEMENTS OF BASIC PROBABILITY

2 The Basic Steps of Stochastic Modeling

The essential steps in building stochastic models are:

i) Identifying the sample space;

ii) Assigning probabilities to the elements of the sample space;

iii) Identifying the events of interest;

iv) Computing the desired probabilities.

3 Elements of Basic Probability

The set of all possible outcomes that are present in a stochastic model is called the sample space,
typically denoted as Ω. A typical element of Ω (or “outcome”) is often denoted as ω ∈ Ω.

Example 1.3.1: In tossing a coin, Ω = {H, T} is one possible choice for the sample space.
Alternatively, we could have chosen Ω = {0, 1} (0=“tails”; 1=“heads”).

Example 1.3.2: When shuffling a deck of 52 cards, a typical outcome can be viewed as a per-
mutation σ of the 52 integers {1, . . . , 52}. The sample space Ω is the set of 52! permutations on
the integers {1, . . . , 52}.

Example 1.3.3: In testing product defects coming off a production line, one possible choice of
sample space is Ω = {(i1, i2, . . .) : ij ∈ {0, 1} for j ≥ 1}, where ij = 1 if the j’th item sampled is
defective and ij = 0 otherwise.

Example 1.3.4: Suppose one is studying the lifetime of an individual. Here, we could set
Ω = [0,∞) (or use Ω = [0, 130], since 130 is an upper bound on human lifetimes).

An event is a subset of Ω. A probability P assigns numbers between 0 and 1 to events. The
probability P (A) of an event A is interpreted as the “likelihood” of the event A (under the proba-
bility model P that has been chosen). In order that P assigns probabilities in a logically consistent
manner, P must have the following properties:

i) P (Ω) = 1.

ii) For any sequence of mutually exclusive events A1, A2, . . .

P (
∞
⋃

i=1

Ai) =
∞

∑

i=1

P (Ai).

Example 1.3.1 (continued): If the coin is “fair” (or “unbiased”), P (H) = P (T) = 1/2. Other-
wise, if P (H) 6= 1/2, the coin is said to be biased.
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3 ELEMENTS OF BASIC PROBABILITY

Example 1.3.2 (continued): If the deck has been properly shuffled, all 52! permutations should
be equally likely, so P (σ) = 1/52! for each permutation σ ∈ Ω.

Example 1.3.3 (continued): One possible probability assignment is the one for which

P (Ak,n) =

(

n

k

)

pk(1 − p)n−k

for p ∈ [0, 1], where Ak,n is the event corresponding to the set of all outcomes in which exactly k of
the first n products tested are defective.

Example 1.3.4 (continued): Here, the typical form of a probability P is one for which there
exists a non-negative function f (integrating to 1) for which

P (A) =

∫

A
f(x) dx

The key mathematical idea in building stochastic models is the concept of conditional probability.
The conditional probability of A, given that B has occurred, is denoted as P (A|B) and is defined
as

P (A|B) ,
P (A

⋂

B)

P (B)

where P (B) > 0.

Example 1.3.5: A family has two children. The sample space for the children’s genders is Ω =
{(G, G), (G, B), (B, G), (B, B)}. Given that the likelihood of giving birth to a girl is almost the
same as the likelihood of giving birth to a boy, the natural probability assignment is 1/4 to all four
outcomes. What is the probability that both children are girls, given that at least one is a girl?

Here, A = {(G, G)} and B = {(G, G), (G, B), (B, G)}. So,

P (A|B) =
1/4

3/4
=

1

3
.

In building models, we often wish to involve the concept of “causality”. In a stochastic
setting, this means that A becomes more likely in the presence of B having occurred, so that
P (A|B) > P (A). If B does not influence A, then P (A|B) = P (A) and the two events are said to
be independent. Independence is equivalent to requiring that

P (A
⋂

B) = P (A)P (B).

More generally, we say that the n events A1, A2, . . . , An are independent if

P (B1

⋂

B2

⋂

· · ·
⋂

Bn) = P (B1)P (B2) · · ·P (Bn),

where (for each i), Bi equals either Ai or Ac
i .
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4 RANDOM VARIABLES

Example 1.3.3 (continued): If Ai is the event that the i’th item tested is defective, then
A1, A2, . . . , An are independent events under the probability P described earlier.

Because stochastic models are often specified in terms of conditional probabilities, the following
proposition for computing the probability of an event A is frequently useful.

Proposition 1.3.1: If B1, B2, . . . , Bn are mutually exclusive events, then

P (A) =
n

∑

i=1

P (A|Bi)P (Bi).

Example 1.3.6: Suppose we receive 500 items from Factory A and 1000 items from Factory B.
Factory A has a defective rate of 1%, whereas Factory B has a defective rate of 0.5%. What is the
probability a randomly chosen item is defective?

P (defective) = P (defective|manufactured at A) · 500

1500

+ P (defective|manufactured at B) · 1000

1500

= (0.01)

(

1

3

)

+ (0.005)

(

2

3

)

= 0.0067.

In many problem settings, we wish to compute P (Ai|B), where the P (B|Ai)’s are easily deter-
mined from the model specifications. The key to such calculations is Baye’s formula.

Proposition 1.3.2: Let A1, A2, . . . , An be mutually exclusive events. Then,

P (Ai|B) =
P (B|Ai)P (Ai)

n
∑

j=1

P (B|Aj)P (Aj)

Example 1.3.7: Suppose that 1% of all children have tuberculosis (TB). When a child who has
TB is given what is called the Mantoux test, a positive result occurs 99% of the time. When the
child does not have TB, one gets a positive result 1% of the time. Suppose that a child is tested
with a positive outcome. What is the likelihood the child actually has TB?

Let A1 be the event that the child has TB and A2 = Ac
1. If B is the event that the child tests

positive, then

P (A1|B) =
(0.99)(0.01)

(0.99)(0.01) + (0.01)(0.99)
= 0.49

So, the likelihood is a bit less than 50%!

4 Random Variables

The systematic use of “random variables” provides a powerful mathematical mechanism for formu-
lating complex stochastic models and performing related calculations. Formally, a random variable

X (rv) is a function that maps each outcome ω ∈ Ω into a number.
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4 RANDOM VARIABLES

Example 1.3.2 (continued): A typical outcome here is a permutation ω = σ. A possible rv of
interest is X(ω) = number of face cards drawn in a hand of 3 cards. Note that

P ({ω : X(ω) = 0}) =
39

52
· 38

51
· 37

50
.

In order to reduce the notational burden, we usually suppress the dependence on ω, and write
the above as

P (X = 0) =
39

52
· 38

52
· 37

52
.

Example 1.3.3 (continued): Suppose that Xi = 1 if the i’th item tested is defective and 0
otherwise. For the probability specification given earlier,

P (Xi = 1) = p = 1 − P (Xi = 0).

A rv X is said to be discrete if it can take on only a discrete set of possible values (i.e., the
set of possible values is either finite or “countably infinite”). Each of the rv’s X given above is
discrete. A rv X taking on a continuum of possible values is said to be a continuous rv.

Example 1.3.4 (continued): Suppose that X(ω) = ω, so that X is the lifetime of the individual.
Then, X is a continuous rv and

P (X ∈ A) =

∫

A
f(x) dx.

In communicating the probabilistic characteristics of a rv, it is common to speak of the distri-

bution function of a rv. In particular, the distribution function of the rv X is the function

F (x) = P (X ≤ x).

Note that it is non-decreasing, with F (−∞) = 0 and F (∞) = 1.

If X is discrete, it is common to work with the probability mass function (pmf) given by

p(x) = P (X = x).

Note that
F (x) =

∑

y≤x

p(y).

On the other hand, if X is continuous, one often works with the probability density function (pdf)
f(x). By analogy with the discrete case, F is related to the density f via

F (x) =

∫ x

−∞
f(t) dt,

so that

f(x) =
d

dx
F (x).

In contrast to the discrete case, the density f(x) can not be directly interpreted as a probability.
In particular, f(x) need not be less than 1. But it can be interpreted as a (relative) likelihood.
Suppose, for example, that we are interested in the relative likelihood

P (X ∈ [b, b + h])

P (X ∈ [a, a + h])
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5 KEY RANDOM VARIABLES

for h small. Note that

P (X ∈ [b, b + h]) = F (b + h) − F (b) ≈ h · f(b)

when h is small. So,
P (X ∈ [b, b + h])

P (X ∈ [a, a + h])
≈ h · f(b)

h · f(a)
→ f(b)

f(a)

as h ↓ 0. (A more careful argument would use l’Hospital’s rule.) So, f(b)/f(a) can indeed be
interpreted as the relative likelihood that X takes on value b rather than a.

5 Key Random Variables

The following discrete rv’s arise in many modeling contexts:

Bernoulli rv A rv X taking on the values 0 and 1 only. The rv X is said to be a Bernoulli rv
with parameter p (∈ [0, 1]) if

P (X = 1) = p = 1 − P (X = 0).

Binomial (n, p) rv A rv X is said to be a Binomial (n, p) rv if it takes on only the values
0, 1, . . . , n and

P (X = k) =

(

n

k

)

pk(1 − p)n−k.

Geometric (p) rv The rv X taking values in {0, 1, 2, . . .} is said to be geometric with parameter
p if

P (X = k) = p(1 − p)k.

Poisson (λ) rv The rv X taking values in {0, 1, 2, . . .} is Poisson with parameter λ ∈ (0,∞) if

P (X = k) = e−λ λk

k!
.

The following are some of the key continuous rv’s:

Uniform [a, b] rv The rv X is said to be uniform on [a, b] if it has the density

f(x) =

{

1
b−a , a ≤ x ≤ b,

0, else

Exponential (λ) rv The rv X is exponentially distributed with parameter λ > 0 if it has the
density

f(x) =

{

λe−λx, x ≥ 0,
0, else
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6 EXPECTATION OF A RANDOM VARIABLE

Weibull (λ, α) rv A Weibull (λ, α) rv has the density

f(x) =

{

αλαxα−1 exp(−(λx)α), x ≥ 0,
0, else

The parameter λ is called the “scale” parameter and α is called the “shape” parameter.

Gamma (λ, α) rv The rv X is said to be gamma distributed with scale parameter λ and shape
parameter α if it has the density

f(x) =

{

λ(λx)α−1 exp(−(λx)), x ≥ 0,
0, else

The special case where α is a positive integer is known as an Erlang rv; the integer α is called the
“number of stages” of the rv.

Normal (µ, σ2) rv The rv X is said to be normally distributed with mean µ and variance σ2 if
it has the density

f(x) =
1√

2πσ2
exp

(

−(x − µ)2

2σ2

)

.

Such a rv is also often referred to as a Gaussian rv (in honor of the great mathematician Carl
Friedrich Gauss), and is typically denoted as a N(µ, σ2) rv.

6 Expectation of a Random Variable

Suppose that one needs to communicate the key probability characteristics of a rv X. One possible
approach is to communicate the entire probability mass function or density function.

But a more succinct summary quantity is often desirable. Here are some of the common choices:

mode of the rv X This is the value x∗ that maximizes f(x) (when X is continuous) and p(x)
(when X is discrete). For example, the mode of an Exp(λ) rv is 0.

median of the rv X This is the value m with the property that

P (X ≤ m) =
1

2
= P (X ≥ m),

when X is continuous. Note that when X is Exp(λ),

m =
1

λ
log(2).

Note : For the purposes of this course, all logarithms are “natural” (i.e., to the base e).
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6 EXPECTATION OF A RANDOM VARIABLE

expectation of the rv X The expectation of a discrete rv X, denoted E(X), is the quantity

E(X) =
∑

x

xp(x).

The expectation of a continuous rv X, also denoted E(X), is the quantity

E(X) =

∫ ∞

−∞
xf(x) dx.

For an Exp(λ) rv, the expectation is 1/λ.

It is often the case that one must determine how the probability characteristics of a rv X are
modified by a transformation to the rv g(X).

Example 1.6.1 Suppose that U is uniformly distributed on [0, 1], so that its density is

f(x) =

{

1, 0 ≤ x ≤ 1,
0, else

We are interested in U3. To compute E(U3), set X = U3. Based on the above discussion, we need
to calculate the density of U3. We do this by first computing the distribution function of X = U3.
Observe that

P (X ≤ x) = P (U3 ≤ x) = P (U ≤ x1/3) = x1/3

for 0 ≤ x ≤ 1. So, the density is

d

dx
P (X ≤ x) =

{

1
3x−2/3, 0 ≤ x ≤ 1,

0, else

Hence,

E(U3) =

∫ 1

0
x · 1

3
x−2/3 dx =

1

3

∫ 1

0
x1/3 dx =

1

4
.

But the next result establishes that there is a (much!) faster way of doing such calculations.

Theorem 1.6.1 If X is a discrete rv with pmf p(x), then

E(g(X)) =
∑

x

g(x)p(x).

If X is a continuous rv with pdf f(x), then

E(g(X)) =

∫ ∞

−∞
g(x)f(x) dx.

Example 1.6.1 (continued) According to Theorem 1.6.1, we can compute E(U3) as follows:

E(X3)) =

∫ 1

0
x3f(x) dx =

∫ 1

0
x3 dx =

1

4
.

Much faster!

One also frequently needs succinct summary quantities to characterize the amount of “random
fluctuation” in X. Here are several common measures:
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7 JOINTLY DISTRIBUTED RANDOM VARIABLES

variance of the rv X The variance of the rv X, denoted var(X), is the quantity

var(X) = E[(X − E(X)]2].

According to Theorem 1.6.1,

var(X) =

∫ ∞

−∞
(x − E(X))2f(x) dx

=

∫ ∞

−∞
x2f(x) dx − (E(X))2

= E(X2) − (E(X))2

when X is continuous ; the same formula holds in the discrete case. One problem with the variance
is that it does not “scale” properly. For example, suppose that X is the height of a randomly chosen
individual, measured in feet. If one now changes the unit of measure to inches, this multiplies the
variance by a factor of 144!

standard deviation of the rv X To remedy this scaling problem in the variance, a more mean-
ingful measure of variability is the standard deviation, denoted σ(X):

σ(X) =
√

var(X).

The standard deviation of an Exp(λ) rv is easily seen to be 1/λ. Note that the standard deviation
scales in the same way as does the expectation.

inter-quartile range For X a continuous rv, the inter-quartile range is just

F−1

(

3

4

)

− F−1

(

1

4

)

,

where F−1 is the inverse function to the distribution function F . For an Exp(λ) rv, the inter-quartile
range is just 1

λ log 3.

7 Jointly Distributed Random Variables

In most modeling contexts, we will need to understand the interactions between multiple rv’s. This
requires the notion of joint distributions of rv’s. We illustrate with the case of two rv’s; everything
generalizes in a straightforward way to a collection of n rv’s.

Given a pair of rv’s X and Y , the joint cumulative distribution function F is given by

F (x, y) = P (X ≤ x, Y ≤ y).

Note that the distribution function of either X or Y can be easily recovered from the joint distri-
bution:

P (X ≤ x) = F (x,∞),

P (Y ≤ Y ) = F (∞, y).
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7 JOINTLY DISTRIBUTED RANDOM VARIABLES

If both X and Y are discrete, there is a joint probability mass function (pmf) p such that

P (X = x, Y = y) = p(x, y)

and

F (x, y) =
∑

x′≤x,y′≤y

p(x′, y′).

On the other hand, if X and Y are both continuous, there typically exists a joint probability
density function (pdf) f such that

F (x, y) =

∫ x

−∞

∫ y

−∞
f(x′, y′) dx′dy′

and the joint pdf can be recovered from the joint distribution function by the formula

f(x, y) =
∂2

∂x∂y
F (x, y).

Theorem 1.6.1 goes over to the case where g depends on more than one random variable.

Theorem 1.7.1 If X and Y are discrete rv’s with joint pmf p(x, y), then

E(g(X, Y )) =
∑

x,y

g(x, y)p(x, y).

If X and Y are both continuous rv’s with joint pdf f(x, y), then

E(g(X, Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dxdy.

In particular, if g(x, y) = x + y, then

E(X + Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x + y)f(x, y) dxdy

=

∫ ∞

−∞
x

∫ ∞

−∞
f(x, y) dydx +

∫ ∞

−∞
y

∫ ∞

−∞
f(x, y) dxdy

=

∫ ∞

−∞
xfX(x) dx +

∫ ∞

−∞
yfY (y) dy

= E(X) + E(Y ),

where fX(x) and fY (y) are the (marginal) pdf’s of X and Y , respectively. So, the expectation
operation is a linear operation: The expectation of the sum is the sum of the expectations.

Example 1.7.1 Suppose one is collecting coupons to obtain a retail discount. There are r differ-
ent types of coupons. We assume that the probability that a coupon is of type i is 1/r. How many
different types of coupons will we find, in expectation, if we collect n coupons?
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9 COVARIANCE AND CORRELATION

Let Xi = 1 if a type-i coupon is present in the collection of n coupons and 0 otherwise. We
want to compute E(X1 + · · · + Xr). By linearity of expectation, this equals E(X1) + · · · + E(Xr).
If the identities of the coupons collected are independent rv’s, then

E(Xi) = 0 · P (Xi = 0) + 1 · P (Xi = 1)

= P (Xi = 1)

= 1 − P (Xi = 0)

= 1 −
(

r − 1

r

)n

.

So, the expected number of distinct coupon types is n(1 − ( r−1
r

n
)).

8 Independence of Random Variables

We say that a collection of rv’s X1, X2, . . . , Xn is mutually independent if

P (X1 ≤ x1, . . . , Xn ≤ xn) =
n

∏

i=1

P (Xi ≤ xi)

for all x1, . . . , xn. If the Xi’s are discrete, this implies that the joint pmf factorizes:

p(x1, x2, . . . , xn) =
n

∏

i=1

P (Xi = xi).

Similarly, if the Xi’s are continuous, the joint pdf factorizes:

f(x1, x2, . . . , xn) =
n

∏

i=1

f(xi).

where f(xi) is the (marginal) density of the rv Xi.

Note that if X and Y are independent continuous rv’s, this implies that

E(g(X)h(Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f(x, y) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y) dxdy

=

∫ ∞

−∞
g(x)fX(x) dx ·

∫ ∞

−∞
h(y)fY (y) dy

= E(g(X)) · E(h(Y ));

the same argument works for the discrete rv’s.

9 Covariance and Correlation

A succinct summary measure that quantifies the dependence between two rv’s X and Y is the
covariance between X and Y , defined by

cov(X, Y ) = E[(X − E(X))(Y − E(Y ))].
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10 SUMS OF INDEPENDENT RANDOM VARIABLES

It is easily verified that
cov(X, Y ) = E(XY ) − E(X)E(Y ),

and that cov(X, X) = var(X). Furthermore, covariance is “multi-linear”, in the sense that

cov(X1 + X2, Y1 + Y2) = cov(X1, Y1) + cov(X1, Y2) + cov(X2, Y1) + cov(X2, Y2).

It follows that if S = X1 + X2 + · · · + Xn, we can compute var(S) in terms of the covariances
between the Xi’s:

var(S) = cov(S, S) =
n

∑

i=1

var(Xi) + 2
n

∑

i=1

n
∑

j=i+1

cov(Xi, Xj).

So, if the Xi’s are independent and identically distributed (iid), the covariance between Xi and Xj

vanishes (for i 6= j) and
var(S) = nvar(X1).

Note that, just as for the variance, the covariance does not “scale” properly as a function of the
unit in which X and Y are measured. A unitless measure of dependence is the correlation between
X and Y , defined by

corr(X, Y ) =
cov(X, Y )

√

var(X)var(Y )
.

The quantity corr(X, Y ) always lies in the interval [-1,1].

10 Sums of Independent Random Variables

Suppose that Xi is the duration of task i. Let Sn = X1 + X2 + · · · + Xn denote the time required
to perform the tasks 1 through n (assuming that the tasks are performed sequentially). Assume
that the Xi’s are independent continuous rv’s having densities f1, f2, . . . , fn. Then,

P (Sn ≤ x) =

∫

· · ·
∫

x1+···xn≤x

f1(x1)f2(x2) · · · fn(xn) dx1dx2 · · · dxn.

In particular, if n = 2,

P (X1 + X2 ≤ x) =

∫∫

x1+x2≤x

f1(x1)f2(x2) dx1dx2

=

∫ ∞

−∞

∫ x−x2

−∞
f1(x1) dx1f2(x2) dx2

=

∫ ∞

−∞
F1(x − x1)f2(x2) dx2,

where F1(x) is the distribution function of X1. So the density of X1 + X2 is

f(x) =

∫ ∞

−∞
F1(x − x1)f2(x2) dx2

=

∫ ∞

−∞
f1(x − x1)f2(x2) dx2,
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11 CONDITIONAL DISTRIBUTIONS

An integral of the form
∫ ∞

−∞
h1(x − y)h2(y) dy

is called a convolution integral (specifically, the convolution of the functions h1 and h2). So, the
density of the sum X1 + X2 is the convolution of the densities f1 and f2.

Example 1.10.1 Suppose that X1, X2, . . . , Xn are iid Exp(λ) rv’s. Then, the probability density
of X1 + X2 is

∫ ∞

−∞
f1(x − y)f2(y) dy

=

∫ ∞

0
f1(x − y)λe−λy dy (since f2(y) vanishes for y < 0)

=

∫ x

0
λe−λ(x−y)λe−λy dy (since f1(x − y) vanishes for y > x)

= λ2e−λx

∫ x

0
dy = λ2xe−λx,

which is the density of an Erlang rv with scale parameter λ and two stages. More generally, if
f (n)(x) is the density of X1 + X2 + · · · + Xn,

f (n)(x) =

∫ x

0
f (n−1)(x − y)λe−λy dy = λ

(λx)n−1

(n − 1)!
e−λx,

namely, the density of an Erlang rv with scale parameter λ and n stages.

Typically, the n-fold convolution f (n)(x) corresponding to the density of the sum of X1+· · ·+Xn

can not be computed in closed form.

11 Conditional Distributions

Given a joint pmf for two discrete rv’s X and Y , the conditional distribution of X, given Y = y, is

F (x|y) , P (X ≤ x|Y = y) =

∑

x′≤x p(x′, y)
∑′

x p(x′, y)

and the conditional pmf of X, given Y = y, is

p(x|y) =
p(x, y

pY (y)
,

where pY (y) is the (marginal) pmf of Y .

Similarly, if X and Y are continuous jointly distributed rv’s with joint density f(x, y), the
conditional distribution of X, given Y = y, is

F (x|y) =

∫ x
−∞ f(x′, y) dx′

∫ ∞
−∞ f(x′, y) dx′

13



12 LIMIT THEOREMS AND APPROXIMATIONS

and the conditional pdf of X, given Y = y, is

f(x|y) =
f(x, y

fY (y)
,

where fY (y) is the (marginal) density of Y .

Note that we can compute the (marginal) density of X via conditioning:

fX(x) =

∫ ∞

−∞
f(x|y)fY (y) dy.

Furthermore, if E(X|Y = y) is the expectation of the conditional distribution of X, given Y = y,
given by

E(X|Y = y) =

∫ ∞

−∞
xf(x|y) dx,

we can compute E(X) by conditioning:

E(X) =

∫ ∞

−∞
E(X|Y = y)fY (y) dy.

12 Limit Theorems and Approximations

As one quickly discovers when doing stochastic modeling, many problems lead to computations that
are extremely difficult or impossible to implement as “closed form” calculations. In the setting of
such problems. one has alternatives:

i) Try to develop an approximation to the quantity of interest;

ii) Use the computer to calculate the quantity of interest.

In the early (pre-computer) days of probability, virtually all such research focused on the first
alternative, namely development of good approximations. More recently, computational methods
have become interestingly important. Nevertheless, there are many problems that continue to
be challenging from a computational viewpoint and for which approximations continue to be the
preferred approach.

The use of approximations leads naturally to the question: How does one know that one has
developed a good approximation? To answer this question, consider the approximation

(

1 +
x

n

)n
≈ ex (1.12.1)

that one frequently sees in the setting of a calculus course. The above approximation can be
justified on the basis of the limit result

(

1 +
x

n

)n
→ ex (1.12.2)

as n → ∞. In other words, the limit (1.12.2) makes clear that the approximation (1.12.1) is
asymptotically valid as n → ∞. From a practical standpoint, this means that (1.12.1) is a good
approximation when the parameter n is large.

In the world of stochastic modeling, approximations are mathematical justified through the use
of limit theorems. This raises the question of what convergence means, when dealing with random
quantities. For the purposes of this course, we will need only two convergence concepts.

The first convergence concept that we will need is that of convergence in distribution.

14



12 LIMIT THEOREMS AND APPROXIMATIONS

Definition 1.12.1 Suppose that (Xn : 1 ≤ n ≤ ∞) is a sequence of discrete rv’s. We say that
Xn converges in distribution to X∞ as n → ∞ (and write Xn ⇒ X∞ as n → ∞) if, for each x,

P (Xn = x) → P (X∞ = x)

as n → ∞. Similarly, if (Xn : 1 ≤ n ≤ ∞) is a sequence of continuous rv’s, we say that Xn

converges in distribution to X∞ as n → ∞ (and write Xn ⇒ X∞ as n → ∞) if, for each x,

P (Xn ≤ x) → P (X∞ ≤ x)

as n → ∞.

In other words, P (Xn ≤ x) ≈ P (X∞ ≤ x) when n is large, so that the distribution of Xn is
well-approximated by that of X∞ when n is large. When such an approximation if valid, we shall
write

Xn
D≈ X∞.

(i.e. Xn “has approximately the same distribution’ as X∞). Given that most probability calcula-
tions involve computing distributions, this mode of convergence is especially useful.

We will illustrate the notion of convergence in distribution with the following result. Let
Binomial(n, p) be a binomially distributed rv with parameters n and p, and let Poisson(λ) be
a Poisson distributed rv with parameter λ.

Proposition 1.12.1 If np → λ as n → ∞, then

Binomial(n, p) ⇒ Poisson(λ)

as n → ∞.

Proof: Note that

P (Binomial(n, p) = k) =
n(n − 1) · · · (n − k + 1)

k!
pk(1 − p)n−k

≈ n(n − 1) · · · (n − k + 1)

k!

(

λ

n

)k (

1 − λ

n

)n−k

=
(n

n

)k
· · ·

(

n − k + 1

n

)k λk

k!

(

1 − λ

n

)n (

1 − λ

n

)−k

→ λk

k!
e−λ = P (Poisson(λ) = k). ¤

This limit theorem justifies the approximation

Binomial(n, p)
D≈ Poisson(np) (1.12.3)

when n is large and p is small. A major advantage of the above approximation is that the pmf
of the Poisson rv avoids the large factorials that tend to appear in the corresponding pmf of the
binomial rv when n is large, thereby avoiding numerical “overflow” problems that can occur when
implementing floating-point arithmetic.

15



13 THE LAW OF LARGE NUMBERS

Example 1.3.3(continued) Suppose that Sn is the number of defectives found in the first n
items. The rv Sn is binomially distributed with parameters n and p. If n = 100 and p = 0.01, the
approximation (1.12.3) establishes that the probability of no defects is

P (Sn) = 0 ≈ P (Poisson(1) = 0) = e−1.

The second convergence concept that we will use in this class is that of convergence in probability.

Definition 1.12.2 Suppose that (Xn : 1 ≤ n ≤ ∞) is a sequence of rv’s. We say that Xn

converges in probability to X∞ (and write Xn
P→ X∞) if, for each ǫ > 0,

P (|Xn − X∞| > ǫ) → 0

as n → ∞.

This notion of convergence asserts that with probability approaching to 1, Xn will be close
(within ǫ) to X∞ when n is large.

Proposition 1.12.2 If Xn
P→ X∞ as n → ∞, then Xn ⇒ X∞ as n → ∞.

In other words, convergence in probability implies convergence in distribution. The converse is,
however, false.

13 The Law of Large Numbers

One of the two most important results in probability is the law of large numbers (LLN).

Theorem 1.13.1 Suppose that (Xn : n ≥ 1) is a sequence of iid rv’s. Then,

1

n
(X1 + · · · + Xn)

P→ E(X1)

as n → ∞.

This result is easily to prove when Xi’s have finite variance. The key is the following inequality,
called Markov’s inequality.

Proposition 1.13.1 Suppose that W is a non-negative rv. Then,

P (W > w) ≤ 1

w
E(W ).

Proof: Note that if W is a continuous rv,

P (W > w) =

∫ ∞

w
f(x) dx

≤
∫ ∞

w

( x

w

)

f(x) dx (since
x

w
≥ 1 when x ≥ w)

≤
∫ ∞

0

( x

w

)

f(x) dx =
1

w
E(W ).

16



14 CENTRAL LIMIT THEOREM

The proof is similar for discrete rv’s. ¤

An important special case is called Chebyshev’s inequality.

Proposition 1.13.2 Suppose that Xi’s are iid with common (finite) variance σ2. If Sn = X1 +
· · · + Xn, then

P (|Sn

n
− E(X1)| > ǫ) ≤ σ2

nǫ2
.

Proof: Put W = (Sn − nE(X1))
2 and w = n2ǫ2. Note that E(W ) = var(Sn) = nσ2, so

P (|Sn

n
− E(X1)| > ǫ) = P (W > w) ≤ σ2

nǫ2
. ¤

Theorem 1.13.1 is an immediate consequence of Proposition 1.13.2. Let’s now apply the LLN.

Example 1.3.3(continued) Note that the proportion of defectives found in the first n item
tested is (X1 + · · · + Xn)/n. The LLN asserts that

X1 + · · · + Xn

n

P→ E(X1) = p

as n → ∞. So,

(X1 + · · · + Xn)
D≈ np (1.13.1)

when n is large. Hence, if n = 10000 and p = 0.01, the approximation number of defectives should
be about 100.

The LLN guarantees that even though the “sample average” n−1(X1 + · · · + Xn) is a rv, it
“settles down” to something deterministic and predictable when n is large, namely E(X1). Hence,
even though the individual Xi’s are unpredictable, their average (or mean) is predictable. The fact
that the average n−1(X1 + · · · + Xn) settles down to the expectation E(X1) is a principal reason
for why the expectation of a rv is the most widely used “measure of central tendency” (as opposed,
for example, to the median of the distribution).

14 Central Limit Theorem

The second key limit result in probability is the central limit theorem (CLT). (It is so important
that it is the “central” theorem of probability!)

Note that the LLN approximation (1.13.1) is rather crude:

P (X1 + · · · + Xn ≤ x) ≈
{

0, x < np
1, x ≥ np

Typically, we’d prefer an approximation that tells us how close P (X1 + · · ·+ Xn ≤ x) is to 0 when
x < np and how close to 1 when x ≥ np. The CLT provides exactly this additional information.

17



15 MOMENT GENERATING FUNCTIONS*

Theorem 1.14.1 Suppose that the Xi’s are iid rv’s with common (finite) variance σ2. Then, if
Sn = X1 + · · · + Xn

Sn − nE(X1)√
n

⇒ σN(0, 1) (1.14.1)

as n → ∞.

The CLT (1.14.1) supports the use of the approximation

Sn
D≈ nE(X1) +

√
nσN(0, 1) (1.14.2)

when n is large. The approximation (1.14.2) is valuable in many different problem settings. We
now illustrate its use with an example.

Example 1.3.3(continued) Let S10000 be the number of defectives found in the fisrt 10000 items
tested, when p = 0.01. The approximation (1.14.2) yields

P (S10000 > x) ≈ P (nE(X1) +
√

nσN(0, 1) > x)

= P (N(0, 1) >
x − 100

100σ
),

where σ2 = var(X1) = p(1 − p) = (0.01)(0.99) ≈ 0.01. So,

P (S10000 > x) ≈ P (N(0, 1) >
x

10
− 10).

In particular, the probability of more than 120 defectives is approximately P (N(0, 1) > 2). This
later probability can be found in a table of “normal probabilities”.

An outline of the proof of the CLT is provided in the next section.

15 Moment Generating Functions*

A key idea of in applied mathematics is that of the Laplace transform. The Laplace transform also
is a useful tool in probability. In the probability context, the Laplace transform is usually called
the moment generating function (of the rv).

Definition 1.15.1 The moment generating function of a rv X is the function ϕX(θ) defined by

ϕX(θ) = E(exp(θx)).

This function can be computed in “closed form” for many of the distributions encountered most
frequently in practice:

• Bernoulli rv: ϕX(θ) = (1 − p) + peθ

• Binomial(n, p) rv: ϕX(θ) = ((1 − p) + peθ)n

• Geometric(p) rv: ϕX(θ) = p/(1 − (1 − p)eθ)

• Poisson(λ) rv: ϕX(θ) = exp(λ(eθ − 1))

*More mathematically advanced material. 18



15 MOMENT GENERATING FUNCTIONS*

• Uniform(a, b) rv: ϕX(θ) = (eθb − eθa)/θ(b − a)

• Exponential(λ) rv: ϕX(θ) = λ(λ − θ)−1

• Gamma(λ, α) rv: ϕX(θ) =
(

λ
λ−θ

)α

• Normal(µ, σ2) rv: ϕX(θ) = exp(θµ + σ2θ2

2 )

The moment generating function (mgf) of a rv X gets its name from the fact that the moments
(i.e. E(Xk) for k = 1, 2, . . .) of the rv X can easily be computed from knowledge of ϕX(θ). To see
this, note that if X is continuous, then

dk

dθk
ϕX(θ) =

dk

dθk
E(exp(θX))

=
dk

dθk

∫ ∞

−∞
eθxf(x) dx

=

∫ ∞

−∞

dk

dθk
eθxf(x) dx

=

∫ ∞

−∞
xkeθxf(x) dx

= E(Xk exp(θX)).

In particular,
dk

dθk
ϕX(0) = E(Xk).

Example 1.15.1 Suppose that X is exponentially distributed with parameter λ. Note that

ϕX(θ) = λ/(λ − θ)−1 = 1/(1 − θ

λ
)−1 =

∞
∑

k=0

1

λk
θk (1.15.1)

On the other hand, ϕX(θ) has the power series representation,

ϕX(θ) =
∞

∑

k=0

1

k!

dk

dθk
ϕX(0)θk (1.15.2)

Equating coefficients in (1.15.1) and (1.15.2), we find that

dk

dθk
ϕX(0) =

k!

λk
,

so that

E(Xk) =
k!

λk
.

Note that we were able to compute all the moments of an exponential rv without having to repeat-
edly compute integrals.

Another key property of mgf’s is the fact that uniquely characterizes the distribution of the rv.
In particular, if X and Y are such that ϕX(θ) = ϕY (θ) for all values of θ, then

P (X ≤ x) = P (Y ≤ x)

for all x.

This property turns out to be very useful when combined with the following proposition.

*More mathematically advanced material. 19



15 MOMENT GENERATING FUNCTIONS*

Proposition 1.15.1 Let the Xi’s be independent rv’s, and put Sn = X1 + · · · + Xn. Then,

ϕSn
(θ) =

n
∏

i=1

ϕXi
(θ).

Proof: Note that

ϕSn
(θ) = E(exp(θ(X1 + · · · + Xn)))

= E(
n

∏

i=1

exp(θXi))

=
n

∏

i=1

E(exp(θXi)) (due to independence)

=
n

∏

i=1

ϕXi
(θ).

In other words, the mgf of a sum of independence rv’s is trivial to compute in terms of the
mgf’s of the summands. So, one way to compute the exact distribution of a sum of n independent
rv’s X1, . . . , Xn is:

i) Compute ϕXi
(θ) for 1 ≤ i ≤ n.

ii) Compute

ϕSn
(θ) =

n
∏

i=1

ϕXi
(θ).

iii) Find a distribution/rv Y such that

ϕSn
(θ) = ϕY (θ)

for all θ.

Then,

P (Sn ≤ x) = P (Y ≤ x).

Example 1.15.2 Suppose the Xi’s are iid Bernoulli rv’s with parameter p. Then,

ϕSn
(θ) = (1 − p + peθ)n.

But (1 − p + peθ)n is the mgf of a Binomial rv with parameter n and p. So,

P (Sn = k) = P (Bernoulli(n, p) = k) =

(

n

k

)

pk(1 − p)n−k.

We conclude this discussion of mgf’s by showing how the CLT can be proved by appealing to
mgf’s. We need the following result.

20
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Theorem 1.15.1 Let (Xn : 1 ≤ n ≤ ∞) be a sequence of rv’s with mgf’s (ϕXn
(θ) : 1 ≤ n ≤ ∞).

If, for each θ,

ϕXn
(θ) → ϕX∞

(θ)

as n → ∞, then

Xn ⇒ X∞

as n → ∞.

Proof of the CLT: Let

ϕn(θ) = E[exp(θ(Sn − E(X1))/
√

n))]

and note that

ϕn(θ) =

[

exp

(

− θ√
n

E(X1)

)

ϕX1

(

θ√
n

)]n

.

But ϕX1
(θ/

√
n) can be expanded in a Taylor series about θ = 0:

ϕX1
(θ/

√
n) = 1 + E(X1)

θ√
n

+
E(X2)

2

θ2

n
+ · · ·

Also, exp(− θ√
n
E(X1)) can be similarly expanded in a Taylor series:

exp

(

− θ√
n

E(X1)

)

= 1 − θ√
n

E(X1) +
E(X2

1 )

2

θ2

n
+ · · ·

Hence,

ϕn(θ) =

(

1 +
θ2

2n
σ2 + · · ·

)n

→ exp

(

θ2σ2

2

)

as n → ∞, which coincides with the mgf of a N(0, 1) rv. Appealing to Theorem 1.15.1 concludes
the arguments. ¤

16 Application of the LLN and CLT to Financial Mathematics

Many sophisticated financial models (e.g. options pricing) require, as a building block, a model for
the value of some underlying financial asset (e.g. the stock that underlies the option). We describe
here how the LLN and CLT lead to a particular and widely accepted model for asset values.

Let Vn be the value of the asset at the start of period n. The ratio Ri = Vi/Vi−1 is called the
return on the asset of period i. We can then write

Vn = V0R1R2 · · ·Rn. (1.16.1)

A typical (and frequently reasonable) assumption is to presume that the Ri’s are iid random
variables. We wish to use the LLN and CLT to develop an approximation to the distribution of Vn

when n is large.

Since the LLN and CLT describe the behavior of sums of rv’s, we take logarithms in (1.16.1)
(thereby concerning the product of rv’s to a sum of rv’s):
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log Vn = log V0 +
n

∑

i=1

log Ri. (1.16.2)

Because the Ri’s are iid, it follows that the log Ri’s are also iid. So, the LLN guarantees that

1

n

n
∑

i=1

log Ri
p→ E(log R1)

as n → ∞, leading to the approximation

n
∑

i=1

log Ri ≈ nE(log R1)

Hence,
log Vn ≈ log V0 + nE(log R1)

and so,
Vn ≈ V0 exp(nE(log R1)). (1.16.3)

The approximation (1.16.3) approximates the random variable Vn by the deterministic quantity
V0 exp(nE(log R1)). While this approximation describes the order of the magnitude of Vn, it fails
to characterize the stochastic variability that is present in Vn.

To obtain an approximation that describes the variability, we apply the CLT. According to
(1.14.2), we can write

n
∑

i=1

log Ri
D≈ nE(log R1) + σ

√
nN(0, 1),

where σ2 = var(log R1). It follows that

log Vn
D≈ log V0 + nE(log R1) + σ

√
nN(0, 1)

when n is large. Consequently, this leads us to the approximation

Vn
D≈ V0 exp(nE(log R1) + σ

√
nN(0, 1)). (1.16.4)

Definition 1.16.1 A nonnegative rv Z is said to be a log-normal rv if log Z is normally dis-
tributed.

Note that (1.16.4) asserts that, when n is large, the value Vn is approximately log-normally dis-
tributed. In particular, log Vn is approximately normally distributed with mean log V0 +nE(log R1)
and standard deviation σ

√
n. The above argument justifies the use of log-normal distributions in

modeling asset values. In fact, the log-normal distribution is fundamentally linked to the most
famous result in financial mathematics, namely, the so-called Black-Scholes formula for valuing so-
called European options. This latter result has been recognized with a Nobel Prize in economics.

To apply the approximation (1.16.4), one first computes E(log R1) and σ2 with these two quan-
tities in hand, (1.16.4) asserts that

P (Vn > x) ≈ P (V0 exp(nµ + σ
√

nN(0, 1)) > x)

= P (N(0, 1) >
log x − log V0 − nE(log R1)

σ
√

n
).

One can now use probabilities derived from a “normal table” to approximate P (Vn > x).
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