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Preface

These notes grew from an introduction to probability theory taught during
the first and second term of 1994 at Caltech. There was a mixed audience of
undergraduates and graduate students in the first half of the course which
covered Chapters 2 and 3, and mostly graduate students in the second part
which covered Chapter 4 and two sections of Chapter 5.

Having been online for many years on my personal web sites, the text got
reviewed, corrected and indexed in the summer of 2006. It obtained some
enhancements which benefited from some other teaching notes and research,
I wrote while teaching probability theory at the University of Arizona in
Tucson or when incorporating probability in calculus courses at Caltech
and Harvard University.

Most of Chapter 2 is standard material and subject of virtually any course
on probability theory. Also Chapters 3 and 4 is well covered by the litera-
ture but not in this combination.

The last chapter “selected topics” got considerably extended in the summer
of 2006. While in the original course, only localization and percolation prob-
lems were included, I added other topics like estimation theory, Vlasov dy-
namics, multi-dimensional moment problems, random maps, circle-valued
random variables, the geometry of numbers, Diophantine equations and
harmonic analysis. Some of this material is related to research I got inter-
ested in over time.

While the text assumes no prerequisites in probability, a basic exposure to
calculus and linear algebra is necessary. Some real analysis as well as some
background in topology and functional analysis can be helpful.

I would like to get feedback from readers. I plan to keep this text alive and
update it in the future. You can email this to knill@math.harvard.edu and
also indicate on the email if you don’t want your feedback to be acknowl-
edged in an eventual future edition of these notes.



4 Contents

To get a more detailed and analytic exposure to probability, the students
of the original course have consulted the book [109] which contains much
more material than covered in class. Since my course had been taught,
many other books have appeared. Examples are [21, 35].

For a less analytic approach, see [41, 95, 101] or the still excellent classic
[26]. For an introduction to martingales, we recommend [113] and [48] from
both of which these notes have benefited a lot and to which the students
of the original course had access too.

For Brownian motion, we refer to [75, 68], for stochastic processes to [17],
for stochastic differential equation to [2, 56, 78, 68, 47], for random walks
to [104], for Markov chains to [27, 91], for entropy and Markov operators
[63]. For applications in physics and chemistry, see [111].

For the selected topics, we followed [33] in the percolation section. The
books [105, 31] contain introductions to Vlasov dynamics. The book of [1]
gives an introduction for the moment problem, [77, 66] for circle-valued
random variables, for Poisson processes, see [50, 9]. For the geometry of
numbers for Fourier series on fractals [46].

The book [114] contains examples which challenge the theory with counter
examples. [34, 96, 72] are sources for problems with solutions.

Probability theory can be developed using nonstandard analysis on finite
probability spaces [76]. The book [43] breaks some of the material of the
first chapter into attractive stories. Also texts like [93, 80] are not only for
mathematical tourists.

We live in a time, in which more and more content is available online.
Knowledge diffuses from papers and books to online websites and databases
which also ease the digging for knowledge in the fascinating field of proba-
bility theory.

Oliver Knill, March 20, 2008
Acknowledgements and thanks:
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Chapter 1

Introduction

1.1 What is probability theory?

Probability theory is a fundamental pillar of modern mathematics with
relations to other mathematical areas like algebra, topology, analysis, ge-
ometry or dynamical systems. As with any fundamental mathematical con-
struction, the theory starts by adding more structure to a set 2. In a similar
way as introducing algebraic operations, a topology, or a time evolution on
a set, probability theory adds a measure theoretical structure to {2 which
generalizes ”counting” on finite sets: in order to measure the probability
of a subset A C €2, one singles out a class of subsets A, on which one can
hope to do so. This leads to the notion of a o-algebra A. It is a set of sub-
sets of () in which on can perform finitely or countably many operations
like taking unions, complements or intersections. The elements in A are
called events. If a point w in the "laboratory” 2 denotes an ”experiment”,
an "event” A € A is a subset of 2, for which one can assign a proba-
bility P[A] € [0,1]. For example, if P[A] = 1/3, the event happens with
probability 1/3. If P[A] = 1, the event takes place almost certainly. The
probability measure P has to satisfy obvious properties like that the union
AU B of two disjoint events A, B satisfies P[AU B] = P[A] 4+ P[B] or that
the complement A° of an event A has the probability P[A°] = 1 — P[A].
With a probability space (£2, A, P) alone, there is already some interesting
mathematics: one has for example the combinatorial problem to find the
probabilities of events like the event to get a ”"royal flush” in poker. If
is a subset of an Euclidean space like the plane, P[A] = [, f(x,y) dzdy
for a suitable nonnegative function f, we are led to integration problems
in calculus. Actually, in many applications, the probability space is part of
Euclidean space and the g-algebra is the smallest which contains all open
sets. It is called the Borel o-algebra. An important example is the Borel
o-algebra on the real line.

Given a probability space (£2,.4, P), one can define random variables X. A
random variable is a function X from €2 to the real line R which is mea-
surable in the sense that the inverse of a measurable Borel set B in R is
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in A. The interpretation is that if w is an experiment, then X (w) mea-
sures an observable quantity of the experiment. The technical condition of
measurability resembles the notion of a continuity for a function f from a
topological space (£2, Q) to the topological space (R,U). A function is con-
tinuous if f~1(U) € O for all open sets U € U. In probability theory, where
functions are often denoted with capital letters, like X,Y,..., a random
variable X is measurable if X~1(B) € A for all Borel sets B € B. Any
continuous function is measurable for the Borel o-algebra. As in calculus,
where one does not have to worry about continuity most of the time, also in
probability theory, one often does not have to sweat about measurability is-
sues. Indeed, one could suspect that notions like o-algebras or measurability
were introduced by mathematicians to scare normal folks away from their
realms. This is not the case. Serious issues are avoided with those construc-
tions. Mathematics is eternal: a once established result will be true also in
thousands of years. A theory in which one could prove a theorem as well as
its negation would be worthless: it would formally allow to prove any other
result, whether true or false. So, these notions are not only introduced to
keep the theory ”clean”, they are essential for the ”survival” of the theory.
We give some examples of ”paradoxes” to illustrate the need for building
a careful theory. Back to the fundamental notion of random variables: be-
cause they are just functions, one can add and multiply them by defining
(X+Y)(w) =X(w)+Y(w) or (XY)(w) = X(w)Y(w). Random variables
form so an algebra L. The expectation of a random variable X is denoted
by E[X] if it exists. It is a real number which indicates the ”mean” or ”av-
erage” of the observation X. It is the value, one would expect to measure in
the experiment. If X = 1p is the random variable which has the value 1 if
w is in the event B and 0 if w is not in the event B, then the expectation of
X is just the probability of B. The constant random variable X (w) = a has
the expectation E[X] = a. These two basic examples as well as the linearity
requirement E[aX +bY] = aE[X] + bE[Y] determine the expectation for all
random variables in the algebra L: first one defines expectation for finite
sums » . ; a;1p, called elementary random variables, which approximate
general measurable functions. Extending the expectation to a subset £' of
the entire algebra is part of integration theory. While in calculus, one can
live with the Riemann integral on the real line, which defines the integral
by Riemann sus f: f(z) dow ~ L >i/mefan f /M), the integral defined in
measure theory is the Lebesgue integral. The later is more fundamental
and probability theory is a major motivator for using it. It allows to make
statements like that the probability of the set of real numbers with periodic
decimal expansion has probability 0. In general, the probability of A is the
expectation of the random variable X (z) = f(z) = 14(z). In calculus, the
integral fol f(x) dx would not be defined because a Riemann integral can
give 1 or 0 depending on how the Riemann approximation is done. Probabil-
ity theory allows to introduce the Lebesgue integral by defining f: f(x) dx
as the limit of L 3" | f(z;) for n — oo, where z; are random uniformly
distributed points in the interval [a, b]. This Monte Carlo definition of the
Lebesgue integral is based on the law of large numbers and is as intuitive
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to state as the Riemann integral which is the limit of % ij:j/ne[a,b] flzy)
for n — oc.

With the fundamental notion of expectation one can define the variance,
Var[X] = E[X?] — E[X]? and the standard deviation ¢[X] = \/Var[X] of a
random variable X for which X2 € £'. One can also look at the covariance
Cov[XY] = E[XY] — E[X]E[Y] of two random variables X,Y for which
X2 Y? € £'. The correlation Corr[X,Y] = Cov[XY]/(c[X]o[Y]) of two
random variables with positive variance is a number which tells how much
the random variable X is related to the random variable Y. If E[XY] is
interpreted as an inner product, then the standard deviation is the length
of X —E[X] and the correlation has the geometric interpretation as cos(«),
where « is the angle between the centered random variables X — E[X] and
Y — E[Y]. For example, if Cov[X,Y] =1, then Y = AX for some A > 0, if
Cov[X,Y] = —1, they are anti-parallel. If the correlation is zero, the geo-
metric interpretation is that the two random variables are perpendicular.
Decorrelated random variables still can have relations to each other but if
for any measurable real functions f and g, the random variables f(X) and
g(Y) are uncorrelated, then the random variables X, Y are independent.

A random variable X can be described well by its distribution function
Fx. This is a real-valued function defined as Fx(s) = P[X < s] on R,
where {X < s } is the event of all experiments w satisfying X (w) < s. The
distribution function does not encode the internal structure of the random
variable X; it does not reveal the structure of the probability space for ex-
ample. But the function F'x allows the construction of a probability space
with exactly this distribution function. There are two important types of
distributions, continuous distributions with a probability density function
fx = F% and discrete distributions for which F is piecewise constant. An
example of a continuous distribution is the standard normal distribution,
where fx(z) = 6_5”2/2/\/?. One can characterize it as the distribution
with maximal entropy I(f) = — [log(f(z))f(x) dx among all distributions
which have zero mean and variance 1. An example of a discrete distribu-
tion is the Poisson distribution P[X = k] = e’A’\k—T on N={0,1,2,... }.
One can describe random variables by their moment generating functions
Mx (t) = E[eX!] or by their characteristic function ¢x () = E[e**!]. The
later is the Fourier transform of the law px = F% which is a measure on
the real line R.

The law px of the random variable is a probability measure on the real
line satisfying px ((a,b]) = Fx (b) — Fx(a). By the Lebesgue decomposition
theorem, one can decompose any measure p into a discrete part fi,,, an
absolutely continuous part . and a singular continuous part 5. Random
variables X for which px is a discrete measure are called discrete random
variables, random variables with a continuous law are called continuous
random variables. Traditionally, these two type of random variables are
the most important ones. But singular continuous random variables appear
too: in spectral theory, dynamical systems or fractal geometry. Of course,
the law of a random variable X does not need to be pure. It can mix the
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three types. A random variable can be mixed discrete and continuous for
example.

Inequalities play an important role in probability theory. The Chebychev
inequality P[|X — E[X]| > ¢] < V%E‘] is used very often. It is a spe-
cial case of the Chebychev-Markov inequality h(c) - P[X > ¢] < E[h(X)]
for monotone nonnegative functions h. Other inequalities are the Jensen
inequality E[h(X)] > h(E[X]) for convex functions h, the Minkowski in-
equality || X + Y|, < ||X]||, + |[Y]|, or the Hélder inequality || XY, <
N XIplIYlq,1/p + 1/q = 1 for random variables, X,Y", for which || X||, =
E[|IX|"],|Y||l; = E[]Y|?] are finite. Any inequality which appears in analy-
sis can be useful in the toolbox of probability theory.

Independence is a central notion in probability theory. Two events A, B
are called independent, if P[A N B] = P[A] - P[B]. An arbitrary set of
events A; is called independent, if for any finite subset of them, the prob-
ability of their intersection is the product of their probabilities. Two o-
algebras A, B are called independent, if for any pair A € A, B € B, the
events A, B are independent. T'wo random variables X, Y are independent,
if they generate independent o-algebras. It is enough to check that the
events A = {X € (a,b)} and B = {Y € (¢,d)} are independent for
all intervals (a,b) and (¢,d). One should think of independent random
variables as two aspects of the laboratory €2 which do not influence each
other. Each event A = {a < X(w) < b } is independent of the event
B = {c<Y(w) <d}. While the distribution function Fx iy of the sum of
two independent random variables is a convolution [, Fix (t—s) dFy (s), the
moment generating functions and characteristic functions satisfy the for-
mulas Mx 1y (t) = Mx(t)My (t) and ¢x v (t) = ¢ox (t)py (t). These identi-
ties make Mx, ¢ x valuable tools to compute the distribution of an arbitrary
finite sum of independent random variables.

Independence can also be explained using conditional probability with re-
spect to an event B of positive probability: the conditional probability
P[A|B] = P[AN B]/P[B] of A is the probability that A happens when we
know that B takes place. If B is independent of A, then P[A|B] = P[A] but
in general, the conditional probability is larger. The notion of conditional
probability leads to the important notion of conditional expectation E[X |B]
of a random variable X with respect to some sub-o-algebra B of the o al-
gebra A; it is a new random variable which is B-measurable. For B = A, it
is the random variable itself, for the trivial algebra B = {0, }, we obtain
the usual expectation E[X] = E[X|{0,Q }]. If B is generated by a finite
partition By, ..., B, of Q of pairwise disjoint sets covering 2, then E[X|B]
is piecewise constant on the sets B; and the value on B; is the average
value of X on B;. If B is the o-algebra of an independent random variable
Y, then E[X|Y] = E[X|B] = E[X]. In general, the conditional expectation
with respect to B is a new random variable obtained by averaging on the
elements of B. One has E[X|Y] = h(Y") for some function h, extreme cases
being E[X|1] = E[X],E[X|X] = X. An illustrative example is the situation
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where X (z,y) is a continuous function on the unit square with P = dady
as a probability measure and where Y(a: y) = z. In that case, E[X|Y] is

a function of z alone, given by E[X|Y](z fo x,y) dy. This is called a
conditional integral.

A set {X¢}ier of random variables defines a stochastic process. The vari-
able t € T' is a parameter called "time”. Stochastic processes are to prob-
ability theory what differential equations are to calculus. An example is a
family X,, of random variables which evolve with discrete time n € N. De-
terministic dynamical system theory branches into discrete time systems,
the iteration of maps and continuous time systems, the theory of ordinary
and partial differential equations. Similarly, in probability theory, one dis-
tinguishes between discrete time stochastic processes and continuous time
stochastic processes. A discrete time stochastic process is a sequence of ran-
dom variables X,, with certain properties. An important example is when
X, are independent, identically distributed random variables. A continuous
time stochastic process is given by a family of random variables X;, where
t is real time. An example is a solution of a stochastic differential equation.
With more general time like Z? or R? random variables are called random
fields which play a role in statistical physics. Examples of such processes
are percolation processes.

While one can realize every discrete time stochastic process X,, by a measure-
preserving transformation 7' : © — Q and X, (w) = X(T"(w)), probabil-

ity theory often focuses a special subclass of systems called martingales,

where one has a filtration A,, C A, 41 of o-algebras such that X, is A,-

measurable and E[X,|A,_1] = X,_1, where E[X,,|A,,_1] is the conditional

expectation with respect to the sub-algebra A,,_;. Martingales are a pow-

erful generalization of the random walk, the process of summing up IID

random variables with zero mean. Similar as ergodic theory, martingale

theory is a natural extension of probability theory and has many applica-

tions.

The language of probability fits well into the classical theory of dynam-
ical systems. For example, the ergodic theorem of Birkhoff for measure-
preserving transformations has as a special case the law of large numbers
which describes the average of partial sums of random variables % Yoy X
There are different versions of the law of large numbers. ”Weak laws”
make statements about convergence in probability, "strong laws” make
statements about almost everywhere convergence. There are versions of
the law of large numbers for which the random variables do not need to
have a common distribution and which go beyond Birkhoff’s theorem. An
other important theorem is the central limit theorem which shows that
S, = X1 + X9 4+ -+ + X,, normalized to have zero mean and variance 1
converges in law to the normal distribution or the law of the iterated loga-
rithm which says that for centered independent and identically distributed
X}, the scaled sum S, /A,, has accumulation points in the interval [—o, o]
if A, = v2nloglogn and o is the standard deviation of Xj. While stating
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the weak and strong law of large numbers and the central limit theorem,
different convergence notions for random variables appear: almost sure con-
vergence is the strongest, it implies convergence in probability and the later
implies convergence convergence in law. There is also £'-convergence which
is stronger than convergence in probability.

As in the deterministic case, where the theory of differential equations is
more technical than the theory of maps, building up the formalism for
continuous time stochastic processes X, is more elaborate. Similarly as
for differential equations, one has first to prove the existence of the ob-
jects. The most important continuous time stochastic process definitely is
Brownian motion B;. Standard Brownian motion is a stochastic process
which satisfies By = 0, E[B:] = 0, Cov[Bs,B:] = s for s < t and for
any sequence of times, 0 = ¢y < t; < -+ < t; < t;41, the increments
By,,, — By, are all independent random vectors with normal distribution.
Brownian motion Bj is a solution of the stochastic differential equation
4 B, = ((t), where ((t) is called white noise. Because white noise is only
defined as a generalized function and is not a stochastic process by itself,
this stochastic differential equation has to be understood in its integrated
form B; = fot dBs = fot ¢(s) ds.

More generally, a solution to a stochastic differential equation %Xt =
F(X4)C(t) + g(Xy) is defined as the solution to the integral equation X; =

Xo + fot f(Xs) dB; + fotg(XS) ds. Stochastic differential equations can

be defined in different ways. The expression fot f(Xs) dB; can either be
defined as an Ito integral, which leads to martingale solutions, or the
Stratonovich integral, which has similar integration rules than classical
differentiation equations. Examples of stochastic differential equations are
4 X, = X;((t) which has the solution X; = eP~¥/2. Or £X, = B{((t)
which has as the solution the process X; = By —10B} +15B;. The key tool
to solve stochastic differential equations is Ito’s formula f(B;) — f(By) =
fot 1 (Bs)dBs + %fot 1" (Bs) ds, which is the stochastic analog of the fun-
damental theorem of calculus. Solutions to stochastic differential equations
are examples of Markov processes which show diffusion. Especially, the so-
lutions can be used to solve classical partial differential equations like the
Dirichlet problem Au = 0 in a bounded domain D with v = f on the
boundary §D. One can get the solution by computing the expectation of
f at the end points of Brownian motion starting at x and ending at the
boundary u = E,[f(Br)]. On a discrete graph, if Brownian motion is re-
placed by random walk, the same formula holds too. Stochastic calculus is
also useful to interpret quantum mechanics as a diffusion processes [75, 73]
or as a tool to compute solutions to quantum mechanical problems using
Feynman-Kac formulas.

Some features of stochastic process can be described using the language of
Markov operators P, which are positive and expectation-preserving trans-
formations on £'. Examples of such operators are Perron-Frobenius op-
erators X — X(7T) for a measure preserving transformation 7' defining a
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discrete time evolution or stochastic matrices describing a random walk
on a finite graph. Markov operators can be defined by transition proba-
bility functions which are measure-valued random variables. The interpre-
tation is that from a given point w, there are different possibilities to go
to. A transition probability measure P(w,-) gives the distribution of the
target. The relation with Markov operators is assured by the Chapman-
Kolmogorov equation P" 1t = P o P, Markov processes can be obtained
from random transformations, random walks or by stochastic differential
equations. In the case of a finite or countable target space S, one obtains
Markov chains which can be described by probability matrices P, which
are the simplest Markov operators. For Markov operators, there is an ar-
row of time: the relative entropy with respect to a background measure
is non-increasing. Markov processes often are attracted by fixed points of
the Markov operator. Such fixed points are called stationary states. They
describe equilibria and often they are measures with maximal entropy. An
example is the Markov operator P, which assigns to a probability density
Jy the probability density of f7= where Y + X is the random variable
Y + X normalized so that it has mean 0 and variance 1. For the initial
function f = 1, the function P"(fx) is the distribution of S} the nor-
malized sum of n IID random variables X;. This Markov operator has a
unique equilibrium point, the standard normal distribution. It has maxi-
mal entropy among all distributions on the real line with variance 1 and
mean 0. The central limit theorem tells that the Markov operator P has
the normal distribution as a unique attracting fixed point if one takes the
weaker topology of convergence in distribution on £'. This works in other
situations too. For circle-valued random variables for example, the uniform
distribution maximizes entropy. It is not surprising therefore, that there is
a central limit theorem for circle-valued random variables with the uniform
distribution as the limiting distribution.

In the same way as mathematics reaches out into other scientific areas,
probability theory has connections with many other branches of mathe-
matics. The last chapter of these notes give some examples. The section
on percolation shows how probability theory can help to understand criti-
cal phenomena. In solid state physics, one considers operator-valued ran-
dom variables. The spectrum of random operators are random objects too.
One is interested what happens with probability one. Localization is the
phenomenon in solid state physics that sufficiently random operators of-
ten have pure point spectrum. The section on estimation theory gives a
glimpse of what mathematical statistics is about. In statistics one often
does not know the probability space itself so that one has to make a statis-
tical model and look at a parameterization of probability spaces. The goal
is to give maximum likelihood estimates for the parameters from data and
to understand how small the quadratic estimation error can be made. A
section on Vlasov dynamics shows how probability theory appears in prob-
lems of geometric evolution. Vlasov dynamics is a generalization of the
n-body problem to the evolution of of probability measures. One can look
at the evolution of smooth measures or measures located on surfaces. This
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deterministic stochastic system produces an evolution of densities which
can form singularities without doing harm to the formalism. It also defines
the evolution of surfaces. The section on moment problems is part of multi-
variate statistics. As for random variables, random vectors can be described
by their moments. Since moments define the law of the random variable,
the question arises how one can see from the moments, whether we have a
continuous random variable. The section of random maps is an other part
of dynamical systems theory. Randomized versions of diffeomorphisms can
be considered idealization of their undisturbed versions. They often can
be understood better than their deterministic versions. For example, many
random diffeomorphisms have only finitely many ergodic components. In
the section in circular random variables, we see that the Mises distribu-
tion has extremal entropy among all circle-valued random variables with
given circular mean and variance. There is also a central limit theorem
on the circle: the sum of IID circular random variables converges in law
to the uniform distribution. We then look at a problem in the geometry
of numbers: how many lattice points are there in a neighborhood of the
graph of one-dimensional Brownian motion? The analysis of this problem
needs a law of large numbers for independent random variables Xj with
uniform distribution on [0,1]: for 0 < § < 1, and A4,, = [0,1/n’] one has
lim,, 0 % ZZZI 1’*"7?@) = 1. Probability theory also matters in complex-
ity theory as a section on arithmetic random variables shows. It turns out
that random variables like X, (k) = k, Y,, (k) = k% 4+ 3 mod n defined on
finite probability spaces become independent in the limit n — oo. Such
considerations matter in complexity theory: arithmetic functions defined
on large but finite sets behave very much like random functions. This is
reflected by the fact that the inverse of arithmetic functions is in general
difficult to compute and belong to the complexity class of NP. Indeed, if
one could invert arithmetic functions easily, one could solve problems like
factoring integers fast. A short section on Diophantine equations indicates
how the distribution of random variables can shed light on the solution
of Diophantine equations. Finally, we look at a topic in harmonic analy-
sis which was initiated by Norbert Wiener. It deals with the relation of
the characteristic function ¢x and the continuity properties of the random
variable X.

1.2 Some paradoxes in probability theory

Colloquial language is not always precise enough to tackle problems in
probability theory. Paradoxes appear, when definitions allow different in-
terpretations. Ambiguous language can lead to wrong conclusions or con-
tradicting solutions. To illustrate this, we mention a few problems. For
many more, see [110]. The following four examples should serve as a mo-
tivation to introduce probability theory on a rigorous mathematical footing.

1) Bertrand’s paradox (Bertrand 1889)
We throw random lines onto the unit disc. What is the probability that
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the line intersects the disc with a length > /3, the length of the inscribed
equilateral triangle?

First answer: take an arbitrary point P on the boundary of the disc. The
set of all lines through that point are parameterized by an angle ¢. In order
that the chord is longer than \/g, the line has to lie within a sector of 60°
within a range of 180°. The probability is 1/3.

Second answer: take all lines perpendicular to a fixed diameter. The chord
is longer than /3 if the point of intersection lies on the middle half of the
diameter. The probability is 1/2.

Third answer: if the midpoints of the chords lie in a disc of radius 1/2, the
chord is longer than /3. Because the disc has a radius which is half the
radius of the unit disc, the probability is 1/4.

Figure. Random an-  Figure. Random  Figure. Random area.
gle. translation.

Like most paradoxes in mathematics, a part of the question in Bertrand’s
problem is not well defined. Here it is the term ”random line”. The solu-
tion of the paradox lies in the fact that the three answers depend on the
chosen probability distribution. There are several "natural” distributions.
The actual answer depends on how the experiment is performed.

2) Petersburg paradox (D.Bernoulli, 1738)

In the Petersburg casino, you pay an entrance fee ¢ and you get the prize
27 where T is the number of times, the casino flips a coin until ”head”
appears. For example, if the sequence of coin experiments would give "tail,
tail, tail, head”, you would win 23 — ¢ = 8 — ¢, the win minus the entrance
fee. Fair would be an entrance fee which is equal to the expectation of the

win, which is
D P[T=k=) 1=00.
k=1 k=1

The paradox is that nobody would agree to pay even an entrance fee ¢ = 10.
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The problem with this casino is that it is not quite clear, what is ”fair”.
For example, the situation 7' = 20 is so improbable that it never occurs
in the life-time of a person. Therefore, for any practical reason, one has
not to worry about large values of T. This, as well as the finiteness of
money resources is the reason, why casinos do not have to worry about the
following bullet proof martingale strategy in roulette: bet ¢ dollars on red.
If you win, stop, if you lose, bet 2¢ dollars on red. If you win, stop. If you
lose, bet 4¢ dollars on red. Keep doubling the bet. Eventually after n steps,
red will occur and you will win 2"¢ — (¢ + 2¢ + -+ + 2""!¢) = ¢ dollars.
This example motivates the concept of martingales. Theorem (3.2.7) or
proposition (3.2.9) will shed some light on this. Back to the Petersburg
paradox. How does one resolve it? What would be a reasonable entrance
fee in "real life” ? Bernoulli proposed to replace the expectation E[G] of the
profit G = 27 with the expectation (E[v/G])?, where u(z) = \/z is called a
utility function. This would lead to a fair entrance

= _ 1
(EVG)? = (; ok/29=ky2 — T 5.828... .

It is not so clear if that is a way out of the paradox because for any proposed
utility function u(k), one can modify the casino rule so that the paradox
reappears: pay (2¥)? if the utility function u(k) = Vk or pay 2" dollars,
if the utility function is u(k) = log(k). Such reasoning plays a role in
economics and social sciences.

Figure. The picture to the right

shows the average profit devel-

opment during a typical tourna- \\’\
ment of 4000 Petersburg games. of
After these 4000 games, the
player would have lost about 10 \\\-\
thousand dollars, when paying a ol

10 dollar entrance fee each game.
The player would have to play a \\
very, very long time to catch up. J
Mathematically, the player will \
do so and have a profit in the y
long run, but it is unlikely that
it will happen in his or her life
time.

®

L L L L
1000 2000 3000 4000

3) The three door problem (1991) Suppose you're on a game show and
you are given a choice of three doors. Behind one door is a car and behind
the others are goats. You pick a door-say No. 1 - and the host, who knows
what’s behind the doors, opens another door-say, No. 3-which has a goat.
(In all games, he opens a door to reveal a goat). He then says to you, ”Do
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you want to pick door No. 27” (In all games he always offers an option to
switch). Is it to your advantage to switch your choice?

The problem is also called ”Monty Hall problem” and was discussed by
Marilyn vos Savant in a ”"Parade” column in 1991 and provoked a big
controversy. (See [102] for pointers and similar examples and [90] for much
more background.) The problem is that intuitive argumentation can easily
lead to the conclusion that it does not matter whether to change the door
or not. Switching the door doubles the chances to win:

No switching: you choose a door and win with probability 1/3. The opening
of the host does not affect any more your choice.

Switching: when choosing the door with the car, you loose since you switch.
If you choose a door with a goat. The host opens the other door with the
goat and you win. There are two such cases, where you win. The probability
to win is 2/3.

4) The Banach-Tarski paradox (1924)

It is possible to cut the standard unit ball Q = {z € R? | |z| < 1 } into 5
disjoint pieces 2 = Y1 UY>2UY3UY,UY5 and rotate and translate the pieces
with transformations 7; so that 71 (Y1) UT»(Y2) = Q and T5(Y3) UTy(Ya) U
Ts5(Ys) = Q' is a second unit ball Q' = {z € R? | |z — (3,0,0)| < 1} and all
the transformed sets again don’t intersect.

While this example of Banach-Tarski is spectacular, the existence of bounded
subsets A of the circle for which one can not assign a translational invari-
ant probability P[A] can already be achieved in one dimension. The Italian
mathematician Giuseppe Vitali gave in 1905 the following example: define
an equivalence relation on the circle T = [0, 27) by saying that two angles
are equivalent = ~ y if (z—y)/7 is a rational angle. Let A be a subset in the
circle which contains exactly one number from each equivalence class. The
axiom of choice assures the existence of A. If x1, x5, ... is a enumeration
of the set of rational angles in the circle, then the sets A; = A + x; are
pairwise disjoint and satisfy |J;—, A; = T. If we could assign a translational
invariant probability P[A4;] to A, then the basic rules of probability would

give
1=Pr = PlJ Al =Y PlA]=3».

But there is no real number p = P[A] = P[4,;] which makes this possible.
Both the Banach-Tarski as well as Vitalis result shows that one can not
hope to define a probability space on the algebra A of all subsets of the unit
ball or the unit circle such that the probability measure is translational
and rotational invariant. The natural concepts of ”length” or ”volume”,
which are rotational and translational invariant only makes sense for a
smaller algebra. This will lead to the notion of o-algebra. In the context
of topological spaces like Euclidean spaces, it leads to Borel o-algebras,
algebras of sets generated by the compact sets of the topological space.
This language will be developed in the next chapter.
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1.3 Some applications of probability theory

Probability theory is a central topic in mathematics. There are close re-
lations and intersections with other fields like computer science, ergodic
theory and dynamical systems, cryptology, game theory, analysis, partial
differential equation, mathematical physics, economical sciences, statistical
mechanics and even number theory. As a motivation, we give some prob-
lems and topics which can be treated with probabilistic methods.

1) Random walks: (statistical mechanics, gambling, stock markets, quan-
tum field theory).

Assume you walk through a lattice. At each vertex, you choose a direction
at random. What is the probability that you return back to your start-
ing point? Polya’s theorem (3.8.1) says that in two dimensions, a random
walker almost certainly returns to the origin arbitrarily often, while in three
dimensions, the walker with probability 1 only returns a finite number of
times and then escapes for ever.

=

7+%_%+

£ BT
i
ﬁA

Figure. A random  Figure. A piece of a
walk in one dimen-  random walk in two
stons displayed as a  dimensions.

graph (t, By).

Figure. A piece of a
random walk in three
dimensions.

2) Percolation problems (model of a porous medium, statistical mechanics,
critical phenomena).

Each bond of a rectangular lattice in the plane is connected with probability
p and disconnected with probability 1 — p. Two lattice points z,y in the
lattice are in the same cluster, if there is a path from z to y. One says that
”percolation occurs” if there is a positive probability that an infinite cluster
appears. One problem is to find the critical probability p., the infimum of all
p, for which percolation occurs. The problem can be extended to situations,
where the switch probabilities are not independent to each other. Some
random variables like the size of the largest cluster are of interest near the
critical probability p..
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Figure. Bond percola-  Figure. Bond percola-  Figure. Bond percola-
tion with p=0.2. tion with p=0.4. tion with p=0.6.

A variant of bond percolation is site percolation where the nodes of the
lattice are switched on with probability p.

Figure. Site percola-  Figure. Site percola-  Figure. Site percola-
tion with p=0.2. tion with p=0.4. tion with p=0.6.

Generalized percolation problems are obtained, when the independence
of the individual nodes is relaxed. A class of such dependent percola-
tion problems can be obtained by choosing two irrational numbers «, 3
like « = v2 —1 and f = /3 — 1 and switching the node (n,m) on if
(na+mp) mod 1 € [0,p). The probability of switching a node on is again
p, but the random variables

Xn,m = 1(na+m[5) mod 1€[0,p)

are no more independent.
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Figure. Dependent  Figure. Dependent  Figure. Dependent
site  percolation with  site percolation with — site percolation with
p=0.2. p=0.4. p=0.6.

Even more general percolation problems are obtained, if also the distribu-
tion of the random variables X, ,, can depend on the position (n,m).

3) Random Schrédinger operators. (quantum mechanics, functional analy-
sis, disordered systems, solid state physics)

Consider the linear map Lu(n) = 7, _,,—; () + V(n)u(n) on the space
of sequences u = (..., u_2,U_1,Up, U1, U2, ... ). We assume that V'(n) takes
random values in {0, 1}. The function V is called the potential. The problem
is to determine the spectrum or spectral type of the infinite matrix L on

the Hilbert space [? of all sequences u with finite |[ul|3 = > °7 u?

n=—oo "n’
The operator L is the Hamiltonian of an electron in a one-dimensional
disordered crystal. The spectral properties of L have a relation with the
conductivity properties of the crystal. Of special interest is the situation,
where the values V(n) are all independent random variables. It turns out
that if V(n) are IID random variables with a continuous distribution, there
are many eigenvalues for the infinite dimensional matrix L - at least with

probability 1. This phenomenon is called localization.
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Figure. wave
v(t) = eMP(0)
evolving n a random
potential at t = 0.
Shown are both the
potential V,, and the

wave (0).

Figure. wave
() = eP(0)
evolving n a random
potential at t = 1.

Shown are both the
potential V,, and the
wave P (1).

Figure. wave
et) = l“@/f( )
evolving i a random
potential at t = 2.

Shown are both the
potential V,, and the
wave P (2).

More general operators are obtained by allowing V' (n) to be random vari-
ables with the same distribution but where one does not persist on indepen-
dence any more. A well studied example is the almost Mathieu operator,
where V(n) = Acos(f + na) and for which «/(27) is irrational.

4) Classical dynamical systems (celestial mechanics, fluid dynamics, me-
chanics, population models)

The study of deterministic dynamical systems like the logistic map x +—
42(1 — x) on the interval [0,1] or the three body problem in celestial me-
chanics has shown that such systems or subsets of it can behave like random
systems. Many effects can be described by ergodic theory, which can be
seen as a brother of probability theory. Many results in probability the-
ory generalize to the more general setup of ergodic theory. An example is
Birkhoff’s ergodic theorem which generalizes the law of large numbers.
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Figure. A short time
evolution of the New-
tonian  three  body
problem. There are
energies and subsets
of the energy surface
which  are  invari-
ant and on which
there is an invariant
probability measure.

Figure. [Iterating the

Figure. The simple
logistic map

mechanical system of
a double pendulum
erhibits  complicated
dynamics. The dif-
ferential equation
defines a  measure
preserving flow Ty on
a probability space.

T(z) = 4x(1 — x)

on [0,1]  produces
independent  random
variables.  The in-
variant measure P s
continuous.

Given a dynamical system given by a map T or a flow T} on a subset ) of
some Euclidean space, one obtains for every invariant probability measure
P a probability space (€2, A4, P). An observed quantity like a coordinate of
an individual particle is a random variable X and defines a stochastic pro-
cess Xp(w) = X(T"w). For many dynamical systems including also some 3
body problems, there are invariant measures and observables X for which
X, are IID random variables. Probability theory is therefore intrinsically
relevant also in classical dynamical systems.

5) Cryptology. (computer science, coding theory, data encryption)

Coding theory deals with the mathematics of encrypting codes or deals
with the design of error correcting codes. Both aspects of coding theory
have important applications. A good code can repair loss of information
due to bad channels and hide the information in an encrypted way. While
many aspects of coding theory are based in discrete mathematics, number
theory, algebra and algebraic geometry, there are probabilistic and combi-
natorial aspects to the problem. We illustrate this with the example of a
public key encryption algorithm whose security is based on the fact that
it is hard to factor a large integer N = pq into its prime factors p, g but
easy to verify that p, q are factors, if one knows them. The number N can
be public but only the person, who knows the factors p,q can read the
message. Assume, we want to crack the code and find the factors p and q.

The simplest method is to try to find the factors by trial and error but this is
impractical already if N has 50 digits. We would have to search through 10%°
numbers to find the factor p. This corresponds to probe 100 million times
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every second over a time span of 15 billion years. There are better methods
known and we want to illustrate one of them now: assume we want to find
the factors of N = 11111111111111111111111111111111111111111111111.
The method goes as follows: start with an integer a and iterate the quadratic
map T'(z) = 22 + cmod N on {0,1.,,,.N — 1 }. If we assume the numbers
xo =a,x1 = T(a),zo =T(T(a))... toberandom, how many such numbers
do we have to generate, until two of them are the same modulo one of the
prime factors p? The answer is surprisingly small and based on the birthday
paradox: the probability that in a group of 23 students, two of them have the
same birthday is larger than 1/2: the probability of the event that we have
no birthday match is 1(364/365)(363/365) - - - (343/365) = 0.492703 ... ., so
that the probability of a birthday match is 1 — 0.492703 = 0.507292. This
is larger than 1/2. If we apply this thinking to the sequence of numbers
x; generated by the pseudo random number generator 7', then we expect
to have a chance of 1/2 for finding a match modulo p in /p iterations.
Because p < v/, we have to try N*/4 numbers, to get a factor: if z,, and
Zm are the same modulo p, then ged(x,, — @, N) produces the factor p of
N. In the above example of the 46 digit number N, there is a prime factor
p = 35121409. The Pollard algorithm finds this factor with probability 1/2
in \/p = 5926 steps. This is an estimate only which gives the order of mag-
nitude. With the above N, if we start with a = 17 and take a = 3, then we
have a match x27720 = x13860. It can be found very fast.

This probabilistic argument would give a rigorous probabilistic estimate
if we would pick truly random numbers. The algorithm of course gener-
ates such numbers in a deterministic way and they are not truly random.
The generator is called a pseudo random number generator. It produces
numbers which are random in the sense that many statistical tests can
not distinguish them from true random numbers. Actually, many random
number generators built into computer operating systems and program-
ming languages are pseudo random number generators.

Probabilistic thinking is often involved in designing, investigating and at-
tacking data encryption codes or random number generators.

6) Numerical methods. (integration, Monte Carlo experiments, algorithms)
In applied situations, it is often very difficult to find integrals directly. This
happens for example in statistical mechanics or quantum electrodynamics,
where one wants to find integrals in spaces with a large number of dimen-
sions. One can nevertheless compute numerical values using Monte Carlo
Methods with a manageable amount of effort. Limit theorems assure that
these numerical values are reasonable. Let us illustrate this with a very
simple but famous example, the Buffon needle problem.

A stick of length 2 is thrown onto the plane filled with parallel lines, all
of which are distance d = 2 apart. If the center of the stick falls within
distance y of a line, then the interval of angles leading to an intersection
with a grid line has length 2arccos(y) among a possible range of angles
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[0, 7]. The probability of hitting a line is therefore fol 2 arccos(y)/m = 2/7.
This leads to a Monte Carlo method to compute 7. Just throw randomly
n sticks onto the plane and count the number £ of times, it hits a line. The
number 2n/k is an approximation of 7. This is of course not an effective
way to compute 7 but it illustrates the principle.

Figure. The Buffon needle prob-
lem is a Monte Carlo method
to compute m. By counting the
number of hits in a sequence of
experiments, one can gel ran-
dom approximations of w. The m\
law of large numbers assures that
the approximations will converge
to the expected limit. All Monte

Carlo computations are theoreti-
cally based on limit theorems.




Chapter 2

Limit theorems

2.1 Probability spaces, random variables, indepen-
dence

Let 2 be an arbitrary set.

Definition. A set A of subsets of €2 is called a o-algebra if the following
three properties are satisfied:

(i) Qe A,
(i) Ae A= A°=Q\ A c A,
(iii) A, € A= U,enAn € A

A pair (2, A) for which A is a o-algebra in 2 is called a measurable space.

Properties. If A is a o-algebra, and A,, is a sequence in A, then the fol-
lowing properties follow immediately by checking the axioms:
1) M A € A,

2) limsup, 4, :==(—, Ur_, An € A.
3) liminf,, An =Uo N, An € A.
4) A, B are algebras, then AN B is an algebra.
5)

If { Ay }icr is a family of o- sub-algebras of A. then (. ; A; is a o-algebra.

i€l

Example. For an arbitrary set Q, A = {0, Q} is a o-algebra. It is called the
trivial o-algebra.

Example. If Q is an arbitrary set, then A = {4 C Q} is a o-algebra. The
set of all subsets of €2 is the largest o-algebra one can define on a set.

25
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Example. A finite set of subsets Aj, As,..., A, of © which are pairwise
disjoint and whose union is €2, it is called a partition of (2. It generates the
o-algebra: A = {A = J;c; A; } where J runs over all subsets of {1,..,n}.
This o-algebra has 2™ elements. Every finite o-algebra is of this form. The
smallest nonempty elements { A, ..., A,} of this algebra are called atoms.

Definition. For any set C of subsets of €2, we can define o(C), the smallest
o-algebra A which contains C. The o-algebra A is the intersection of all
o-algebras which contain C. It is again a o-algebra.

Example. For Q@ = {1,2,3}, the set C = {{1,2},{2,3 }} generates the
o-algebra A which consists of all 8 subsets of (2.

Definition. If (E, Q) is a topological space, where O is the set of open sets
in E. then ¢(O) is called the Borel o-algebra of the topological space. If
A C B, then A is called a subalgebra of B. A set B in B is also called a
Borel set.

Remark. One sometimes defines the Borel o-algebra as the o-algebra gen-
erated by the set of compact sets C of a topological space. Compact sets
in a topological space are sets for which every open cover has a finite sub-
cover. In Euclidean spaces R™, where compact sets coincide with the sets
which are both bounded and closed, the Borel o-algebra generated by the
compact sets is the same as the one generated by open sets. The two def-
initions agree for a large class of topological spaces like ”locally compact
separable metric spaces”.

Remark. Often, the Borel o-algebra is enlarged to the o-algebra of all
Lebesgue measurable sets, which includes all sets B which are a subset
of a Borel set A of measure 0. The smallest o-algebra B which contains
all these sets is called the completion of B. The completion of the Borel
o-algebra is the o-algebra of all Lebesgue measurable sets. It is in general
strictly larger than the Borel o-algebra. But it can also have pathological
features like that the composition of a Lebesgue measurable function with
a continuous functions does not need to be Lebesgue measurable any more.
(See [114], Example 2.4).

Example. The o-algebra generated by the open balls C = {A = B,.(z) } of
a metric space (X,d) need not to agree with the family of Borel subsets,
which are generated by O, the set of open sets in (X, d).

Proof. Take the metric space (R,d) where d(z,y) = 1{;2, 1 is the discrete
metric. Because any subset of R is open, the Borel o-algebra is the set of
all subsets of R. The open balls in R are either single points or the whole
space. The o-algebra generated by the open balls is the set of countable
subset of R together with their complements.
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Example. If Q = [0,1] x [0, 1] is the unit square and C is the set of all sets
of the form [0, 1] x [a,b] with 0 < a < b < 1, then o(C) is the o-algebra of
all sets of the form [0, 1] x A, where A is in the Borel o-algebra of [0, 1].

Definition. Given a measurable space (2, A). A function P : A — R is
called a probability measure and (€2, A, P) is called a probability space if
the following three properties called Kolmogorov axioms are satisfied:

(i) P[A] > 0 forall A € A,
(i) Pl = 1.
(iii) A, € A disjoint = P[J, 4] = 3., P[A,]

The last property is called o-additivity.

Properties. Here are some basic properties of the probability measure
which immediately follow from the definition:

Remark. There are different ways to build the axioms for a probability
space. One could for example replace (i) and (ii) with properties 4),5) in
the above list. Statement 6) is equivalent to o-additivity if P is only assumed
to be additive.

Remark. The name ”Kolmogorov axioms” honors a monograph of Kol-
mogorov from 1933 [54] in which an axiomatization appeared. Other math-
ematicians have formulated similar axiomatizations at the same time, like
Hans Reichenbach in 1932. According to Doob, axioms (i)-(iii) were first
proposed by G. Bohlmann in 1908 [22].

Definition. A map X from a measure space (£2,.A) to an other measure
space (A, B) is called measurable, if X ~1(B) € A for all B € B. The set
X~1(B) consists of all points = € 2 for which X (z) € B. This pull back set
X ~Y(B) is defined even if X is non-invertible. For example, for X (z) = 22
on (R, B) one has X ~1([1,4]) = [1,2] U [-2, —1].

Definition. A function X : 2 — R is called a random variable, if it is a
measurable map from (Q, A) to (R, B), where B is the Borel o-algebra of
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R. Denote by L the set of all real random variables. The set £ is an alge-
bra under addition and multiplication: one can add and multiply random
variables and gets new random variables. More generally, one can consider
random variables taking values in a second measurable space (E,B). If
E = R?, then the random variable X is called a random vector. For a ran-
dom vector X = (X1,...,X4), each component X; is a random variable.

Example. Let Q = R? with Borel o-algebra A and let

P[A4] = %/Ae_(w2_y2)/2 dzdy .

Any continuous function X of two variables is a random variable on Q. For
example, X (z,y) = zy(x + y) is a random variable. But also X (x,y) =
1/(z + y) is a random variable, even so it is not continuous. The vector-
valued function X (z,y) = (z,y,2%) is an example of a random vector.

Definition. Every random variable X defines a o-algebra
X'B)={Xx"'B)|BeB}.

We denote this algebra by o(X) and call it the o-algebra generated by X.
Example. A constant map X (z) = ¢ defines the trivial algebra A = {0, Q }.

Example. The map X (z,y) = x from the square 2 = [0,1] x [0, 1] to the
real line R defines the algebra B = {A x [0,1] }, where A is in the Borel
o-algebra of the interval [0, 1].

Example. The map X from Zg = {0,1,2,3,4,5} to {0,1} C R defined by
X (x) = 2 mod 2 has the value X (x) =0 if z is even and X (x) =1 if x is
odd. The o-algebra generated by X is A = {0,{1,3,5},{0,2,4},Q }.

Definition. Given a set B € A with P[B] > 0, we define

P[AN B

PIAIB) = ~ 5

the conditional probability of A with respect to B. It is the probability of
the event A, under the condition that the event B happens.

Example. We throw two fair dice. Let A be the event that the first dice is
6 and let B be the event that the sum of two dices is 11. Because P[B] =
2/36 = 1/18 and P[A N B] = 1/36 (we need to throw a 6 and then a 5),
we have P[A|B] = (1/16)/(1/18) = 1/2. The interpretation is that since
we know that the event B happens, we have only two possibilities: (5,6)
or (6,5). On this space of possibilities, only the second is compatible with
the event B.
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Exercise. In [28], Martin Gardner writes: ” Ask someone to name two faces
of a die. Suppose he names 2 and 5. Let him throw a pair of dice as often
as he wishes. Each time you bet at even odds that either the 2 or the 5 or
both will show.” Is this a good bet?

Exercise. a) Verify that the Sicherman dices with faces (1, 3,4, 5, 6,8) and
(1,2,2,3,3,4) have the property that the probability of getting the value
k is the same as with a pair of standard dice. For example, the proba-
bility to get 5 with the Sicherman dices is 4/36 because the three cases
(1,4),(3,2),(3,2),(4,1) lead to a sum 5. Also for the standard dice, we
have four cases (1,4), (2,3),(3,2), (4,1).

b) Three dices A, B, C are called non-transitive, if the probability that A >
B is larger than 1/2, the probability that B > C'is larger than 1/2 and the
probability that C' > A is larger than 1/2. Verify the non-transitivity prop-
erty for A = (1,4,4,4,4,4), B=(3,3,3,3,3,6) and C' = (2,2,2,5,5,5).

Properties. The following properties of conditional probability are called
Keynes postulates. While they follow immediately from the definition
of conditional probability, they are historically interesting because they
appeared already in 1921 as part of an axiomatization of probability theory:

1) P[A]|B] > 0.
2) P[A|A] = 1
3) P[A|B] + P|A°|B] = 1.

4) P[AN B|C] = P[A|C] - P[B|ANC).

Definition. A finite set {A4,..., A, } C Ais called a finite partition of ) if
U;;l Aj=Qand AjNA; =0 for i # j. A finite partition covers the entire
space with finitely many, pairwise disjoint sets.

If all possible experiments are partitioned into different events A; and the
probabilities that B occurs under the condition A;, then one can compute
the probability that A; occurs knowing that B happens:

Theorem 2.1.1 (Bayes rule). Given a finite partition {44, .., 4, } in A and
B € A with P[B] > 0, one has

P[B|A;|P[A;]

PLAIB = S BB A,
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Proof. Because the denominator is P[B] = E?:l P[B|A;]P[A;], the Bayes
rule just says P[A;|B]P[B] = P[B|4;]P[A;]. But these are by definition
both P[A; N B]. O

Example. A fair dice is rolled first. It gives a random number k from
{1,2,3,4,5,6 }. Next, a fair coin is tossed k times. Assume, we know that
all coins show heads, what is the probability that the score of the dice was
equal to 57

Solution. Let B be the event that all coins are heads and let A; be the
event that the dice showed the number j. The problem is to find P[A5|B].
We know P[B|A;] = 277. Because the events A;,j = 1,...,6 form a par-
tition of Q, we have P[B] = Y_°_ | P[B N 4;] = Y0, P[B|A;]P[4;] =
Z?:l 279/6=(1/2+1/4+1/8+1/16+1/32+1/64)(1/6) = 21/128. By
Bayes rule,

plasi5) = — PIBLASIPLASL _ (1/32)(1/6) _ 2
(0, PBIAJPIA;])  21/138 63

Jj=1

Figure. The probabilities
P[A;|B] in the last problem

1 2 3 4 5 6

Example. The Girl-Boy problem has been popularized by Martin Gardner:
”"Dave has two children. One child is a boy. What is the probability that
the other child is a girl”?

Most people would intuitively say 1/2 because the second event looks in-
dependent of the first. However, it is not and the initial intuition is mis-
leading. Here is the solution: first introduce the probability space of all
possible events Q = {bg, gb, bb, gg } with P[{bg }| = P[{gb }| = P[{bb }] =
P[{gg }] = 1/4. Let B = {bg, gb,bb } be the event that there is at least one
boy and A = {gb,bg, gg } be the event that there is at least one girl. We
have
P[ANnB] (1/2) 2

AP = = =B s
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Example. A variant of the Boy-Girl problem is due to Gary Foshee [84].
We formulate it in a simplified form: ” Dave has two children, one of whom
is a boy born at night. What is the probability that Dave has two boys?”
It is assumed of course that the probability to have a boy (b) or girl (g)
is 1/2 and that the probability to be born at night (n) or day (d) is 1/2
too. One would think that the additional information ”to be born at night”
does not influence the probability and that the overall answer is still 1/3
like in the boy-girl problem. But this is not the case. The probability space
of all events has 12 elements Q = {(bd)(bd), (bd)(bn), (bn)(bd), (bn)(bn),
(bd)(gd), (bd)(gn), (bn)(gd), (bn)(gn), (¢9d)(bd), (g9d)(bn), (gn)(bd), (gn)(bn),
(9d)(gd), (gd)(gn), (gn)(gd), (gn)(gn) }. The information that one of the
kids is a boy eliminates the last 4 examples. The information that the boy
is born at night only allows pairings (bn) and eliminates all cases with (bd)
if there is not also a (bn) there. We are left with an event B containing 7
cases which encodes the information that one of the kids is a boy born at
night:

B = {(bd)(bn), (bn)(bd), (bn)(bn), (bn)(gd), (bn)(gn), (9d)(bn), (gn)(bn) } .

The event A that Dave has two boys is A = {(bd)(bn), (bn)(bd), (bn)(bn) }.
The answer is the conditional probability P[A|B] = P[AN B]/P[B] = 3/7.
This is bigger than 1/3 the probability without the knowledge of being
born at night.

Exercise. Solve the original Foshee problem: ”Dave has two children, one
of whom is a boy born on a Tuesday. What is the probability that Dave
has two boys?”

Exercise. This version is close to the original Gardner paradox:

a) I throw two dice onto the floor. A friend who stands nearby looks at
them and tells me: ” At least one of them is head”. What is the probability
that the other is head?

b) I throw two dice onto the floor. One rolls under a bookshelf and is
invisible. My friend who stands near the coin tells me ” At least one of
them is head”. What is the probability that the hidden one is head?
Explain why in a) the probability is 1/3 and in b) the probability is 1/2.

Definition. Two events A, B in s probability space (€2, .4, P) are called in-
dependent, if
P[ANn B] =P[A]-P[B].

Example. The probability space Q = {1,2,3,4,5,6 } and p; = P[{i}| =1/6
describes a fair dice which is thrown once. The set A = {1,3,5 } is the
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event that "the dice produces an odd number”. It has the probability 1/2.
The event B = {1,2 } is the event that the dice shows a number smaller
than 3. It has probability 1/3. The two events are independent because
P[ANn B] =P[{1}] =1/6 =P[A] - P[B].

Definition. Write J C I if J is a finite subset of I. A family {A4; };cr of o-
sub-algebras of A is called independent, if for every J C# I and every choice
Aj € A; PINje5 As] = e s PIAj]. A family {X;};e of random variables
is called independent, if {o(X;)};cs are independent o-algebras. A family
of sets {A;},cr is called independent, if the o-algebras A; = {0, A4;, A5,Q }
are independent.

Example. On Q = {1,2,3,4 } the two o-algebras A = {0,{1,3 },{2,4 },Q }
and B={0,{1,2 },{3,4 },Q } are independent.

Properties. (1) If a o-algebra F C A is independent to itself, then P[A N
A] = P[A] = P[A]? so that for every A € F, P[A] € {0,1}. Such a o-algebra
is called P-trivial.

(2) Two sets A, B € A are independent if and only if PIJANB] = P[A]-P[B].
(3) If A, B are independent, then A, B¢ are independent too.

(4) If P[B] > 0, and A, B are independent, then P[A|B] = P[A] because
P[A|B] = (P[] - P[B])/P[B] = P[A].

(5) For independent sets A, B, the o-algebras A = {0, A, A°,Q} and B =
{0, B, B%,Q} are independent.

Definition. A family Z of subsets of €2 is called a w-system, if Z is closed
under intersections: if A, B are in Z, then AN B is in Z. A o-additive map
from a m-system Z to [0, 00) is called a measure.

Example. 1) The family Z = {0, {1}, {2}, {3}, {1, 2}, {2, 3}, Q} is a m-system
on O ={1,2,3}.

2) The set Z = {[a,b) |0 < a < b < 1} U {0} of all half closed intervals is a
m-system on 2 = [0, 1] because the intersection of two such intervals [a, )
and [e,d) is either empty or again such an interval [c, b).

Definition. We use the notation A, " Aif A, C A,41 and |, A, = A.
Let Q be a set. (€2, D) is called a Dynkin system if D is a set of subsets of
Q satisfying

(i) Qe D,
(i) ABeD, AC B=B\AeD.
(iii) A, € D,A, /A= AeD
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Lemma 2.1.2. (2, A) is a o-algebra if and only if it is a 7-system and a
Dynkin system.

Proof. If Ais a o-algebra, then it certainly is both a 7m-system and a Dynkin
system. Assume now, A4 is both a m-system and a Dynkin system. Given
A,B € A. The Dynkin property implies that A° = Q\ A, B° = Q\ B
are in A and by the m-system property also AU B = Q\ (A°N B°) € A.
Given a sequence A, € A. Define B, = |J;_; Ax € Aand A = {J,, A,.
Then B, A and by the Dynkin property A € A. We see that A is a
o-algebra. O

Definition. If 7 is any set of subsets of €2, we denote by d(Z) the smallest
Dynkin system, which contains Z and call it the Dynkin system generated
by 7.

Lemma 2.1.3. If 7 is a 7- system, then d(Z) = o(Z).

Proof. By the previous lemma, we need only to show that d(Z) is a m—
system.

(i) Define Dy = {B € d(Z) | BNC € d(Z),VC € T }. Because 7 is a
m-system, we have Z C D;.

Claim. D; is a Dynkin system.

Proof. Clearly 2 € D;. Given A,B € D; with A C B. For C € T we
compute (B\ A)NC = (BNC)\ (AN C) which is in d(Z). Therefore
B\ A € D;. Given A,, /* Awith A, € Dy and C € Z. Then 4,,NC S ANC
so that ANC € d(Z) and A € D;.

(ii) Define Dy = {A € d(Z) | BNA € d(Z),VYB € d(Z) }. From (i) we know
that Z C Ds. Like in (i), we show that Dz is a Dynkin-system. Therefore
Dy = d(Z), which means that d(Z) is a m-system. O

Lemma 2.1.4. (Extension lemma) Given a m-system Z. If two measures pu, v
on o(Z) satisfy u(2),v(Q) < co and pu(A) =v(A) for A € Z, then u = v.

Proof. The set D = {A € o(Z) | p(A) = v(A) } is Dynkin system: first
of all Q € D. Given A,B € D,A C B. Then u(B\ A) = u(B) — u(4) =
v(B)—v(A) = v(B\A) sothat B\A € D. Given 4,, € D with 4,, /* A, then
the o additivity gives u(A) = limsup,, u(4,) = limsup,, v(A4,,) = v(A), so
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that A € D. Since D is a Dynkin system containing the m-system Z, we
know that o(Z) = d(Z) C D which means that ¢ = v on o(Z).

(I
Definition. Given a probability space (€, A, P). Two w-systems Z, 7 C A
are called P-independent, if for all A € 7 and B € J, P[ANB] = P[A]-P[B].

Lemma 2.1.5. Given a probability space (2, 4,P). Let G,H be two o-
subalgebras of A and Z and J be two m-systems satisfying o(Z) = G,
o(J) = H. Then G and H are independent if and only if Z and J are
independent.

Proof. (i) Fix I € Z and define on (Q,H) the measures u(H) = P[I N
H],v(H) = P[I]P[H] of total probability P[I]. By the independence of 7
and J, they coincide on J and by the extension lemma (2.1.4), they agree
on H and we have P[INH| =P[[|P[H] for all ] € 7 and H € H.

(ii) Define for fixed H € H the measures u(G) = P[G N H] and v(G) =
P[G]P[H] of total probability P[H] on (€2, G). They agree on Z and so on G.
We have shown that P[GNH| = P[G]P[H| forall G € Gand all H €¢ H. O

Definition. A is an algebra if A4 is a set of subsets of 2 satisfying

(i) Qe A,
(i) Ac A= A° € A,
(ii) A, Be A=ANBe A

Remark. We see that AN B = B\ A and AN B°= A\ B are also in the
algebra A. The relation AUB = (A°NB¢)¢ shows that the union AUB in the
algebra. Therefore also the symmetric difference AAB = (A\ B)U (B '\ A)
is in the algebra. The operation N is the ”multiplication” and the operation
A the ”addition” in the algebra, explaining the name algebra. Its up to you
to find the zero element 0AA = A for all A and the one element 1NA = A
in this algebra.

Definition. A o-additive map from A to [0, 00) is called a measure.

Theorem 2.1.6 (Carathéodory continuation theorem). Any measure on an
algebra R has a unique continuation to a measure on o(R).

Before we launch into the proof of this theorem, we need two lemmas:

Definition. Let A be an algebra and A : A — [0, 00] with A(()) = 0. A set
A€ Ais called a A-set, if \(ANG)+ A(A°NG) = A(G) for all G € A.
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Lemma 2.1.7. The set Ay of A-sets of an algebra A is again an algebra and
satisfies 11 AM(Ax N G) = A(Uj—, Ax) N G) for all finite disjoint families
{4}y, and all G € A.

Proof. From the definition is clear that Q € A, and that if B € Ay, then
B¢ e Ay. Given B,C € Ay. Then A = BN C € Ay. Proof. Since C € A,,
we get

AMCNANG)+AMCNANG) =AA°NGE) .

This can be rewritten with C N A° = C N B¢ and C°N A = C° as

AMANG)=XCNBNGE)+ANC°NG) . (2.1)
Because B is a A-set, we get using BN C = A.

MANG)+ABNCNG) =ACNG). (2.2)
Since C' is a A-set, we have

MCNG)+NC°NG) = \G) . (2.3)
Adding up these three equations shows that BN C is a A-set. We have so
verified that Ay is an algebra. If B and C are disjoint in Ay we deduce
from the fact that B is a A-set
ABN(BUC)NG)+AB°N(BUC)NG) =A(BUC)NG).

This can be rewritten as A(BNG)+A(CNG) = A((BUC)NG). The analog
statement for finitely many sets is obtained by induction. 0

Definition. Let A be a o-algebra. A map A : A — [0, 00] is called an outer
measure, if

A(0) =0,
A,B e Awith A C B = \(A) < A(B).
Ap e A = AU, An) <>, MAn) (0 subadditivity)

Lemma 2.1.8. (Carathéodory’s lemma) If X is an outer measure on a mea-
surable space (€2, A), then Ay C A defines a o-algebra on which \ is count-
ably additive.




36 Chapter 2. Limit theorems

Proof. Given a disjoint sequence A, € Ayx. We have to show that A =
U, An € Ay and A(A) = >, AM(Ay). By the above lemma (2.1.7), B, =
Up—; Ak is in Ay. By the monotonicity, additivity and the o -subadditivity,
we have

MG) = AMB.NG)+AXBENG) > ANB,NG)+AANG)

= Y AMANG)+AANG) = MANG) + MA°NG) .
k=1
Subadditivity for A gives A(G) < A(ANG) + A(A°NG). All the inequalities
in this proof are therefore equalities. We conclude that A € A,. Finally we
show that A is o additive on Ay: for any n > 1 we have

Z/\(Ak) < )\(U Ay < Z)\(Ak) :
k=1 k=1 k=1

Taking the limit n — oo shows that the right hand side and left hand side
agree verifying the o-additivity. O

We now prove the Caratheodory’s continuation theorem (2.1.6):

Proof. Given an algebra R with a measure p. Define A = o(R) and the
o-algebra P consisting of all subsets of €. Define on P the function

mf{z 1(Ap) | {Anbnen sequence in R satisfying A C U A}
neN

(i) A is an outer measure on P.

A(@) = 0 and A(A) < A(B) for A C A are obvious. To see the o subad-
ditivity, take a sequence A,, € P with A(4,) < co and fix ¢ > 0. For all
n € N, one can (by the definition of \) find a sequence {B, i}reny in R
such that A, C Ugen Bnk and 32, iy 4(Bnk) < AM(Ap) +€27". Define A =

Unen An € U, ken Brks s0 that AA) < 37 pu(Bnk) < 32, A(An) + e
Since € was arbitrary, the o-subadditivity is proven.

(i) A=p on R.

Given A € R. Clearly A(A) < u(A). Suppose that A C {J,, An, with A, €
R. Define a sequence { B, },cn of disjoint sets in R inductively. That is By =
A1, By = Ap N (Upen Ak)¢ such that B, C A, and |, B, = U,, An D A.
From the o-additivity of p on R follows

A) < p(JAn) = pUBn) =D _u(B
Since the choice of A, is arbitrary, this gives pu(A4) < A(4).
(iii) Let Py be the set of A-sets in P. Then R C Pi.
Given A € R and G € P. There exists a sequence { By, }nen in R such that
G C U, Bn and ), u(By) < A(G) + €. By the definition of A

Y u(Ba) =D wANB) + Y u(A°N By) > MANG) + MA°NG)
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because ANG C |J, AN B, and A°NG C |J,, A° N By,. Since € is ar-
bitrary, we get A(G) > AM(A N G) + A(A° N G). On the other hand, since
A is sub-additive, we have also A(G) < AM(ANG)+A(A°NG) and A is a A-set.

(iv) By (i) A is an outer measure on (2, P). Since by step (iii), R C Pa,
we know by Caratheodory’s lemma that A C P, so that we can define
on A as the restriction of A to A. By step (i), this is an extension of the
measure u on R.

(v) The uniquness follows from Lemma (2.1.4). O

Here is an overview over the possible set of subsets of 2 we have considered.
We also include the notion of ring and o-ring, which is often used in measure
theory and which differ from the notions of algebra or o-algebra in that
Q) does not have to be in it. In probability theory, those notions are not
needed at first. For an introduction into measure theory, see [3, 38, 18].

Set of Q subsets | contains | closed under

topology 0,0 arbitrary unions, finite intersections
m-system finite intersections

Dynkin system | €2 increasing countable union, difference
ring [] complement and finite unions

o-ring [ countably many unions and complement
algebra Q complement and finite unions

o-algebra 0,0 countably many unions and complement
Borel o-algebra | 0, o-algebra generated by the topology

Remark. The name "ring” has its origin to the fact that with the ”addition”
A+ B =AAB = (AUB)\ (AN B) and "multiplication” A-B = AN B,
a ring of sets becomes an algebraic ring like the set of integers, in which
rules like A- (B+C) = A- B+ A-C hold. The empty set () is the zero
element because AA() = A for every set A. If the set  is also in the ring,
one has a ring with 1 because the identity A N Q = A shows that €2 is the
1-element in the ring.

Lets add some definitions, which will occur later:

Definition. A nonzero measure p on a measurable space (2,.4) is called
positive, if u(A) > 0 for all A € A. If ™, 4~ are two positive measures
so that pu(A) = pu* — p~ then this is called the Hahn decomposition of 4.
A measure is called finite if it has a Hahn decomposition and the positive
measure |u| defined by |u|(A) = ut(A) + p~ (A) satisfies |u|(Q) < oo.

Definition. Let v, u be two measures on the measurable space (€2,.4). We
write v << p if for every A in the o-algebra A, the condition u(A) = 0
implies (A) = 0. One says that v is absolutely continuous with respect to

I

Example. If y = dz is the Lebesgue measure on (92, 4) = ([0,1],.4) sat-
isfying u([a,b]) = b — a for every interval and if v([a,b]) = f: 22 dx then
v << .



38 Chapter 2. Limit theorems

Example. If y = dz is the Lebesgue measure on ([0, 1],.A) and v = d; 5 is
the point measure which satisfies v(A) = 1if 1/2 € A and v(A4) = 0 else.
Then v is not absolutely continuous with respect to u. Indeed, for the set
A ={1/2}, we have u(A) =0 but v(A) = 1.

2.2 Kolmogorov’s 0 — 1 law, Borel-Cantelli lemma

Definition. Given a family {A; }ier of o-subalgebras of A. For any nonempty
set J C I, let Ay := \/,c;A; be the o-algebra generated by (J;c;A;-
Define also Ay = {0, }. The tail o-algebra T of {A};cr is defined as
T= chl,J finite AJe, where J° =T\ J.

Theorem 2.2.1 (Kolmogorov’s 0 — 1 law). If {A;};er are independent o-
algebras, then the tail o-algebra T is P-trivial: P[A] = 0 or P[A] = 1 for
every A€ T.

Proof. (i) The algebras Ar and Ag are independent, whenever F,G C I
are disjoint.
Proof. Define for H C I the m-system

Tp={AcA|A=()A,KCsHA €A},
ieK

The m-systems Zr and Z are independent and generate the o-algebras Ap
and Ag. Use lemma (2.1.5).
(ii) Especially: A is independent of A jc for every J C 1.
(iii) 7 is independent of A;.
Proof. T = (;c,;AJe is independent of any Ax for K C; I. It is
therefore independfent to the m-system Z; which generates A;. Use again
lemma (2.1.5).
(iv) T is a sub-o-algebra of A;. Therefore T is independent of itself which
implies that it is P-trivial. (I

Example. Let X,, be a sequence of independent random variables and let

A={we ] ZX" converges } .

n=1

Then P[A] = 0 or P[A] = 1. Proof. Because Y~ | X,, converges if and only
ify, = Z;‘;n X} converges, we have A € o(A,, Apy1...). Therefore, A
is in T, the tail o- algebra defined by the independent o-algebras A,, =
o(X,). If for example, if X,, takes values +1/n, each with probability 1/2,
then P[A] = 0. If X,, takes values 4-1/n? each with probability 1/2, then
P[A] = 1. The decision whether P[A] = 0 or P[A] = 1 is related to the
convergence or divergence of a series and will be discussed later again.
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Example. Let {4, }nen be a sequence of subsets of 2. The set

Ay :=limsup A4, = ﬁ U A,

oo m=1n>m

consists of the set {w € Q} such that w € A,, for infinitely many n € N.
The set Ay is contained in the tail o-algebra of A, = {0, A,, A5, Q }. It
follows from Kolmogorov’s 0 — 1 law that P[A.] € {0,1} if A, € A and
{A,, } are P-independent.

Remark. In the theory of dynamical systems, a measurable map 7' : Q —
of a probability space (£, 4,P) onto itself is called a K-system, if there
exists a o-subalgebra F C A which satisfies F C o(T(F)) for which the
sequence F,, = o(T"(F)) satisfies Fy = A and which has a trivial tail
o-algebra T = {0, Q}. An example of such a system is a shift map T'(z),, =
21 on Q = AN, where A is a compact topological space. The K-system
property follows from Kolmogorov’s 0—1 law: take F = \/7— | T*(F), with
Fo={zecQ=A%|zg=rc A}

Theorem 2.2.2 (First Borel-Cantelli lemma). Given a sequence of events
A, € A. Then

> P[A,] < 00 = PlAy] =0.

Proof. P[Ax] = lim,, P[Uan Ag] < limy, o0 Zan P[Ax] = 0.

Theorem 2.2.3 (Second Borel-Cantelli lemma). For a sequence A4,, € A of
independent events,

> PlAy] =00 = PlAs] = 1.

neN

Proof. For every integer n € N,

P[() 4] = JIPlAil

k>n k>n
= JJ@-Pla) < ] exp(—P[Ax])
k>n k>n

= exp(— Y _P[A)]).

k>n
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The right hand side converges to 0 for n — co. From

Plas] =P[J () 45 < 3P 45 =0

neNk>n neN  k>n
follows P[AS ] = 0. O

Example. The following example illustrates that independence is necessary
in the second Borel-Cantelli lemma: take the probability space ([0, 1], B, P),
where P = dz is the Lebesgue measure on the Borel o-algebra B of [0, 1].
For A, =[0,1/n] we get Ao = ) and so P[A] = 0. But because P[A,] =
1/n we have > 7 | P[A,] = >°° | 1 = 0o because the harmonic series
>0 1/n diverges:

R R

1 1
E —2/ — dz =log(R) .
nzln 1 X

Example. ("Monkey typing Shakespeare”) Writing a novel amounts to en-
ter a sequence of N symbols into a computer. For example, to write " Ham-
let”, Shakespeare had to enter N = 180’000 characters. A monkey is placed
in front of a terminal and types symbols at random, one per unit time, pro-
ducing a random sequence X, of identically distributed sequence of random
variables in the set of all possible symbols. If each letter occurs with prob-
ability at least €, then the probability that Hamlet appears when typing
the first N letters is eV. Call A; this event and call Aj; the event that
this happens when typing the (kK — 1)N + 1 until the kN’th letter. These
sets Ay are all independent and have all equal probability. By the second
Borel-Cantelli lemma, the events occur infinitely often. This means that
Shakespeare’s work is not only written once, but infinitely many times. Be-
fore we model this precisely, lets look at the odds for random typing. There
are 30"V possibilities to write a word of length N with 26 letters together
with a minimal set of punctuation: a space, a comma, a dash and a period
sign. The chance to write ”To be, or not to be - that is the question.”
with 43 random hits onto the keyboard is 1/10%%5. Note that the life time
of a monkey is bounded above by 131400000 ~ 108 seconds so that it is
even unlikely that this single sentence will ever be typed. To compare the
probability, it is helpful to put the result into a list of known large numbers
[10, 39].

10* One "myriad”. The largest numbers, the Greeks were considering.
10° The largest number considered by the Romans.

10'°  The age of the universe in years.

10'"  The age of the universe in seconds.

10?2 Distance to our neighbor galaxy Andromeda in meters.

10%®  Number of atoms in two gram Carbon which is 1 Avogadro.
10%"  Estimated size of universe in meters.

10%°  Mass of the sun in kilograms.

10" Mass of our home galaxy ”milky way” in kilograms.

10%"  Archimedes’s estimate of number of sand grains in universe.
10%©  The number of protons in the universe.
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10190 One ”googol”. (Name coined by 9 year old nephew of E. Kasner).
10%53 Number mentioned in a myth about Buddha.
10'5° Size of ninth Fermat number (factored in 1990).

101° Size of large prime number (Mersenne number, Nov 1996).

1010 Years, ape needs to write "hound of Baskerville” (random typing).
1010 Inverse is chance that a can of beer tips by quantum fluctuation.
1010:z Inverse is probability that a mouse survives on the sun for a week.
10"

101" Inverse is chance to find yourself on Mars by quantum fluctuations
100
1010

Estimated number of possible games of chess.

One ”Gogoolplex”

Lemma 2.2.4. Given a random variable X on a finite probability space A,
there exists a sequence X1, Xs,... of independent random variables for
which all random variables X; have the same distribution as X.

Proof. The product space = AN is compact by Tychonov’s theorem. Let
A be the Borel-o-algebra on 2 and let (denote the probability measure on
A. The probability measure P = Q% is defined on (2, A) has the property
that for any cylinder set

Z(w) :{w€Q|wk =Tk, Wk+1 :TkJrl;---;wn:Tn}

defined by a "word” w = [rg,, ... 7],

PZ(w)] = [[Plwi =r] =[] @{r}) -

i=k i=k

Finite unions of cylinder sets form an algebra R which generates o(R) = A.
The measure P is o-additive on this algebra. By Carathéodory’s continu-
ation theorem (2.1.6), there exists a measure P on (2,.4). For this proba-
bility space (€2, A, P), the random variables X;(w) = w;) are independent
and have the same distribution as X. O

Remark. The proof made use of Tychonov’s theorem which tells that the
product of compact topological spaces is compact. The theorem is equiv-
alent to the Axiom of choice and one of the fundamental assumptions of
mathematics. Since Tychonov’s theorem is known to be equivalent to the
axiom of choice, we can assume it to be a fundamental axiom itself. The
compactness of a countable product of compact metric spaces which was
needed in the proof could be proven without the axiom using a diagonal
argument. It was easier to just refer to a fundamental assumption of math-
ematics.
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Example. In the example of the monkey writing a novel, the process of
authoring is given by a sequence of independent random variables X, (w) =
wy. The event that Hamlet is written during the time [Nk 4+ 1, N(k + 1)]
is given by a cylinder set Aj. They have all the same probability. By the
second Borel-Cantelli lemma, P[A.] = 1. The set A, the event that the
Monkey types this novel arbitrarily often, has probability 1.

Remark. Lemma (2.2.4) can be generalized: given any sequence of prob-
ability spaces (R, B,P;) one can form the product space (€2,.4,P). The
random variables X;(w) = w; are independent and have the law P,. An
other construction of independent random variables is given in [109].

Exercise. In this exercise, we experiment with some measures on 2 = N
[113].

a) The distance d(n,m) = |n — m| defines a topology O on Q2 = N. What
is the Borel o-algebra A generated by this topology?

b) Show that for every A >0

is a probability measure on the measurable space (£2,.A) considered in a).
¢) Show that for every s > 1

PlA] = 3 ¢(s) '

neA
is a probability measure on the measurable space (£2,.4). The function

s ()=
neQ
is called the Riemann zeta function.
d) Show that the sets 4, = {n € Q| p divides n} with prime p are indepen-
dent. What happens if p is not prime.
e) Give a probabilistic proof of Euler’s formula

1 1
RO H (1-=).

f) Let A be the set of natural numbers which are not divisible by a square
different from 1. Prove
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2.3 Integration, Expectation, Variance

In this entire section, (2,4, P) will denote a fixed probability space.
Definition. A statement S about points w € Q is a map from ) to {true, false}.
A statement is said to hold almost everywhere, if the set P[{w | S(w) =
false }] = 0. For example, the statement ”let X,, — X almost everywhere”,

is a short hand notation for the statement that the set {x € Q| X,,(z) —
X (x) } is measurable and has measure 1.

Definition. The algebra of all random variables is denoted by L. It is a

vector space over the field R of the real numbers in which one can multiply.
A elementary function or step function is an element of £ which is of the

form N
X = a;lg,
i=1

with o; € R and where A; € A are disjoint sets. Denote by S the algebra
of step functions. For X € § we can define the integral

B[X] = /QX P = zn: aiP[A] |

Definition. Define £' € £ as the set of random variables X, for which

sup /Y dP
yeS,y<|X|

is finite. For X € £, we can define the integral or expectation

E[X] ::/XdP: sup /YdP— sup /YdP,
yeS y<x+ yeSy<x-
where XT = X V0 = max(X,0) and X~ = —X V0 = max(—X,0). The

vector space £ is called the space of integrable random variables. Similarly,
for p > 1 write £” for the set of random variables X for which E[| X |P] < co.

Definition. It is custom to write L* for the space £, where random vari-
ables X,Y for which E[|X — Y|] = 0 are identified. Unlike £L?, the spaces
LP are Banach spaces. We will come back to this later.

Definition. For X € £2, we can define the variance
Var[X] := E[(X — E[X])?] = E[X?] - E[X]?.
The nonnegative number
o[X] = Var[X]/?

is called the standard deviation of X.
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The names expectation and standard deviation pretty much describe al-
ready the meaning of these numbers. The expectation is the "average”,
"mean” or "expected” value of the variable and the standard deviation
measures how much we can expect the variable to deviate from the mean.

Example. The m’th power random variable X (z) = 2™ on ([0, 1], B, P) has
the expectation

! 1
BLY) = [ o do=
0 m

the variance

1 1 m?

T2m+1 (m+12 (1+m)2(1+2m)

Var[X] = E[X?] — E[X]?

and the standard deviation o[X] = oy Both the expectation

as well as the standard deviation converge to 0 if m — oc.
Definition. If X is a random variable, then E[X™] is called the m’th mo-

ment of X. The m’th central moment of X is defined as E[(X — E[X])™].

Definition. The moment generating function of X is defined as Mx(t) =
Ele!X]. The moment generating function often allows a fast simultaneous
computation of all the moments. The function

rx (t) = log(Mx(t))

is called the cumulant generating function.

Example. For X (z) =z on [0, 1] we have both

1 t X ym—1 x m
B w o, (eh=1) t B t
Mx () /Oe do = t _mZ:1 m)! _mzzo (m+1)!
and
=X = E[X™]
_ tX71 o m
Mx(t) = Ele ]_E[E,O: = Zo:t :

Comparing coefficients shows E[X™] = 1/(m + 1).

Example. Let Q@ = R. For given m € R,o > 0, define the probability
measure P[[a, b]] = f; f(z) dx with

fl) = e
€Tr) = ———¢e 20
V2mo?

This is a probability measure because after a change of Vgriables y =
(z—m)/(V20), the integral [~ f(z) dz becomes % [ eV dy=1.The
random variable X (z) = z on (2, A, P) is a random variable with Gaussian
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distribution mean m and standard de