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Abstract

The relationship between trading volume and securities prices is a complex one which, when
understood properly, can lead to many insights in portfolio theory. Over the past forty years,
much work has been done trying to understand this relationship. In this document, we will
attempt to introduce and discuss some of these papers. First, we introduce basic topics of
finance theory, such as the Capital Asset Pricing Model and two-fund separation. With this
knowledge, we proceed to discuss how volume and price move together, how unusual volume
can be a predictive measure of future price changes, and also how volume can allow us to infer a
hedging portfolio. In each case, we present theoretical models which support empirical results.
Finally, we analyze some sample price and volume data around the most recent quarter of
earnings announcements.
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1

¥ 1 Introduction and Motivation

When investors today read the business section of the paper, or obtain online quotations of their
favorite stocks, one of the statistics which usually goes unnoticed is volume data. After seeing the
price of a security, which is usually of primary interest, an investor may look next at data such as
yield, price-to-earnings ratio, market capitalization, or ex-dividend date, before even considering the
volume statistic. Despite being ignored by many investors, trading volume does have a relationship
to price data, returns, and other aspects of portfolio theory.

The following report provides an overview of research in the area of trading volume within the
wider discipline of stochastic finance. The analysis of trading volume and its relationship with
security prices and changes in price is a topic that has been considered for over 40 years. Its roots
are generally credited to the work of Osborne [36]. In his seminal work, he modeled price changes
according to a diffusion process that had a variance dependent on the quantity of transactions
on that particular issue. With this, he began a long line of work that considered the possible
relationship between returns and the volume of trading. Before these works are discussed and
analyzed, we shall try to motivate research in this area and hopefully answer the question ”Why is
the relationship between price and volume of any interest?”

¥ 1.1 Gazing into the Crystal Ball - Predicting Price Movements

One of the most sought after results of financial economics research is the predictability of asset
prices. As the reader might expect, one aspect of financial economics involves modeling future
prices of equities, bonds, or other derivative securities. Early research focused on attemping to
predict future prices based on historical prices alone.

¥ 1.1.1 Martingales

In 1565, Girolamo Cardano wrote in his text Liber de Ludo Aleae (The Book of Games of Chance)
that in a ”fair game” the total winnings, represented by Pt, is a stochastic process satisfying the
following condition:

E(Pt+1|Pt, Pt−1, ..., P0) = Pt

meaning that the best estimate of what you will have tomorrow is what you have today. This process
is often called a martingale [5]. Exactly four hundred years later, Samuelson [40] showed that
efficient markets exhibit this behavior and described this condition as weak-form market efficiency.
The Efficient Market Hypothesis, introduced by Fama [12], states that in an efficient market there
are a large number of ”rational profit-maximizers” that actively compete, each trying to predict
future market values. The interaction of these participants causes the current price to fully reflect
the expectation of the future price of the security. In essence, the more efficient a market, the more
unpredictable future pricing will be, with the expected value of future prices equal to the current
price, as indicated by the equation above. A reader at this point may argue that historical equity
returns in the domestic market have been positive over the long run, thus making this hypothesis
questionable. In fact, it was shown in the 70’s [20, 24] that the efficient market hypothesis does
not hold for asset prices, but with the proper adjustment for risk and the prevailing risk-free
rate [8, 16, 20], Cardano’s equation does hold and weak-form market efficiency exists. From seeing
that price alone was insufficient to predict future prices, researchers sought other factors to aid in
their analysis1.

1It should be noted that recent research has shown that prices do not follow a purely random walk [26], but the
point of this discussion is to motivate why researchers have considered alternative factors, such as trading volume, to
predict future price trends.
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¥ 1.1.2 Trading Volume

One factor many have considered in the prediction of prices is trading volume. Volume is a measure
of the quantity of shares that change owners for a given security. For instance, on the New York
Stock Exchange (NYSE), the average daily volume for 2002 was 1.441 billion shares, contributing
to 40.9 billion dollars of securities traded each day among the roughly 2800 companies listed on the
NYSE [18]. The amount of daily volume on a security can fluctuate on any given day depending
on the amount of new information available about the company, whether options contracts are set
to expire soon2, whether the trading day is a full or half day, and many other possible factors.
Of the many different elements affecting trading volume, the one which correlates the most to the
fundamental valuation of the security is the new information provided. This information can be
a press release or a regular earnings announcement provided by the company, or it can be a third
party communication, such as a court ruling or a release by a regulatory agency pertaining to the
company. For example, McDonald’s Corporation (NYSE:MCD) has an average trading volume of
7.58 million shares per day. On December 17, 2002, they announced a warning and reduction of
expected earnings. The news led to trading of 35.17 million shares that day, about five times the
average, and a drop in price of 8%. The abnormally large volume was due to differences in the
investor’s view of the valuation after incorporating the new information. Because of what can be
inferred from abnormal trading volume, the analysis of trading volume and associated price changes
corresponding to informational releases has been of much interest to researchers.

Returning to the question of, why consider trading volume and its relationship to prices, Kar-
poff [22] suggests the following four possible reasons. First, it adds insight to the structure of
financial markets. The correlations which are found can provide information regarding rate of in-
formation flow in the marketplace, the extent that prices reflect public information, the market
size, and the existence of short sales and other market constraints. Second, studies that use a
combination of price and volume data to draw inferences need to properly understand this rela-
tionship. For example, trading volume is often used to determine whether or not a price change
was due to any informational content, and also whether investor interpretations of information are
consistent or differing. Some researchers [38] have used volume and price changes to determine
that shareholders hold securities primarily because of dividend yields. Beaver [2] asserts that the
volume corresponding to a price change due to new information indicates how much investors differ
in the interpretation of the new data. As one can imagine, the validity of many of these inferences
rely on the relationships between price and volume.

Third, understanding the price-volume relationship in futures and other speculative markets is
vital for one to determine why the distribution of rates of return appear kurtotic3. One theory is
that rates of return are characterized by a class of distributions with infinite variance, known as the
stable Paretian hypothesis. Another theory is that the data comes from a mixture of distributions
which each have different conditional variances, known as the mixture distribution hypothesis.
Research has shown that price data is generated by a stochastic process with changing variances
which can be predicted or estimated by volume data. These price/volume analyses support the
mixture of distribution hypothesis in the following way. If we measure changes in volume data as a
proxy for variances at different events, we observe that the distribution of returns exhibit different
conditional variances. As a result, our return data follows a mixture of distributions.

Fourth, price variability affects trading volume in futures contracts. This interaction determines
whether speculation is a stabilizing or destabilizing factor on futures prices. The time to delivery

2Options contracts expire on the third Friday of each month, unless that date is a holiday.
3The degree of peakedness of a distribution. It is a normalized form of the fourth central moment of a distribution

[14].



1.2 Initial Work 3

of a futures contract affects the volume of trading, and possibly also the price.

¥ 1.1.3 Interpretation of Information

As Beaver noted, volume is a useful tool in determining how much disagreement exists with the
arrival of new information. Anything that causes investors to act can be described as information,
whether or not it truly has any fundamental impact on the underlying valuation of the company. For
example, a University of Michigan study found that, ”in the absence of clear financial information,
investor decisions are swayed by the aesthetics of financial reports” [42]. It is doubtful that there
exists any significant correlation between the aesthetics of a company report and its future earnings,
yet the study shows that some individuals attribute value to an organization which produces an
aesthetically pleasing report.

Sometimes, information on a company can impact the volume and price of another unrelated
company due to the sheer similarity of the ticker symbol. In particular, Rashes [37] discussed an
example where information releases on MCI Communications (Nasdaq:MCIC4) led to increased
volume on Massmutual Corporate Investors (NYSE:MCI), a case of co-movement due to ticker
confusion. MCI Communications was a large telecommunications firm that was acquired for more
than 20 billion dollars, while Massmutual Corporate Investors is a closed-end fund which trades
with net assets of roughly $200 million. Rashes found that Massmutual’s top volume days between
11/1/1996 and 11/13/1997 all occurred on days when there was merger news on MCI Communica-
tions, showing that Massmutual’s volume was correlated with MCI Communications’ trading vol-
ume, but not those of other telecommunications companies. The latter is certainly to be expected
because Massmutual, during that period, did not hold any major telecommunications company
stock, while the former can only be attributed to investor confusion.

¥ 1.2 Initial Work

Following is a summary of some of the initial work in this area of discipline. First, we analyze
Osborne’s seminal work, and then briefly discuss a work by Ying.

¥ 1.2.1 Volume’s Effect on Variability of Returns

In 1959, Osborne [36] hypothesized that securities prices could be modeled as a lognormal distribu-

tion with the variance term dependent on the trading volume. In particular, if y(τ) = ln(P (t+τ)
P (t) ),

where P (t + τ) and P (t) are the price of some issue at times t + τ and t, respectively, then the
steady state distribution of y may be expressed as

φ(y) =
1√

2πσ2τ
e

−y2

2σ2τ ,

where σ is the dispersion that is positively correlated to the amount of trading volume. By verifying
that this model held empirically, Osborne concluded that the log return process was a Brownian
motion process. Furthermore, if we examine the probability distribution of price itself, we see that

fP (P ) = φ(y = ln(
P

P0
))

dY

dP
=

1√
2πσ2τ

exp(−
ln( P

P0
)2

2σ2τ
)
1

P
.

When we compute the expectation, we obtain

E(P ) =

∫ ∞

p=0
PfP (P )dP = P0e

σ2τ/2 ≈ P0(1 +
σ2τ

2
)

4MCI merged with WorldCom, Inc.; so, this ticker is no longer active.
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through a change of variables, completion of square, and Taylor series approximation. From the
empirically calculated values of σ, Osborne was able to predict a 3 to 5% annual return from this
model.

The fact that greater activity on a security will produce more variance in the price may seem
reasonable, even intuitive. However, what was remarkable was the fact that the annual drift
predicted by this Brownian motion process could partially explain the annual returns that the
market actually bore.

¥ 1.2.2 Volume’s Predictive Nature for Price Changes

Seven years later, in 1966, Ying produced a paper [43] which applied a series of statistical tests to a
six-year daily series of price and volume. As is the case for most of the other analyses discussed in
this document, Ying normalized the trading volume by the number of shares outstanding to avoid
any biases from issues with larger number of outstanding shares5. Similarly, prices were adjusted
to reflect quarterly dividends.

To apply the test of his hypotheses, Ying used as volume data the New York Stock Exchange
(NYSE)6 daily percentage volume (also called turnover), and Standard and Poor’s 500 index returns
from January 1957 to December 1962 for price data. Critics to his research have argued that the
underlying issues for volume and price data were not exactly the same, as well as the fact that
his adjustments for price were over quarterly dividend data, while the daily volume data was
adjusted by monthly total share data. Furthermore, it was found that some of these conclusions
were inconsistent with weak form of market efficiency7, although this fact alone might somewhat
be expected, as any relationship that can be found between volume and future prices will reject
the weak form of market efficiency.

Details of his analysis may be found in Appendix B.2, but his main conclusions were

• A small volume is usually accompanied by a fall in price

• A large volume is usually accompanied by a rise in price

• A large increase in volume is usually accompanied by a large price change.

• A large volume is usually followed by a rise in price

• If the volume has decreased (increased) five straight trading days, the price will tend to fall
(rise) over the next four trading days.

¥ 1.3 Document Outline

The previous two examples illustrate the origins of research in trading volume. In this report, we
will summarize and analyze three more recent papers in this field [4,22,28], and the author will then
provide some new analysis on the serial relationship between volume and price changes around 4th
quarter 2002 earnings announcements on the thirty stocks that comprise the Dow Jones Industrial
Average. This paper will be outlined as follows:

Basic Finance Background – Section 2 will provide a quick summary of some of the main
concepts of basic portfolio theory.

5Volume divided by Shares Outstanding is called turnover, and is often a preferred indicator for analysis.
6Most of the volume in domestic trading then occurred on the NYSE; the NASDAQ did not exist until 1971.
7The weak form of market efficiency states that stock prices reflect all information that can be found from historical

prices, trading volume, and short interest. Mathematically, one would say that the price satisfies a Markov process.



1.3 Document Outline 5

Volume-Price Relationship – Section 3 will look at how volume and price move together and
will present a probabilistic model for trading.

Serial Correlation of Returns – Section 4 will consider how abnormal trading volume affects
the subsequent returns on the market.

Inferring the Hedging Portfolio – Section 5 will examine how we can use volume data to infer
the hedging portfolio.

Analysis of Current Market Data – Section 6 will discuss what kind of relationship exists
between price and volume in our current market.

Conclusion – Section 7 will conclude with a summary of this document. The appendix has
background on the mathematics and statistics required for this paper.
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¥ 2 Overview of Portfolio Theory

During the analysis of current finance papers, some basic concepts will be referenced. This sec-
tion provides a quick overview of portfolio theory and some financial terms of interest. A reader
knowledgeable on the topic of finance may skip this section without any loss of continuity.

¥ 2.1 Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) was developed by Sharpe, Lintner, and Mossin [25, 34,
41]. Despite its restrictive constraints and assumptions, the model provides a general idea of the
relationship between the expected return of an asset and the riskiness of it. Details of CAPM
follow.

For CAPM to hold, the following assumptions which basically generalize investors as a homo-
geneous group of individuals must be true [3]. Namely,

• no single investor has a significant portion of the total wealth in the world, thus making all
investors price-takers who do not affect the price of securities through their own actions.

• we have a single-period horizon

• investments are limited to publicly traded financial assets and risk-free borrowing or lending.
This eliminates the investments of human capital, private companies, and government-funded
projects.

• there are no taxes or transaction costs

• all investors are rational, investing according to Markowitz [30]

• all investors have the same economic expectations of the world and its future financial devel-
opment

If these six conditions hold, the following can be concluded:

• every person will hold a market-weighted portion of each asset in their portfolio

• the market portfolio will be on the efficient frontier

• the risk premium on the market portfolio will be proportional to its risk and the amount of
risk aversion of a representative investor

• the risk premium on each individual asset will be proportional to the risk premium on the
market portfolio and the beta of that security.

¥ 2.1.1 Why Everyone Holds the Market Portfolio

At first glance, it might not be clear why everyone chooses to hold the market portfolio. If everyone
is rational, has the same investment options and time horizon, and possesses the same future
economic expectations, then each person will have a portfolio which is a linear combination of the
risk-free bond and the same market portfolio (depending on the amount of risk each individual
wants to bear). Now that we know that all investors will hold the same market portfolio, what
guarantees us that every stock will be in the portfolio. Suppose a certain stock does not belong in
the portfolio. That is, no one wants to buy the security. By the principle of supply and demand,
the price of this stock will drop until it becomes an attractive investment. Once it reaches this
point, it will become included in the market portfolio.
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Since every person holds the market portfolio, when aggregated across the entire market, the
total holdings of each security will equal the market capitalization of that security. Thus, the per-
centage of each security in the market portfolio is proportional to its overall market capitalization.

¥ 2.1.2 Beta of a Security

Beta is a measure of how correlated the stock is with the market portfolio. Mathematically,

βi =
Cov(ri, rm)

σ2
m

,

where ri, rm are random variables representing the returns of the particular stock, and the market
portfolio, respectively, and σ2

m is the variance of the market return. If rf is the return of the
risk-free asset, then

E(ri) − rf = βiE(rm) − rf .

It is assumed that rf is a fixed quantity that represents the risk-free interest rate.
To better understand this, suppose that the market returns 9% annually, and the prevailing

risk-free rate is 3%. A security with a β of 0 is not correlated to the market, and will have an
expected return equal to the risk-free rate of 3%. A security with a β of 2 varies twice as much as
the market, but has an expected return of 3+2(9-3)=15%.

¥ 2.1.3 Two-fund separation

One of the terms we will use throughout this paper is two-fund separation. The two-fund separation
theorem [27] is a theorem which asserts that all investors will choose to invest in only two different
funds, and no others. In the case described above, the two funds are the risk-free bond and the
market portfolio. From the previous subsection, we see that individuals who choose to invest in
the stock market will want to hold the market portfolio. However, as we will see in Section 2.3, the
market portfolio may pose too great of a risk for some investors. As a result, they will adjust their
market holdings according to their penchant for risk, and will invest the remaining amount in the
risk-free bond.

A useful fact of two-fund separation is that share turnover will be identical for all securities.
This is because an individual who chooses to adjust his portfolio will buy or sell the same proportion
of each stock in order to maintain the correct balance in his market portfolio.

We could also choose to apply a (K+1)-fund separation theorem, for arbitrary values of K.
When we do this, we will find that turnover will satisfy an approximately K-factor linear structure.
For a discussion of multiple factor linear structures, we shall introduce a model which allows for
this called the Arbitrage Pricing Theory.

¥ 2.2 Arbitrage Pricing Theory

The Arbitrage Pricing Theory (APT) was developed by Ross [39] and is a more generalized pricing
model than CAPM. With APT, we can have multiple risk factors affecting price8. Ross asserted
that the return of individual securities could be separated into systematic and non-systematic risk.
Systematic risks include many possible macroeconomic factors in the market. Non-systematic risk
measures the risk of the individual issue, independent of other securities and market factors.

Mathematically, if a particular security i had a single factor risk, then its return could be
modeled as

ri = E(ri) + βiF + ei,

8Recall for CAPM, there is only one factor which is that of the market.
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where F is the deviation of the factor from its expected value (hence, zero-mean by construction), βi

measures the sensitivity of this factor to the security, and ei is a zero-mean observation of the non-
systematic risk of the issue, uncorrelated with F. ei is zero-mean because the first term absorbs the
expectation return, with individual security distubances considered. The corresponding variance
of ri is

σ2
i = β2

i σ2
F + σ2

ei
,

where σ2
F is the variance of F. Regression techniques are used to solve for the βi constants. Ap-

pendix A.6 explains how this is done.

¥ 2.2.1 Using APT to Justify Diversification

As an example, this model of the return of individual securities can be used to show why it is
beneficial to have a well-diversified portfolio. Suppose there are N such securities in the market,
each with a single risk factor F. If we equally weight the N securities in our portfolio, then the
return would be

rN = E(rN ) + βNF + eN ,

where βN = 1
N

∑N
i=1 βi and eN = 1

N

∑N
i=1 ei. Since it is assumed that individual non-systematic

risks are independent of each other and the economic risk factor, the variance of the portfolio is

σ2
N = β2

Nσ2
F + σ2

eN
,

where σ2
eN

=
∑N

i=1
1

N2 σ2
i . If we define σ2

avg =
∑N

i=1
1
N σ2

i , then we see that σe2
N

= 1
N σ2

avg. So, with
N equally weighted securities in a portfolio, the non-systematic variance is N times less than the
average variance of each of the individual variances. Thus, with diversification, risk is effectively
reduced. As a result, all investors, like in the CAPM, will choose to hold a portfolio of assets rather
than any individual security. Unlike CAPM, we can consider multiple factors in our model.

¥ 2.2.2 Multi-factor Models

Multifactor models are often used to relate one financial statistic to multiple factors in the economy,
or multiple events, either specific to the firm or general to the entire market. The equations are
similiar to the single factor models, except that additional factors with coefficients are added linearly
to the equation. For example, in our discussion of volume, one might speculate that volume is higher
on days of information release, and also on days when the federal reserve adjusts interest rates. So,
one would write

Vi = E(Vi) + βII + βRR + ei,

where I is either 1 or 0 depending on whether the company released information, and R is 1 or 0
depending on whether interest rates were adjusted.

¥ 2.3 Efficient Frontier and Markowitz’s Portfolio Selection Model

Suppose we have a portfolio of securities, and we consider all possible combinations of these assets.
If we create a plot of expected return versus standard deviation of th all different possible com-
binations of securities, one will see that for every expected return value, there exists a minimum
standard deviation. The curve generated by the collection of such points is called the minimum-
variance frontier. At some point, the curve reaches its minimum standard deviation. This point
is called the global minimum-variance portfolio. All points with smaller expected returns (and
correspondingly larger standard deviations) would be inefficient portfolios. So, if we remove these
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Figure 1. A minimum-variance frontier (dashed-dotted curve) with capital market line tangent to the frontier at
the location of the market portfolio (x). The global minimum-variance portfolio having expected return of 7% and
standard deviation of 5% is also shown (o). A risk-free rate of 5% is assumed.

points from consideration, the global minimum-variance portfolio and all points on the minimum-
variance frontier with larger expected values create the efficient frontier. Harry Markowitz’s work
in 1952 [30] identified this region as an efficient set of portfolios9.

Figure 1 shows the graph of the minimum-variance frontier. The optimal capital allocation line
is the line which starts on the y-axis at the risk-free rate, and is tangent to the efficient frontier.
It coincides with the capital market line. The point of tangency is the market portfolio discussed
earlier in the capital asset pricing model (Figure1 shows this graphically).

The reason investors will invest in a linear combination of the market portfolio and the risk-free
asset can be seen from Figure 1. At every level of risk, the point on the capital market line has a
higher expected value than any point on the efficient frontier.

For example, suppose the risk-free rate is 5% for our figure above, which has a minimum-variance
portfolio having standard deviation of 5% at an expected return of 7%. If we draw a straight line
which is tangent to the efficient frontier, its point of tangency will be at 6% standard deviation and
8% return, which represents our market portfolio. This line is known as the capital market line,
and all investors under CAPM will have their portfolio somewhere along this line, depending on the
amount of risk they are willing to bear. For a person who is willing to take 3% standard deviation
of risk, he can achieve this by investing half of his money in the risk-free asset, and the other half in
the market portfolio. His expected return will be 6.5%. In general, the expected percentage return
for an investor investing along the capital market line in this particular example can be written as

E(r) = 5 +
1

2
σ.

¥ 2.4 Short Selling

A short sale is a method for an investor to bet against the prospects of a company. Instead of
purchasing shares of a security, the investor ”borrows” a share from a broker and sells it. Eventually,
the short-seller must purchase the stock back to return it to the broker. If the stock drops in value
as the investor hoped, then the short sale will lead to profit. While the investor is borrowing the

9Markowitz received the Nobel Prize in economics in 1990 for his contributions to economics.
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stock, he must pay any dividends to the broker.
While the investor has a short position, he has borrowed someone else’s shares. The investor’s

broker usually arbitrarily assigns another shareholder as the person who is loaning the security.
However, if this individual opts to sell the stock, the broker will merely reassign who is loaning the
stock to the short-seller.

Short selling poses much greater risks than the standard procedure of buying, or going long on
stock. Unlike an investor in a security, the short-seller has unlimited liability. For example, if an
investor shorts a stock at $100 per share and the stock triples, if the investor buys the share back
then to cut his losses, he will have lost $200 on that one share. Because these risks exist, brokerage
firms usually restrict the type of clients who are allowed to short-sell securities.

In addition, exchange rules allow short sales only on an uptick, meaning a time where the last
trade led to an increase in recorded price change. This is to prevent a snowball effect during a
selloff as prices, already falling quickly, would receive more downward pressure from the additional
supply of sellers. The existence of this rule and the added restrictions by brokerage firms makes
short-selling not as easy as standard investing, and we will see that there are market effects due to
this asymmetry.

¥ 2.5 Lemons Principle

George Akerlof, a winner of the Nobel Prize in Economics in 2001 for his work on the information
asymmetry in the sale of used cars, first introduced the Lemons Principle in 1970 [1]. In this
landmark paper, Akerlof discussed how the existence of goods with many quality grades leads to
problems in the theory of open markets because of the idea of adverse selection. For example, a
person trying to sell a used car has information that prospective buyers do not have and cannot
glean from a limited amount of time examining and inspecting the vehicle. The seller has potentially
years of experience that he cannot fully disclosure, even with his best effort, regarding different
aspects of the vehicle.

So, this fact results in two things. First, Akerlof claimed that this explains why new cars
depreciate as one drives it away from the dealership, not any other reason. If the buyer decides to
sell it the next day, the implication is that the buyer has obtained new information about the car
to warrant trying to sell it. The second, related result is that when a person sells a used car, the
initial price set can contain informational content, namely its true condition. If the initial price is
set too low, even for the primary purpose of selling it quickly, buyers may believe that something
not clearly visible is wrong with the vehicle. A similar argument can be made for homes placed for
sale.

For our purposes, the importance of the Lemons Principle is that pricing and other factors, such
as time on the market, or number of times a product has changed hands, can provide informational
content to individuals who have not been directly informed of any new information.

Now that we have provided a basic discussion of portfolio theory and other concepts which will
be useful to know throughout the remainder of the document, we now proceed to the discussion of
recent papers on trading volume.
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¥ 3 The Volume-Price Relationship

This section focuses on Karpoff’s work [22] and related papers that contribute to the analysis.
Following will be a discussion of their findings followed by comments. Karpoff’s focus is how, if in
any manner, do prices and volume move together?

¥ 3.1 Volume is Positively Correlated with Absolute Price Changes

A Wall Street adage says ”It takes volume to make prices move.” As discussed in Section 1.2.1
of initial work, researchers hypothesized long ago [36] that volume would drive variability, and
was subsequently supported by many empirical studies10. These works include Crouch, who found
a correlation for market indices and individual stocks using daily price and volume data. Clark
determined this relationship to be true in cotton futures markets for daily data. Morgan used
four-day intervals and monthly data from 51 different individual stocks and found the same conclu-
sion. Twelve other authors verified this statement using different intervals and different securities.
The net conclusion was that the absolute price and volume correlation existed for both equity
and futures markets across all time intervals, although the correlation was often weak, especially
with transactions data. The weakness in correlation, however, can be attributed to the fact that
short selling is often more difficult than buying a stock. This asymmetry causes lower volume in
accordance with price reductions, and can be seen in the following theoretical trading model.

¥ 3.2 Probabilistic Model for Trading

Copeland introduced [6,7] a probabilistic model that explains and supports the hypothesis that the
maximum volume occurs when there is a consensus about new information, and with consensus
we have a maximum price change in one direction or the other. Suppose we consider a world
where there is one single indivisible asset which is traded among N market participants. Initially,
one person owns the security and all participants have the same information about the asset, thus
sharing the same valuation for the security. Now, suppose that new information is disseminated
sequentially one investor at a time, with each investor classifying the new news as positive or
negative. If a newly-informed individual is the first to view the information as positive and does
not own the stock, he will obtain it. He can obtain it because the owner of the stock is either
uninformed or has a negative view on the issue; so, the owner will be willing to sell it to someone
who has a stronger belief regarding the value of the asset. The assumption is that the owner will
not gain any information based on the buyer’s interest in the asset. As a result, he will not gain any
additional attachment or interest in the asset that could hinder the likelihood of the transaction.
The reasoning is that the owner assumes that the two traders simply have different utility curves.
On the other hand, if an informed individual considers the new news to be bad, then he will sell
the stock if he owns it. If he does not own the stock, he will do nothing11. The third case involves
an individual who is positive about the asset, but is not the first to have such an opinion. Since we
assume that each informed person will value the asset independently of other informed individuals,
the probability that this person will value the asset more than every previous R positive informed
investors is 1

R+1 . In this scenario, he will purchase the asset; otherwise, no transaction will occur.

¥ 3.2.1 Consensus on Interpretation of Information

Consider initially the case where all traders will be optimistic about the stock when they receive
information. Since the value each trader will have on the stock is random, the probability that the

10The references for all of these works may be found in Karpoff’s paper.
11A case where short-selling constraints can affect trading volume.
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mth trader will buy the asset is 1
m . We do not have to adjust for the case of owning the asset since

the first trader will buy it for sure; so, none of the following traders will own it when they receive
new information. Let the random variable Bm be 1 when the mth trader will trade to purchase
the asset, and 0 if he does not make a purchase. To determine the trading volume in our model,
we need to find the expected value of the sum of B1, B2, B3, ... , Bn. Start with the first person
informed of the new information. This trader will place a trade unless he owns the security; so,

Pr(B1 = 1) = 1 − 1

N
,

and correspondingly

Pr(B1 = 0) =
1

N
.

Thus, the expected value and variance of this binomial random variable are

E(B1) = 1 − 1

N

and

σ2 =
1

N
− 1

N2
.

For m > 1, as discussed above,

Pr(Bm = 1) =
1

m
.

If we take the z-transform12 of this random variable, we obtain

pT
Bm

(z) = E(zBm) = 1 − 1

m
+

z

m
.

The z-transform of the sum of two independent random variables is the product of the z-transforms
of the individual random variables (a proof can be found in Appendix A.1). Since the random
variables are pairwise independent, the z-transform of the entire sum is just the product of each of
the z-transforms. Thus, if

S =
N

∑

m=2

Bm

then the z-transform of the sum is

pT
S (z) =

N
∏

m=2

(1 − 1

m
+

z

m
).

Now we can compute the derivatives of pT
S (z) to aid us in determining the first and second moments

of S.

d

dz
pT

S (z) =
N

∑

m=2

1

m

∏

n 6=m

(1 − 1

n
+

z

n
).

Taking another derivative, we obtain

d2

dz2
pT

S (z) =
N

∑

m=2

∑

n 6=m

2

mn

∏

r 6=m,r 6=n

(1 − 1

r
+

z

r
).

12For this case, we can arrive at the expected value in a much simpler way, but we need this to be able to calculate
the variance.
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N E(T) σT CV(T)

2 1.000 0.707 0.707
5 2.083 0.990 0.475
10 2.829 1.212 0.429
50 4.479 1.701 0.380
100 5.177 1.887 0.365

Table 1. Expected number of trades, standard deviation, and coefficient of variation (CV(T)) for different number
of investors/traders.

From this, we can compute the expected value and variance, using identities derived in Ap-
pendix A.1.

E(S) = (
d

dz
pT

S (z))|z=1 =
N

∑

m=2

1

m

and

σ2
S = (

d2

dz2
pT

S (z))|z=1 + (
d

dz
pT

S (z))|z=1 − [(
d

dz
pT

S (z))|z=1]
2

= 2
N

∑

m=2

∑

n 6=m

1

mn
+

N
∑

m=2

1

m
−

N
∑

m=2

1

m2
− 2

N
∑

m=2

∑

n 6=m

1

mn

=
N

∑

m=2

1

m
−

N
∑

m=2

1

m2

So, the expected number of trades T is

E(T ) = E(B1 + S) = E(B1) + E(S) = 1 − 1

N
+

N
∑

m=2

1

m
.

Similarly, by independence, the variance of T is

σ2
T =

1

N
− 1

N2
+

N
∑

m=2

1

m
−

N
∑

m=2

1

m2
.

Defining the coefficient of variation as the standard deviation divided by the expected value ( σT

E(T )),
we see from Table 1 and Figure 2 that the coefficient of variation decreases as N increases. This
fact is important in establishing that a specialist who is a market maker for a particular stock will
benefit from less relative variability in trading volume if there are more participants in the market.

If one considers the opposite extreme where all of the traders are pessimists, and applying the
fact that

N
∑

m=2

1

m
=

N−1
∑

m=1

1

N − m + 1
,

one will reach the identical conclusion.
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Figure 2. Coefficient of variation can be seen to be a decreasing function of N.

¥ 3.2.2 General Case of Information Interpretation

Now consider the case where some of the investors view the new information optimistically, while
others pessimistically. Again suppose there are N traders, with p the fraction of optimists and q
the fraction of pessimists, and each trader is either one or the other13. Now, a transaction can
occur at the mth trader in only one of the following three ways:

1. If all of the first (m-1) traders are pessimists and the mth trader is a pessimist who also owns
the asset, he will sell it to one of the investors who has yet to receive information14.

2. If all of the first (m-1) traders are pessimists and the mth trader is an optimist who does not
own the asset, he will purchase the asset.

3. If there has been a prior optimist and the mth trader is also an optimist, then he will purchase
it if his valuation of the asset is larger than all prior optimists.

Mathematically, the probability that the mth investor makes the purchase can be written as

Pr(Bm = 1) = (
(qN)!

(qN − m + 1)!

(N − m + 1)!

N !
)(1 − pN

N − m + 1
)(

1

N − m + 1
)+

(
(qN)!

(qN − m + 1)!

(N − m + 1)!

N !
)(

pN

N − m + 1
)(1 − 1

N − m + 1
)+

V
∑

r=U

(

(
m − 1

r
)(

N − m + 1
pN − r

)

(
N
pN

)

)(
(pN − r)

(N − m + 1)
)(

1

(r + 1)
),

where the first line matches the first condition, the second line the second condition, and the third
line the third condition described above, with U = max(1, m−1−qN) and V = min(pN−1, m−1).

13i.e. p + q = 1, p 6= 0, q 6= 0
14The case for m=N will not happen since this would require p = 0.



3.2 Probabilistic Model for Trading 15

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

T
ra

de
s

Number of optimists (out of 100)

Figure 3. Number of trades as a function of optimists out of 100 traders. Note that this is an increasing function,
which shows the bias which exists due to short-sales constraints. The code written to generate this graph may be
found in Appendix B.3.

Again, we compute the expected number of trades by taking the z-transform’s first derivative
and evaluating it at z = 1, or more simply, the expected number of trades is the sum of the
probability that each individual trader will want to make a trade15

E(T ) =
N

∑

m=1

Pr(Bm = 1).

Figure 3 shows that the number of trades for p > 0 is an increasing function, with a discontinu-
ity at p = 0. The reason for the discontinuity is because as soon as there exists one optimist, there
will only be one or no trades, depending on whether or not the optimist holds the asset to start
with. The monotonic characteristic of the plot is a result of a short-sales constraint. In this simple
case, the constraint is that if you do not hold the asset, you cannot sell it. Therefore, pessimists
have less opportunity to act than optimists. Relating to price, the more optimists there are, the
higher the final value of the asset after the information is transmitted to all traders, and when
everyone is an optimist or a pessimist, we have the largest change in price, which occurs when we
have the largest amount of volume, as seen from our calculations. This fact allows us to connect
this model with the volume-absolute price change relationship.

Generalization to Divisible Assets
The result of this model can be generalized into markets with divisible assets (i.e. multiple shares).
In this case, when optimists trade on new information, they drive the price upwards, causing un-
informed participants to sell some or all of their stock, since every share purchased by an optimist
had to be sourced from another shareholder. Once the pessimists are informed of the news, they
will only be able to sell whatever shares they have remaining, and will not be able to sell any more
stock to future optimists or pessimists that have a less bleak view of the new news.

Relationship between Trades and Trading Volume
In order for this model to be relevant to our discussion of trading volume, we must be sure that the

15By the linearity of the expectation operator.
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number of trades is closely related to the trading volume (this may seem obvious, but any individual
trade can involve any number of shares for a divisible asset). Copeland [7] provided an analysis over
273 company days and found that the R2 value of transactions per day regressed against the total
volume was 0.85, providing some validity for our result’s applicability to the analysis of trading
volume.

Comments
While the model provides some parallels to a security trading on the open market, one of its
weaknesses is the assumption that uninformed investors cannot infer any information based on the
trading behavior and activity of other, possibly-informed investors. For example, in Copeland’s
model, if the owner of the asset is informed in a negative way, his desire to sell may provide in-
formation to uninformed traders that the new news may not be good. As a result, one might not
be able to immediately conclude that he can sell the asset to any of the still uninformed investors.
The concept of inferring information from the informed is related to the Lemons Principle concept
discussed in Section 2.5 which introduces the dynamics of information asymmetry.

Jennings and Barry [19] extended this model by allowing informed traders to take speculative
positions, causing prices to adjust more quickly to new information. In this section, we considered
the idea that volume is correlated with absolute prices. Another popular belief is that volume is
instead correlated with prices rather than the absolute value of prices, meaning that volume is high
when prices move upwards, and low when prices move downwards. The following section considers
this hypothesis.

¥ 3.3 Volume is Heavy in Bull Markets, Light in Bear Markets

Many individuals in finance believe that volume is heavy when the market is going up, and light
when it is going down. Karpoff discussed this idea in some detail, citing past works by Epps [10,11]
which showed that the ratio of volume to absolute price change was larger for transactions on upticks
than on downticks, both in the stock and bond markets. This trend also held when considered over
daily intervals. On the other hand, some researchers found evidence to the contrary. Table 2
summarizies different research on the relationship between price and volume.

Unlike the previous section, past research has been less unanimous on this hypothesis. How-
ever, Karpoff later wrote another paper [23] which hypothesized that the short sales constraint
contributed to the correlation between volume and price. By analyzing the futures market, which
has no constraints on short-selling16, Karpoff found no significant relationship between trading vol-
ume and price changes. This conclusion seems to negate the hypothesis that volume has noticeable
correlation with corresponding price changes.

16An investor can be on either side of a futures contract with no holding requirement, as the Chicago Board of
Trade would not expect an investor shorting a single corn futures contract to actually own 5,000 bushels of corn.
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Author(s) Year of Sample Analysis Interval Supports Positive
Study Data Period Correlation?

Granger 1963 Stock market aggregates 1939-1961 weekly no
Morgenstern 2 common stocks

Godfrey 1964 Stock market aggregates 1956-1962 weekly no
Granger 3 common stocks 1951-1953 daily

Morgenstern 1963 transactions

Ying 1966 Stock market aggregates 1957-1962 daily yes

Epps 1975 20 NYSE bonds Jan 1971 transactions yes

Morgan 1976 17 common stocks 1962-1965 4 days yes
44 common stocks 1926-1968 monthly

Epps 1977 20 common stocks Jan 1971 transactions yes
daily

Hanna 1978 20 NYSE bonds May 1971 transactions yes

Rogalski 1978 10 common stocks 1968-1973 monthly yes
10 associated warrants

James 1983 500 common stocks 1975 daily no
Edmister 1977-1979

Comiskey 1984 211 common stocks 1976-1979 yearly yes
Walkling
Weeks

Harris 1984 50 common stocks 1981-1983 transactions yes
daily

Smirlock 1985 131 common stocks 1981 transactions yes∗

Starks

Wood 1985 946 common stocks 1971-1972 minutes no
McInish 1138 common stocks 1982

Ord

Harris 1986 479 common stocks 1976-1977 daily yes

Jain 1986 Stock market aggregates 1979-1983 hourly yes
Joh

Richardson 1987 106 common stocks 1973-1982 weekly yes
Sefcik

Thompson

Table 2. Papers which test positive correlation between price change and volume (Karpoff [22]).
∗Positive correlation found only on days where there was arrival of information.
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¥ 4 Serial Correlation of Returns with Abnormal Volume

This section, unlike the previous section which analyzed how price and volume moved together,
considers how prices move after periods of unusual volume. We will focus on Campbell et al.’s
work [4], and compare it to a different model by Morse [33], who found differing results.

¥ 4.1 Price Movements on Private Information

Morse in 1980 determined that periods of abnormally large volume usually had positive auto-
correlation of returns. He concluded that his findings were due to the existence of asymmetrical
information in the marketplace. In particular, if investors have private information, they may know
that the price of a security, which reflects all public information available17, is incorrect. As a result,
these investors will trade heavily on the issue until the price reflects the valuation of the security
if the private information became public. Because it may take time for the price to move to this
new price, we will observe a price movement in the same direction for potentially a few consecutive
days. This monotonic price movement leads to a positive autocorrelation of returns.

To test his hypothesis, Morse took daily price and volume data from 1973 to 1976, inclusive, for
50 securities, 25 from over the counter (OTC), 20 from the NYSE, and 5 from the American Stock
Exchange (ASE). Each of these stocks had to have at least 100 shares of trading in 90% of the
trading days, and had to have 9 years of earnings data18. From this data, the residuals of return
and volume were taken from the following equations:

Ri = ai + biRm + ri

and
Vi = ci + diVm + vi,

where Ri, Vi are the daily return and volume of the ith security, Rm, Vm the market return and
volume that same day, ai, bi, ci, di are regression coefficients, and ri, vi are the return and volume
residuals. The desire to use residuals is because private information is most likely firm specific; so,
removing market-wide non-informational factors will help isolate the effects of the private informa-
tion.

From the daily returns, arbitrary windows of length L were chosen, with overlapping sequences
of T days (1 < T < L) considered. From the set of overlapping sequences, the one with the
largest sum of residuals which were all strictly positive was chosen as the data point for that L day
window19. Using these data points of abnormally large volume, tests were made to determine if
there was a departure from zero for the serial correlation of price residuals.

Prior research on adjust return residuals found that the probability of a return reversal was
approximately 0.5, which asserts that generally the return from one day will not predict the direction
of return the following day. Using this assumption, a t-statistic was generated from the normal
approximation of the binomial distribution of a random variable taking one when there is a return
reversal, and zero otherwise. Table 3 shows the results from Morse’s analysis. From the results, it
can be seen that the null hypothesis that there is no serial correlation in returns during periods of
unusually high volume was rejected for the majority of the sample tests done. From this, we can
conclude that for the given dataset, there was likely a serial correlation of returns.

17We assume the semi-strong form of the efficient market hypothesis holds.
18This last condition was used because Morse used the same securities for another study. However, it did not hurt

to do the analysis on more established companies.
19Some windows did not have any sequence with T consecutive positive residuals. In those cases, there was no data

point for that window.
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Sequence Window Samples Same Different Student
Length (T) Length (L) Sign Sign t-Test

2 50 902 508 394 3.80**
3 50 1382 796 586 5.65**
4 50 1539 866 673 4.92**
5 50 1488 863 625 6.17**
10 50 909 486 423 2.09*

2 100 492 254 238 0.72
3 100 886 514 372 4.77**
4 100 1098 616 482 4.04**
5 100 1128 649 479 5.06**
10 100 774 411 363 1.73

2 200 250 139 111 1.77
3 200 492 278 214 2.88**
4 200 687 386 301 3.24**
5 200 788 452 336 4.13**
10 200 675 372 303 2.66**

Table 3. Tests for serial correlation of returns (Morse [33]).
∗ Significant at 0.05 level. ∗∗ Significant at 0.01 level.

¥ 4.2 Mean Reversion from Non-Informational Trading

Campbell et al. [4], on the other hand, considered the returns based on a model of non-informational
trading and came up with a different claim. They found that price changes due to high volume
tend to be reversed over time. Their hypothesis centers on the idea that non-informational traders
sometimes have a need to liquidate assets for external reasons unrelated to their valuation of the
holding.

¥ 4.2.1 Reasons for Non-Informational Trading

For institutional investors, a number of reasons may cause them to trade. For example, when there
is a large outflow of money from shareholders in a mutual fund, money managers may be forced
to liquidate assets to satisfy redemptions. If a mutual fund changes its mandate or investment
strategy, the fund may have to adjust its holdings accordingly. For index funds, a change in the
components of an index would require a portfolio rebalancing. Finally, taxable mutual funds have
to consider capital gains concerns at the end of each calendar year. A fund manager may sell
securities at losses to cancel the capital gains from transactions earlier in the year, thus avoiding
the requirement of passing capital gains distributions to shareholders.

For private investors, they may also make trades near the end of the calendar year for tax
reasons. In addition, personal reasons may necessitate the liquidation of assets, such as the purchase
of a new home, car, or major applicance, or the need to pay a child’s college tuition. All of these
reasons can cause supply on a security even if the underlying asset has no change in fundamental
valuation.

¥ 4.2.2 Risk-Averse Investors as Market Makers

On the other side of the transactions, risk-averse buyers are willing to serve as market makers
of sorts, accomodating the sellers’ needs provided they receive a higher expected stock return as
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compensation. This greater return is realized by a drop in price, because the underlying valuation
of the security has not changed, yet the stock has been discounted.

Campbell’s model assumed that price changes can be classified into two categories, informa-
tional and non-informational. In the former case, if information is disseminated to the public,
a price change may occur to reflect this news, but little trading will occur if there is a general
agreement regarding the new valuation of the security. On the other hand, price changes due to
non-informational traders will result in heavier volume, as there will be an imbalance between the
perceived valuation of a stock and the value at which it is trading.

Given that this is true, then in the case of non-informational trading, a period of heavy trading
will occur where prices will drop (rise) because of the need for liquidation (purchases). However,
since the underlying valuation of the issue has not changed, a subsequent reversal of price will occur
after the non-informational traders have completed their transactions.

¥ 4.2.3 Analysis and Results

Campbell used a value-weighted index of stocks traded on the NYSE and ASE from 7/3/1962
until 12/30/198820. Because of the dominance of the events around 10/19/1987, a day known as
Black Monday, where the Dow Jones Industrial Average dropped 508.32 points (22.6%), analysis
was truncated to 9/30/1987. Also, with the abolishing of fixed-commission trading on 5/1/1975,
modeling turnover would be inaccurate if data before and after that date were combined. Thus,
Campbell considered an earlier period, which ended on 12/31/1974, and a latter period, which
started on 1/1/1975 and went until 9/30/1987.

The reason that turnover could be markedly different before and after is due to the fact that
during days of fixed-commissions, investors might have been less willing to trade as frequently
given the high transactions costs. Kador reported that ”taking inflation into account, full-service
brokerages slashed their rates by fully 95 percent between 1975 and 1998.” [21] So, with a factor
reduction of 20 in commissions, individuals in the late 90’s might trade more frequently than
someone in the early 70’s.

To accurately measure the market’s capacity of absorbing volume, turnover was used instead
of raw volume data. To remove low frequency variations in the variance of the data, the log
of volume was used. Finally, to detrend the volume data to remove time-varying trends in the
amount of turnover, a one-year backward moving average of log turnover was subtracted from our
log turnover data, with the result being our volume statistic.

With this data, the first autocorrelation of returns was performed, which showed that a positive
autocorrelation existed, and that including which day of the week the data was being taken from
further increased the R2 statistic. In particular, the β found for

rt+1 = α + βrt

was 0.219 for the entire time interval (7/3/1962 - 9/30/1987) with an R2 of 0.048, and 0.280 with R2

of 0.079 for 7/3/1962 - 12/31/1974. Adding day of the week components, the R2 values increased
to 0.057 and 0.084 for

rt+1 = α + (
5

∑

d=1

βdDd)rt.

The natural positive autocorrelation was surprising, but more interesting was when volume was

20They also considered a set of 32 large capitalization stocks and found concurring results.
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added to the regression. Performing the following regression

rt+1 = α + (
5

∑

d=1

βdDd + γVt)rt

led to γ values of -0.328 and -0.445 for the entire time interval and the 1962-1974 time intervals,
respectively. The corresponding R2 values were 0.065 and 0.095.

¥ 4.2.4 Theoretical Model

Campbell’s model assumes an economy with only a risky asset, or stock, and a risk-free asset, or
bond. Innovations in the stock price are assumed to be driven by one of three factors:

1. innovation to the current dividend

2. innovation to information about future dividends

3. innovation to the time-varying risk aversion of a subset of investors

The first event causes the stock payoff to be stochastic so that risk-averse investors will require
a premium to hold the asset. The second event indicates that prices and dividends alone do not
provide the whole story, thus requiring additional information, such as volume. The third event
causes changes in the market’s overall risk aversion, causing a shift in prices and additional volume
caused by increasing risk-averse investors selling their risky stake to other investors. As described
at the outset of this subsection, the reallocation of assets is due to non-informational trading, and
thus will exhibit a fall in price, followed by a rise in returns.

If we define the economy as one which has an elastic supply of the risk-free asset, then the rate
of return will remain constant at r > 0, and define R = 1 + r. Suppose there is a fixed supply
of stock, normalized to one share, and that the share pays a dividend at period t of Dt = D̄ +
D̃, where D̄ is the mean dividend, and D̃ is the stochastic portion of the dividend. D̃ follows the
following process:

D̃t = αDD̃t−1 + uD,t,

where 0 ≤ αD ≤ 1, and the innovation uD,t is independent, identically distributed (IID), having a
zero-mean normal distribution. At time t each investor has information which includes the current
price Pt after the dividend, the current dividend Dt, and a signal St, which affects during dividend
shock in the following manner. The future dividend shock can be written as

uD,t+1 = St + εD,t+1,

where St and εD,t+1 are jointly IID normal with E(uD,t+1|St) = St, εD,t ∼ N(0, σ2
ε ), St ∼ N(0, σ2

S).
From this, the present value of the stock can be computed by taking the expected value of the

infinite sum of dividends.

Ft = E(
∞

∑

s=0

Dt+s

Rs
|D̃t, St) =

RD̄

r
+

R

R − αD
D̃t +

1

R − αD
St.

Now, assume that there are two types of investors, type A and type B. Type A investors will never
change their risk aversion; so, they have a constant risk aversion parameter a. Type B investors may
change over time; so, their risk aversion parameter is written as bt. During each period, investors
want to maximize over the exposure to the risky asset

maxXtEt[−e−kWt+1 ],
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where k is the risk aversion parameter, Wt is the wealth at time t, Xt is the holding of the risky
asset at time t, and Wt+1 is

Wt+1 = WtR + Xt(Pt+1 + Dt+1 − RPt).

If we define Zt as the risk aversion of the marginal investor,

Zt ≡
abt

(1 − p)a + pbt
,

where p is the fraction of type A investors. Letting

Zt = Z̄ + Z̃t

and assuming that Z̃t follows an AR(1) process; i.e.

Z̃t = αZZ̃t−1 + uZ,t,

with 0 ≤ αZ ≤ 1, and innovation uZ,t independent of the other shocks, IID, and normal, Campbell
proves that there exists an equilibrium price for the stock which is of the form

Pt = Ft − Dt + (c0 + cZZt),

where c0, cZ are less than 0.

Implications
When Zt is high, type B investors are highly risk averse and not willing to hold much stock. As
a result, the price will be reduced to induce type A investors to hold a larger quantity of stock.
Practically, Zt and St are not directly observable. However, a reduction in price is either caused by
an increase in Zt or or a lower realization of St, which would cause a reduction in Ft. Changes due
to St will not cause much trading, as a reduction in future cash flows will lead everyone to adjust
the expected value of the stock correspondingly, resulting in little trading activity. Changes due to
Zt will generate trading among investors. With the decrease in price, the expected return between
periods t and t+1 will be higher, leading to a reversal in return of the stock.

¥ 4.2.5 Analysis

A valid question at this point might be, Why do these two papers give different results, and more
importantly, which should I believe? The answer is not obvious or simple, but we will proceed by
discussing why the results were different, and then in Section 6, we will perform a test on current
market data to see if we can reach either conclusion.

First of all, the analyses were performed over different time frames and different securities.
Morse took a four year window (1973-1976) and analyzed 50 stocks that had a nine-year history
of earnings, while Campbell took a larger window of time (1962-1987) and also broke it down over
1962-1974 and 1975-1987, looking at a value-weighted index and also 32 large cap stocks.

Another factor which likely could have impacted results was the removal of fixed commissions
on May 1st, 1975. Morse’s time window is almost split in half by this event, while Campbell’s full
time-window also crosses this event. Data obtained from the NYSE’s website [18] shows that the
percentage turnover on the exchange in 1974 was 16%, with the maximum turnover from 1960-1974
being 24% in 1968, while the turnover in the first full year after the removal of fixed commissions saw
a turnover of 23%, and since 1980, we have not seen turnover under 30%, with turnover increasing
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up to 94% in 2001. Campbell does provide an adjustment to their turnover data while Morse does
not.

Regarding Campbell’s negative regression β’s, it should be noted that the R2 values for each of
the results we list were less then 0.10, making the trend not necessarily significant. And in both
cases, it is not clear how accurate their models are with regards to the time it takes for private
information to manifest itself in the price, in the case of Morse, and the time required for the prices
to revert after non-informational selling, in the case of Campbell.
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¥ 5 Inferring the Hedging Portfolio from Prices and Volume

Karpoff’s work looked at price and volume moving together, while Campbell’s work considered the
predictive nature of volume on future returns of securities. In the work we consider in this section,
Lo and Wang [28] discuss using volume data to infer and construct a hedging portfolio, and then
assert that this portfolio can predict the future returns of the market portfolio.

Unlike the assumptions of CAPM, which assert that everyone holds only the market portfolio,
Lo considers the intertemporal (multi-period) CAPM model which requires that investors hold a
hedging portfolio to adjust their exposure to changes in market conditions that affect future returns.
These changes affect the investors beyond the single period that investors under CAPM are only
interested in.

¥ 5.1 Definitions and the Economy

We start with an economy having a discrete set of dates, indicated by t. There are J risky assets
in the economy which pay dividends (Djt is the dividend that stock j pays at time t), and one risk-
free asset, which has an interest rate of r, which we will assume to be constant and independent
of supply and demand. Normalize the number of shares of each stock to 1, and if we denote the
stock holdings of an investor as S = [S1, S2, ..., SJ ], then the market portfolio, SM , is defined to be
SM = [1, 1, ..., 1] = ι. Similarly for price and dividends, Pt, Dt will represent J X 1 vectors of prices
and dividends, respectively. Suppose there are I investors in the economy and at the beginning
are given equal shares of stocks and no risk-free holdings. At each period, each investor i seeks to
maximize his expected utility, defined by

Et[−eW i
t+1−(λXXt+λY Y i

t )DM(t+1)−λZ(1+Zi
t)Xt+1 ]

where W i
t+1, the investor’s wealth in the next period, is

W i
t+1 = (1 + r)W i

t + (Si
t)

T [Dt+1 + Pt+1 − (1 + r)Pt]

λX , λY , λZ are non-negative constants, and Xt, Y
i
t , Zi

t are one-dimensional state variables. The
clearance of the market requires the constraint

I
∑

i=1

Si
t = ι

We also assume that
I

∑

i=1

Y i
t = 0

along with
I

∑

i=1

Zi
t = 0

The external shocks, Dt, Xt, and Y i
t , Zi

t for all i, are assumed to be zero mean independent, identi-
cally distributed random variables. We also assume that Dt and Xt are jointly normally distributed
with the covariance of Dt positive definite.

The model is such that the investor’s utility function does not depend only on his wealth, but
also on the dividend payoffs of the stocks. Lo describes this as a ”market spirit” and can be best
described as investor’s reaction to how the stock market is doing as a whole. This spirit is measured
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by λXXt + λY Y i
t . When it is positive, investor i extracts positive utility, or pleasure, when the

market is doing very well. In effect, the individual might feel that a strong market bodes well for his
job security and thus is happy even though he does not directly profit from the market’s large gains.
Because of this inherent increase in utility, this investor will be less likely to increase his holdings
in the stock market. Xt is market-wide, and indicates the overall sentiment of all investors. As a
result, this will affect the equilibrium prices of the market. In particular, in the economy defined,
prices will have a linear equilibrium of the form21

Pt = −a − bXt

where b is
b = λX [(1 + r) + λZσXDι]−1σDDι

and if we introduce the excess dollar return on the stocks to be

Qt+1 ≡ Dt+1 + Pt+1 − (1 + r)Pt

and return rate Rj(t+1) ≡
Qj(t+1)

Pjt
, a is

a =
1

r
(
1

I
σQQι + λZσQX)

where
σQQ = σDD − (bσXD + σDXb′) + σ2

Xbb′

and
σQX = σDX − σ2

Xb

Thus, Xt directly affects the market price of securities, as it affects everyone’s utility function.
On the other hand, the Y i

t s are considered to be idiosyncratic differences among investors in their
feelings about the market. Since it has an aggregate sum of zero, it does not affect prices, but it
does affect how individual investors will adjust their holdings.

Using our model, the dollar return vector can be expressed as

Qt+1 = ra + (1 + r)bXt + Q̃t+1

where
Q̃t+1 ≡ Dt+1 − bXt+1

is the vector of unexpected dollar returns on the stocks. From this, it can also be shown that

SH ≡ σ−1
QQσQX

¥ 5.2 Two-factor Turnover Structure

One of the propositions proven in the first of Lo’s trading volume papers [27] was that when trading
in the hedging portfolio is small relative to that in the market portfolio, two-fund separation in the
holdings leads to an approximate two-factor structure in turnover; that is,

τt ≈ ιFMt + SHFHt

21Proof in Lo [28].
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where SH is the holding in the hedging portfolio, and FMt, FHt represent the turnover in the market
and hedging portfolios, respectively. So, if we can empirically determine FMt and FHt, then the
loadings on the second term will allow us to identify the composition of the hedging portfolio.

Furthermore, for an arbitrary portfolio S, its dollar return at time period t, denoted QSt ≡ S′Qt,
can be used to predict dollar return of the market for the following period.

QM(t+1) = δ0 + δ1QSt + εM(t+1)

As discussed in Appendix A.6.2, the coefficient of determination, R2, measures the predictive power
of this portfolio for future market dollar returns.

Theorem 1. The dollar return of the hedging portfolio, SH , provides the best forecast for the future
dollar return of the market.

Proof. Proof in Appendix B.1. ¥

The following section shows the empirical results that test the validity of this theorem.

¥ 5.3 Empirical Results

Weekly return and turnover data for individual stocks were taken from July 1962 to December 1996
and separated into seven five-year subperiods in an effort to manage the nonstationary of aggregate
turnover. To identify the two common factors FMt and FHt described in the previous section, an
approximate two-factor model was first created

τjt = FMt + θHjFHt + εjt

for j = 1, 2, ..., J, with θHj the percentage of shares of stock j held in the hedging portfolio and εjt

the error term, assumed to be independent across all j.

¥ 5.3.1 Estimating the Hedging Portfolio

To identify the hedging portfolio, we used the equal-weighted turnover and share-weighted turnover
indexes as representatives. Defining Nj as the number of shares outstanding for stock j and N as
the sum of all the shares outstanding, the equal-weighted turnover index was defined as

τEW
t ≡ 1

J

J
∑

j=1

τjt = FMt + nEW FHt + εEW
t ,

where nEW = 1
J

∑J
j=1 θHj and εEW

t , the error term. Similarly, the share-weighted turnover was
defined as

τSW
t ≡

J
∑

j=1

Nj

N
τjt = FMt + nSW FHt + εSW

t ,

with nSW =
∑J

j=1
Nj

N θHj and εSW
t , the error term. Because of the independence assumption for

the ε’s, these terms become small as J increases. These two equations yield

τjt = βSW
τj τSW

t + βEW
τj τEW

t + εjt,

where

βEW
τj =

nEW − θHj

nEW − nSW
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and

βSW
τj =

θHj − nSW

nEW − nSW
.

The equations above have the inherent constraints that βEW
τj +βSW

τj = 1 for all j, and
∑J

j=1 βEW
τj = 0.

Using the equation for τjt and these constraints, a constrained regression could be performed on

the data, and from the estimates of βEW
τj , denoted β̂EW

τj , we can create the portfolio weights of the

hedging portfolio according to θ̂Hj = (nEW − nSW )β̂EW
τj + nSW . Since the hedging portfolio has

two free parameters22, we can let nSW = 1 and nEW − nSW = φ, where φ is a parameter we can
calibrate, representing the degree of deviation from the market portfolio. Thus, from the volume
data, we can estimate the hedging portfolio.

¥ 5.3.2 Forecasting Market Returns

After creating the hedging portfolio, the next step was to see how well it predicted future market
returns and also the cross-section of expected returns in comparison with other factors. Empirically,
it was shown that the future market returns were best predicted by the hedging portfolio. As for the
expected returns of portfolios sorted by deciles, the following analysis was done. First, following
the well-regarded regression tests discussed by Fama and MacBeth [13], portfolios sorted by an
estimated parameter were formed in the first time period, β’s were estimated for these portfolios
in the second time period, and a cross-sectional regression was run in the third time period. The
time periods were the selected five-year intervals from the original data set. Using only securities
which existed over all three time periods, a bivariate regression was run for

Rjt = αj + βM
j RMt + βH

j RHt + εit

In the first period, 100 portfolios were created corresponding to the deciles of the estimated market
and hedging-portfolio betas. The two betas were estimated for each of the 100 portfolios in the
second period, and the following cross-sectional regression was estimated in the third period:

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

H
p + ηpt.

where p = 1, 2, ... , 100 (portfolio number) and Rpt was the equal-weighted portfolio return. The
results from using hedging portfolio return beta and dollar return beta are shown in Table234.

From the results, it can be seen in the 1977-1981 period that the coefficients to the return
β’s are statistically significant, with t-statistics of -3.712 and -4.140 for return and dollar return,
respectively. Comparatively, the market β’s coefficients had t-statistics less than one in magnitude.
Using regressions with two other popular β’s, namely the small-minus-big cap portfolio return
(β̂SMB

p ) and the optimal forecast portfolio (β̂OFP
p ), Lo found that the t-statistic for SMB was

4.433, and thus significant, while that for OFP was 0.632. Of the other periods, none of the
hedging portfolio coefficients to β were significant, while only the 1992-1996 period coefficients for
SMB (t-statistic = 2.147) and OFP (2.407) were significant. Lo concludes by saying ”the point
estimates of the cross-sectional regressions show that the hedging-portfolio factor is comparable in
magnitude and in performance to other commonly proposed factors” for return predictability.

¥ 5.3.3 Comments

The approach of using volume data to determine the hedging portfolio in this work was novel. The
economy model was reasonably general, except for the fact that investors maximized their wealth

22Assuming these parameters are not observed, we have freedom to choose them.
23Table taken from Lo [28].
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Model Years Statistic γ0t γ1t γ2t R̄2

Return 1/72 - 12/76 Mean: 0.004 -0.002 -0.002 14.3
(φ = 1.25) Std: 0.035 0.035 0.037 10.9

t-Stat: 2.040 -1.047 -0.820

Dollar 1/72 - 12/76 Mean: 0.004 -0.002 -0.104 15.5
Return Std: 0.032 0.034 3.797 10.9

(φ = 1.50) t-Stat: 2.162 -1.081 -0.442

Return 1/77 - 12/81 Mean: 0.003 -0.001 -0.012 13.1
(φ = 4.75) Std: 0.014 0.020 0.051 12.4

t-Stat: 3.748 -0.902 -3.712

Dollar 1/77 - 12/81 Mean: 0.003 -0.001 -1.564 12.5
Return Std: 0.013 0.020 6.104 12.2

(φ = 4.25) t-Stat: 3.910 -0.754 -4.140

Return 1/82 - 12/86 Mean: 0.006 -0.001 -0.006 9.6
(φ = 1.75) Std: 0.011 0.020 0.055 9.4

t-Stat: 8.390 -0.780 -1.732

Dollar 1/82 - 12/86 Mean: 0.006 -0.002 -0.740 10.4
Return Std: 0.011 0.019 19.874 9.5

(φ = 2.00) t-Stat: 8.360 -1.297 -0.602

Return 1/87 - 12/91 Mean: 0.002 0.000 0.000 5.4
(φ = 47) Std: 0.016 0.019 0.060 6.1

t-Stat: 2.254 -0.147 0.168

Dollar 1/87 - 12/91 Mean: 0.002 0.000 0.189 6.0
Return Std: 0.016 0.019 18.194 6.7
(φ = 20) t-Stat: 2.434 -0.147 0.168

Return 1/92 - 12/96 Mean: 0.002 0.001 -0.004 6.9
(φ = 38) Std: 0.013 0.020 0.091 6.8

t-Stat: 2.785 1.164 -0.650

Dollar 1/92 - 12/96 Mean: 0.003 0.000 -1.584 6.2
Return Std: 0.015 0.022 12.992 6.6
(φ = 27) t-Stat: 3.279 -0.178 -1.970

Table 4. Cross-sectional regression tests of market and hedging portfolio β’s for five-year subperiods. R̄2 is average
R2 over the 100 portfolios.
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in a myopic (next period only) time frame. However, having a utility function with dependence
on future time periods would make the analysis much more difficult. The stock market data was
separated to reduce the effects of non-stationary in turnover data. As discussed in the previous
section, turnover on the NYSE has increased dramatically over the decades. However, as with
Morse’s analysis, one of the time periods crossed the date when commissions were abolished (May
1st, 1975), causing that group of data to possibly be non-stationary. As for using the hedging
portfolio to predict future returns, the empirical data seemed to indicate that neither this method,
nor any of the other β’s considered (SMB and OFP), could adequately predict the future cross-
section of expected returns.
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¥ 6 An Analysis of Current Data

In papers by Campbell and Morse, the question was if there was some serial correlation of returns
around instances of large volume. The two authors came up with differing results, and in Sec-
tion 4.2.5 we discussed possible reasons why the results were different. One of the main issues was
that turnover data is likely non-stationary due to many market factors, regulatory rules changes,
and potentially changes in tax law. With that in mind, we thought we would perform a brief
analysis of current market data to see what the current conditions seem to be24.

In Section 3, we looked at arrival of new information and considered what happens when there
is a disagreement about the information presented. A recent study by Meschke [32] found that
stocks typically run up 2.4% in the two days before a CEO appears on CNBC, and 1.9% on the
day after. But the stock loses 3.26% in the 10 days after that. Yet, CEO interviews on CNBC are
considered to be ”non-events”. Meschke concluded that ”enthusiastic investors create transitory
buying pressure” much the same way non-informational traders create selling pressure when they
have to liquidate.

In addition, past work has considered the change in volume and price around quarterly earnings
announcements. For example, Lobo and Tung [29] found that trading volume reaction to earnings
announcements was related to the amount of information asymmetry before the event, and the
subsequent price movement. Oppenheimer and Grissom [35] analyzed a similar phenomenon with
real estate investment trusts (REITs).

Since there is some general agreement that earnings announcements are generally informative,
and since it can be seen from a cursory glance that trading volume tends to be high near such
announcements, we decided to see if any type of serial correlation existed today between volume
reaction and subsequent price changes around an earnings announcement.

¥ 6.1 Testing the Hypotheses

Campbell’s paper [4] stated that ”price changes accompanied by high volume will tend to be
reversed.” On the other hand, Morse concluded exactly the opposite due to his theory of the
permeation of private information into the stock price. From our cursory analysis around earnings
announcements, we will see that Campbell’s explanation appears more likely in our current market.

¥ 6.2 Dataset Used

To test this hypothesis, a set of data had to be selected. We chose the thirty stocks in the Dow
Jones Industrial Average (DJIA) as a representative sample of equities, and found the date of each
of their third quarter 2002 earnings announcements, which were released between October 4th, 2002
and November 19th, 2002. A list of these thirty stocks and their earnings announcement date may
be found in Table 5.

¥ 6.3 Analysis

Since earnings announcements can happen before the market opens or after it closes25, we count
the number of trading days before (after) the earnings released based on the days before (after)
the information was released. So, an earnings announcement after hours on January 21st, 2003

24This research of our own is in no way comprehensive. Rather, it is a small test to get some idea about market
behavior and a sample of the type of work we can do to better understand our current market.

25Earnings announcements can happen during trading hours, too, but most firms today prefer to present new
information while markets are closed so investors can analyze and digest it properly before rushing to adjust their
positions in the open market.
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Company Ticker Earnings Before/After
Date Trading Day

3M Co. MMM 10/21 Before
Alcoa Inc. AA 10/4 Before
American Express Co. AXP 10/28 After
AT&T Corp. T 10/22 Before
Boeing Co. BA 10/16 Before
Caterpillar Inc. CAT 10/16 Before
Citigroup Inc. C 10/15 Before
Coca-Cola Co. KO 10/16 Before
E.I. DuPont de DD 10/21 Before
Nemours & Co.
Eastman Kodak Co. EK 10/24 Before
Exxon Mobil Corp. XOM 10/31 Before
General Electric Co. GE 10/11 Before
General Motors Corp. GM 10/15 Before
Hewlett-Packard Co. HPQ 11/20 After
Home Depot Inc. HD 11/19 Before
Honeywell International Inc. HON 10/16 Before
Intel Corp. INTC 10/15 After
International Business IBM 10/16 After
Machines Corp.
International Paper Co. IP 10/23 Before
J.P. Morgan Chase & Co. JPM 10/16 Before
Johnson & Johnson JNJ 10/15 Before
McDonald’s Corp. MCD 10/22 Before
Merck & Co. Inc. MRK 10/18 Before
Microsoft Corp. MSFT 10/17 After
Philip Morris Cos. Inc. MO 10/17 Before
Procter & Gamble Co. PG 10/29 Before
SBC Communications Inc. SBC 10/24 Before
Wal-Mart Stores Inc. WMT 11/13 Before
Walt Disney Co. DIS 11/7 After

Table 5. Components of the Dow Jones Industrial Average (Co = Company, Corp = Corporation, Inc = Incorpo-
rated).
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and one before the market opened on January 22nd, 2003 would both have their first trading day
after information release on January 22nd. Also, since earnings announcements can come any
day of the week, we analyze returns for a five trading day window before and after the earnings
announcement so that all of the analyses will include a weekend in the five day intervals. This
removes the possibility that a stock with an earnings announcement early or late in the week will
have a weekend inside their window of analysis while another security with a Wednesday release
will not include a weekend. Also, third quarter earnings were chosen since none of these windows
included any holidays where the market either was not open, or only traded for half of a day.
Finally, to compare the excess return from these securities, the returns in these five-day windows
were adjusted by the return of the Standard and Poors 500 index to remove any performance due
to macroeconomic events, or market movements as a whole. Also, the returns were adjusted to
reflect dividends.

The volume data obtained was the average number of shares traded in the five trading days
before an earnings announcement. This was compared with the average daily trading volume in
2002, according to data obtained from Yahoo! Finance26 [15]. Table 6 shows the volume data along
with return information around the five-day windows of the earnings release.

¥ 6.4 Results

From the data, it can be seen that twenty-six of the thirty securities saw an increase in trading
volume in the five days preceding an earnings announcement, with the average increase in trading
during that period was 24.93%. Six had volume greater than 50% of the average daily volume.

The average excess return in the five days preceding an earnings announcement was negligible, at
-0.05% (standard deviation 5.93%), while the excess returns after earnings announcements averaged
1.32% (standard deviation 6.70%), not significantly above the market return. Looking at the excess
returns before and after the earnings announcement, we see that fourteen of the thirty stocks saw
a sign change, while sixteen did not, about half of what one would expect.

While no significant trends can be concluded, it can be seen that the three securities that had the
largest increase in trading volume, Alcoa, General Electric, and General Motors, all had sign changes
and greater than 10% return differences between the time period after the earnings announcement
and the period before earnings. This tends to support Campbell’s hypothesis that of the stocks
which saw heavy trading before their earnings announcement, a negative autocorrelation of returns
can be seen. This would indicate that the pre-earnings trading was likely non-informational, and
that the quantity of asymmetrical information was small.

The argument for this conclusion is that information today is more readily available than in the
past, reducing the potential amount of asymmetry in the market. Further, companies recently tend
to preannounce any earnings adjustments well before the actual earnings announcement release,
reducing the amount of new information earnings announcements may provide. For example,
Philip Morris actually had a 6% decline in volume in the five days before its 3rd quarter earnings
announcement, but had volume four and a half times normal on November 12th, 2002, when it
announced a warning for reduced future earnings.

Granted, these results come from a cursory analysis of the relationship between returns and
volume around a particular information release from the most recent quarter of earnings data.
To reach adequate conclusions, a larger set of securities should be considered, and a larger set of
informational events need to be analyzed. The choice of earnings announcements was a convenient
event which was guaranteed to occur for each security once every three months.

26This was the case for all stocks except for AT&T, who had a 1 for 5 reverse stock split on 11/19/2002. For this
security, the average daily volume from 1/1/2002 until 10/31/2002 was used instead.
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Ticker 2002 Daily Avg Volume Percent Adj % Return Adj % Return
Symbol Volume Pre-Earnings Increase Pre-Earnings Post-Earnings

AA 3,577,363 6,269,600 75.26 4.92 -5.48
GE 25,958,863 44,098,600 69.88 -6.49 8.79
JNJ 7,527,500 10,588,500 40.66 -4.81 -2.64
MSFT 39,818,136 59,645,900 49.80 0.09 0.53
AXP 4,847,818 5,949,440 22.72 0.51 7.39
GM 6,151,954 11,268,600 83.17 -13.49 4.04
JPM 12,439,181 19,959,800 60.46 1.59 5.92
PG 3,948,090 4,652,800 17.85 -5.99 -1.14
BA 3,727,727 5,006,900 34.32 -8.99 -7.19
HD 14,386,272 11,156,700 -22.45 6.07 -14.12
KO 5,820,227 5,844,900 0.42 -8.76 -9.68
SBC 8,023,636 10,647,000 32.70 6.70 1.04
C 17,786,681 23,502,100 32.13 5.83 9.60
HON 4,235,181 5,408,700 27.71 2.60 3.52
MCD 7,362,045 6,339,000 -13.90 -4.76 1.18
T 16,797,000 12,283,000 -26.87 -1.77 8.49
CAT 1,878,090 2,963,500 57.79 -5.24 8.91
HPQ 12,530,818 13,445,000 7.30 0.98 13.20
MMM 2,345,909 2,892,780 23.31 -1.86 0.43
UTX 2,458,272 3,152,600 28.24 0.31 8.57
DD 2,878,454 3,009,500 4.55 -1.59 -0.64
IBM 9,361,363 13,790,000 47.31 6.44 10.31
MO 9,561,409 9,021,400 -5.65 -4.82 6.61
WMT 9,395,500 7,736,500 -17.66 2.59 -3.24
DIS 7,772,818 9,221,400 18.64 7.30 -0.94
INTC 63,161,909 80,077,000 26.78 13.23 -9.39
MRK 7,061,136 7,402,600 4.84 0.86 -0.88
XOM 11,920,500 12,010,000 0.75 -2.40 -0.66
EK 2,439,409 3,855,800 58.06 7.83 2.01
IP 2,614,500 2,867,000 9.66 1.67 -4.95

Table 6. Average daily volume, 5-day pre-earnings average volume, percentage increase of volume near earnings,
and adjusted returns over five trading days, before and after the earnings announcement for DJIA stocks.
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¥ 7 Conclusions

Trading volume has been shown to have a relationship to securities prices in a few different ways.
Karpoff and others modeled and determined empirically that large turnover occurred during times
of large absolute price change, although significance could not be found for the direction of this price
change. Campbell and Morse considered how abnormal volume would affect the autocorrelation
of returns. Campbell used a model of non-informational traders to explain the return reversals he
found in empirical data. Morse, on the other hand, found positive autocorrelations and explained
that this behavior in prices could happen if a subset of individuals on the market had private
information and traded on it until the price reflected this information. The fact that these two
authors had differing results could stem from a variety of reasons, but perhaps primarily by the
time frame of their analyses, as regulatory changes and availability of information have changed
over time. Finally, Lo asserted that two-fund separation in portfolio holdings would result in an
approximate two factor structure for turnover, and from this information, one could determine the
hedging portfolio. Furthermore, this portfolio was the best predictor of future market returns, both
theoretically and empirically, although Lo showed that the hedging portfolio was only as good as
other possible portfolios in their predictive power of the cross-section of expected returns.
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¥ A Statistics Review and Overview

The following section provides a brief overview of transform theory and different statistical tech-
niques [31] which are referenced in the trading volume research. Hypothesis tests and regressions
are two very common statistical techniques employed by researchers. Within the realm of hypothe-
sis testing, statisticians can use p-values, t-statistics, Chi-square tests, and F-tests to analyze their
data. A reader with an understanding of these topics need not read this section.

¥ A.1 Transforms of Random Variables

Sometimes analyses of some combination of random variables can be unwieldy. For instance, finding
the probability density function (PDF) of the sum of two random variables involves a convolution of
the individual PDFs. For discrete probability mass functions (PMF), a convolution is also required.
This computation can be simplified if we introduce the exponential transform, also known as the
s-transform, in continuous time, and the z-transform in discrete time.

¥ A.1.1 Definitions

The s-transform of a PDF fx(x) is defined as

fT
x (s) = E(e−sx) =

∫ ∞

−∞

e−sxofx(xo)dxo

while the z-transform of a PMF px(x) is

pT
x (z) = E(zx) =

∞
∑

k=−∞

zkpx(k)

¥ A.1.2 Convolution

One of the useful properties of these transforms is that it converts a convolution sum/integral into
a product. If x and y are two continuous independent random variables with PDFs fx(x) and
fy(y), and we wish to determine the PDF of their sum z = x + y, we know from Fourier series that
fz(z) = fx(z) ∗ fy(z), where the operator is a convolution. However, if we do the mathematics in
tranform space, we obtain

fT
z (s) = E(e−sz) = E(e−s(x+y)) = E(e−sxe−sy) =

∫ ∞

x=−∞

∫ ∞

y=−∞

e−sxe−syfx,y(x, y)dxdy

since x and y are independent, fx,y(x, y) = fx(x)fy(y); so, we have

fT
z (s) =

∫ ∞

x=−∞

e−sxfx(x)

∫ ∞

y=−∞

e−syfy(y) = fT
x (s)fT

y (s)

In discrete time, the integrals are converted to sums, and we once again have

pT
z (z) = pT

x (z)pT
y (z)

¥ A.1.3 Moment-Generating Properties

Another useful properties of tranforms are their moment-generating characteristics. Here we will
first show the steps necessary for discrete time, with the continuous time case following below. To
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compute the moments of a discrete random variable x, we can do so by taking derivatives of the
PMF.

d

dz
pT

x (z) =
d

dz
E(zx) = E(xzx−1)

When this is evaluated at z = 1, we have E(x). If we take another derivative,

d2

dz2
pT

x (z) = E(x(x − 1)zx−2)

which, when evaluated at z = 1, yields E(x2) − E(x). So, the variance can be determined by the
E(x(x-1)) + E(x) - E(x)2.

In continuous time, the general equation is

dk

dsk
fT

x (s) =
dk

dsk
E(e−sx) = (−1)kE(ske−sx)

When evaluated at s = 0, we have the kth derivative yielding ±E(xk).

¥ A.2 Hypothesis Testing

The idea of hypothesis testing involves first developing a conjecture, or hypothesis. This is generally
termed the null hypothesis. With any hypothesis, there exists the possibility that it is false. Any
such contradiction of the null hypothesis is called the alternative hypothesis. Now, to determine
which of these possibilities is true, we must have some information. The information we use to
evaluate our hypothesis is called the test statistic. Different test statistics exist depending on the
hypothesis and the type of data we have available. In almost all cases, it is useful to have an
ensemble of measurements that we use to obtain our test statistic. The reason for this comes from
the result of the Central Limit Theorem.

¥ A.2.1 Central Limit Theorem

The Central Limit Theorem states that the average of a large number of independent samples from
a distribution will itself approach a normal distribution. Mathematically, we write:

Theorem 2. If X̄ is the mean of a random (independent) sample X1, X2, X3, ..., Xn of size n from
a distribution with a finite mean µ and a finite positive variance σ2, then the distribution of

W =
X̄ − µ

σ/
√

n
=

∑n
i=1 Xi − nµ√

nσ

is normal with zero mean and unit variance as n → ∞ [17].

Proof. [9] Let y =
∑n

i=1 Xi. Consider z = y−E(y)
σy

, where E(y) = nµ and σy =
√

nσ, the latter
because the samples are independent. Apply the s-transform to z to obtain

fT
z (s) = E(e−sz) = E(e

− sy

σy
+

sE(y)
σy ) = E(e

− sy
√

nσ
+ snµ

√

nσ ) = fT
y (

s√
nσ

)e
s
√

nµ

σ = (e
sµ

√

nσ fT
x (

s√
nσ

))n

with the last equality resulting from the identity fT
y (s) = [fT

x (s)]n for y =
∑n

i=1 Xi when the Xi’s
are independent. Now, applying Taylor series approximations to the two terms, we obtain27

e
sµ

√

nσ ≈ 1 +
µs

σ
√

n
+

µ2s2

2σ2n
+ O(s3)

27O(sk) means additional terms of order k or greater.
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and

fT
x (

s√
nσ

) ≈ 1 − µs

σ
√

n
+

E(X2)s2

2σ2n
+ O(s3)

so their product, for small s, yields

fT
z (s) ≈ (1 +

s2/2

n
)n

which, as n → ∞, converges to es2/2, which is the s-transform for a zero-mean, unit normal
Gaussian. ¥

Again, the Central Limit Theorem asserts that a large number of samples from a given distri-
bution will have an average that possesses a Gaussian-like distribution. The advantage of having a
normal distribution is that the probability density function of this distribution is well-known, and
thus we may gauge the probability that a particular average can occur given certain assumptions
of the first two moments (mean and variance) of the underlying distribution.

So, from a set of measurements and a given hypothesis, four possible situations can occur. If
the null hypothesis H0 is true, from the test statistic we can conclude correctly that H0 is true,
or else we can erroneously reject H0. The latter is classified a Type I error (having probability α
of occurring). On the other hand, if H0 is false, we can either correctly reject H0, or erroneously
accept it. Such acceptance is classified as a Type II error (with probability β).

¥ A.2.2 p-Value

To determine whether or not to accept a hypothesis, we must ask, ”What is the maximum value of
α we are willing to tolerate and yet still believe that H0 is true?” Often, we choose p = 0.025, which
means that we will accept H0 if our test statistic yields a Type I error with less than probability p.
If the test statistic does not fall within the rejection region, then we say that the null hypothesis is
true with confidence 100(1-p)%.

¥ A.2.3 Law of Large Numbers

Related to the Central Limit Theorem is the law of large numbers. In its weakest form, the law of
large numbers states that the average of a sequence of random variables having (the same) finite
expected value will converge to this expected value. An example of the application of this law may
be found in Section 2.2.

¥ A.3 t-Statistics

When dealing with samples of data, the variance of the data could be unknown. As a result, the
sample variance is computed and used as an estimate of the variance. Mathematically,

z =
X̄ − µ

σX̄

=
X̄ − µ

σ/
√

n

where z is what we ideally want to analyze. In reality, we have

t =
X̄ − µ

s/
√

n

where s is the sample standard deviation. The variability of t depends on how many samples we
have (to see this, consider the degenerate case of trying to calculate the sample variance with only
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one sample). This dependence is called the degrees of freedom and is equal to (n-1), where n is
the number of samples. The t-distribution approaches the normal distribution as n → ∞, but is
always less probable around the mean and more probable in the tails for finite n. So, while we have
zα=0.025 = 1.96, in the case where we have 5 samples, tα=0.025 = 2.776, which means that the region
where α is 0.025 is the region greater than or equal to 2.776 standard deviations greater than the
mean.

In our analysis, we will see that two particular levels of significance used are 0.05 and 0.01. A
t-statistic greater than 1.96 has a level of significance greater than 0.05. One which is greater than
2.576 has a level of significance greater than 0.01.

¥ A.4 Chi-square Tests

The goal of a chi-square test is to measure the degree of disagreement between the observed mea-
surements and the null hypothesis. The chi-square test seeks to analyze if the variability, i.e.

sample variance, is consistent to the hypothesized value. The quantity (n−1)s2

σ2 is known to have
a chi-square χ2 distribution if the sampled population is normally distributed. To understand the
chi-square distribution, we must first discuss the gamma function and the gamma distribution. The
gamma function is defined as

Γ(t) =

∫ ∞

y=0
yt−1e−ydy

for t > 0. Note, Γ(1) = 1 and Γ(n) = (n−1)! for integer n. Now, we define the gamma distribution
to be the probability density function (pdf)

f(x) =
1

Γ(α)θα
xα−1e−x/θ

for x ≥ 0. A chi-square distribution with r degrees of freedom is the gamma distribution with θ = 2
and α = r

2 . The mean of this distribution is r, and its corresponding variance is 2r.
As an example [31], consider a voter preference survey where the null hypothesis is that voters

are equally distributed between three candidates. Suppose we randomly sample 150 voters from
the population, and 61 voters choose the first candidate, 53 the second, and 36 the third. If we
wish to apply a chi-square test to measure how much our empirical data matches our hypothesis,
we first compute the chi-square statistic.

χ2 =
(n1 − E(n1))

2

E(n1)
+

(n2 − E(n1))
2

E(n2)
+

(n3 − E(n1))
2

E(n3)
=

(61 − 50)2

50
+

(53 − 50)2

50
+

(36 − 50)2

50
= 6.52

where ni are the number of voters who selected voter i. With 2 degrees of freedom, the value
for χ2

α=0.05 is 5.99. Since the computed value exceeds 5.99, we conclude that at the 0.05 level of
significance, there does exist a voter preference for one of the candidates.

¥ A.5 F-tests

The F-distribution is created by two independent chi-square random variables U and V in the
following manner:

F =
U/r1

V/r2

where r1 and r2 are the degrees of freedom of U and V, respectively28. This distribution can be used
whenever we have two normally distributed sampled populations and randomly (independently)

28The symbol F was proposed by George Snedecor as a way of honoring R. A. Fisher.
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selected samples from their respective distributions. Often, for convenience, the larger sample
variance is placed in the numerator. A discussion of how F-tests are used to test the significance
of R2 values is in AppendixA.6.4.

¥ A.6 Linear Regressions

A linear regression involves obtaining a ”best fit” line for a given set of data. The term best fit
usually means with respect to a minimum mean-squared error. The order of the regression depends
on the number of factors which we think affect the dependent variable. We will begin by introducing
a first-order probabilistic model, and then we will proceed to discuss higher-order models.

¥ A.6.1 First-Order Model

A first-order model means that the dependent variable y has only one factor x that it is dependent
on as shown in the following equation.

y = a0 + a1x + ε

where ε is a zero-mean random error component. For a given set of data points (x1, y1), (x2, y2),
..., (xn, yn), the goal is to find the values of a0 and a1 which minimize the squared error as follows:

Error = mina0,a1

n
∑

i=1

[yi − (a0 + a1xi)]
2

The problem can be posed as an overdetermined linear algebra problem (assuming n > 2).

Y =











y1

y2
...

yn











=











1 x1

1 x2
...

...
1 xn











[

a0

a1

]

= B~a

Using the matrix representations, we find that the least squares solution for ~a is

~a = (BT B)−1(BT Y )

¥ A.6.2 R2 - The Coefficient of Determination

One way to measure the strength of a factor x in predicting y is to see how much better of a fit
using this factor is compared with just using the average value of y. Mathematically, assuming that
we have the same n data points as above, and the corresponding values of a0, a1, define

ȳ =
n

∑

i=1

yi

as the mean of observed data points of y and

ŷi = a0 + a1xi

for i=1,2,...,n as the linear, or first-order, estimate of y, for each particular data point. If we define
the squared sum of deviations from the mean as

SSy =
n

∑

i=1

(yi − ȳ)2
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and the mean-squared error of the linear estimate as

MSE =
n

∑

i=1

(yi − ŷi)
2

then the coefficient of determination is defined to be

R2 = 1 − MSE

SSy

which has values between 0 and 1, inclusive. So an R2 value of 0.7 indicates that the linear estimate
has reduced the squared error by 70% over ŷ as the predictor. An R2 of 1 means that the linear
estimate is an exact fit of the data, while a value of 0 means that the linear estimate is no better
than the average value.

Alternatively, R2 may also be written as

R2 =
Cov(x, y)2

σ2
xσ2

y

¥ A.6.3 Higher-Order Models

Similarly, multi-factor models can be used to represent a dependent variable y. Suppose that we
have a p-factor model with independent variables29 x1, x2, ... , xp, and n sample observations (with
n > p). Then, we want to find the values ai for i = 0, 1, ... , p which minimize

Error = mina0,a1,...,ap

n
∑

i=1

[yi − (a0 + a1x
1 + a2x

2 + ... + apx
p)]2

with the best-fit equation being

y = a0 +

p
∑

j=1

ajx
j + ε

The solution to the overdetermined linear algebra problem is similar, with the only difference being
that

B =











1 x1
1 x2

1 ... xp
1

1 x1
2 x2

2 ... xp
2

...
...

...
...

...
1 x1

n x2
n ... xp

n











In Section 2.2, an example of a multi-factor model will be discussed.

¥ A.6.4 F-Test to Determine Significance in Regressions

In a multi-variable regression, we may be interested in whether or not the coefficients to the factors
are significant. If we have

y = a0 +

p
∑

j=1

ajx
j + ε

29These are p different variables, not p powers of one individual variable. This notation is used to avoid confusion
with the notation of xi above to indicate the ith sample.
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then to test the null hypothesis that aj = 0 ∀ j, we can apply an F-test, with the F-statistic being

F =

R2

p

1−R2

n−(p+1)

where p is the number of factors and n is the number of samples. The degrees of freedom are p
and n-(p+1), respectively.

¥ B Miscellaneous Details

¥ B.1 Hedging Portfolio Forecasts Market Returns

Theorem 3. The dollar return of the hedging portfolio, SH , provides the best forecast for the future
dollar return of the market.

Proof. [28] By definition,

R2 =
Cov(S′Qt, QM(t+1))

2

V ar(S′Qt)V ar(QM(t+1))

The numerator is E(S′QtQ
′
t+1ι), which can be simplified to (1+r)S′σQXb′ι because Qt+1 = ra +

(1 + r)bXt + Q̃t+1. Similarly, the only term in the denominator which varies with S is V ar(S′Qt).
So, for S to maximize R2, we need to solve

maxS [S′σQX(b′ι)]

subject to the constraint S′σQQS = v, where v is any constant. The constraint ensures that
the denominator is constant, while the maximization maximizes the numerator. Up to a scaling
constant, the solution is S = σ−1

QQσQX , which is SH . ¥

¥ B.2 Details of Ying’s Analysis

Below are some of the details of Ying’s [43] work, along with more specifics about his results. Ying
defined six different variables

• P(t) ≡ closing price on the tth day

• V(t) ≡ percentage volume of trades on tth day

• ln P(t)

• ln V(t)

• D(ln P(t)) ≡ ln P(t) - ln P(t-1)

• D(ln V(t)) ≡ ln V(t) - ln V(t-1)

and posed the following hypotheses (with results of the statistical tests beneath each hypothesis).

• There is an effect of D(ln P(t)) on D(ln P(t+1))

Significant at 0.01 level of significance

• There is an effect of D(ln V(t)) on D(ln P(t+1))

Not significant at the 0.05 level of significance
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• There is an effect of ln V(t) on D(ln (P(t+1))

Significant at the 0.01 level of significance

• There are interaction effects of D(ln P(t)) and D(ln V(t)) on D(ln P(t+1))

• There are interaction effects of D(ln P(t)) and ln V(t) on D(ln P(t+1))

• There are interaction effects of D(ln V(t)) and ln V(t) on D(ln P(t+1))

Effects of any of the two factors are not significant at the 0.05 level

• There are triple interaction effects of D(ln P(t)), D(ln V(t)), and ln V(t) on D(ln P(t+1))

The triple interaction effects are significant at the 0.01 level

¥ B.3 Source Code - MixedTraders.m

function output = mixedtraders

% Returns expected number of trades versus different probabilities of

% optimists for 100 traders.

%

% WSun 1/1/03

N = 100; output = zeros(93,1);

output(1) = 0.99; % 99/100 chance that there will be exactly 1 trade

for p=0.02:.01:.93

total = 0;

q = 1-p;

for m=1:N

if (m <= (q*N - 1))

factor = factorial(round(q*N))/factorial(round(q*N-m+1))* ...

factorial(N-m+1)/factorial(N);

firstTerm = factor*(1-(p*N/(N-m+1)))/(N-m+1);

secondTerm = factor*(p*N/(N-m+1))*(1-(1/(N-m+1)));

end % if condition

thirdTerm = 0;

U = round(max(1,m-1-q*N));

V = round(min(p*N-1,m-1));

for r = U:V

if (m <= (q*N + r + 1))

product = nchoosek(m-1,r)*nchoosek(N-m+1,round(p*N-r))/ ...

nchoosek(N,round(p*N))*(p*N-r)/(N-m+1)/(r+1);

thirdTerm = thirdTerm + product;

end

end % for n

total = total + firstTerm + secondTerm + thirdTerm;

end % for m

output(100*p) = total;

end % for p

% Case for p = 1 is 5.1774 from formula for unanimous case
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